Revista Colombiana de Matemáticas Volumen X (1976), págs. 95 - 97

A TRIANGLE INEQUALITY FOR ANGLES IN A HILBERT SPACE

by

$D. K. RAO$

Let x,y,z be unit vectors in a Hilbert space, and define the angle θ_{xy} by cos θ_{xy} = \Re e (x,y), $0 \le \theta_{xy} \le \pi$. The object this note is to give a proof of the following inequality

 $\theta_{xz} \leq \theta_{xy} + \theta_{yz}$. (1)

This result was mentioned without proof in $[1]$ and is important in inequalities for operator cosines introduced in $[2]$.

In order to prove (1) we need the following lemma:

LEMMA. Let x, y, z be unit vectors in a Hilbert space, and $(x, y) = a_1 + ib_1$, $(y,z) = a_2 + ib_2$, $(x,z) = a_3 + ib_3$. Then

 $\cos \theta_{xy} \ge \cos (\theta_{xy} + \theta_{yz}).$ (2)

Proof. By Schwarz inequality we have $|a_j|^2 + |b_j|^2 \le 1$, $j = 1, 2, 3$. On the other hand, (2) is equivalent to

$$
(1-a_1^2)^{\frac{1}{2}} (1-a_2^2)^{\frac{1}{2}} \geq a_1 a_2 - a_3.
$$

95

This result is obvious if $q_1 q_2 - q_3 \leq 0$. Otherwise we need to prove that

$$
1-a_1^2-a_2^2-a_3^2+2a_1a_2a_3\geq 0.
$$

(It is interesting to note that the above expresi on does not contain \mathcal{b}_1 , \mathcal{b}_2 or *b*₃.) For this let $f(p,q,r) = 1 \cdot p^2 \cdot q^2 \cdot r^2 + 2pqr$, so that

$$
p \frac{\partial f}{\partial p} + q \frac{\partial f}{\partial q} + r \frac{\partial f}{\partial r} = -2 \left[p^2 + q^2 + r^2 \cdot 3pqr \right].
$$

In the cube $E = \{ |p| \leq 1, |q| \leq 1, |r| \leq 1 \}$, we have $|pqr| \leq |pq|$, etc, and hence

$$
2[p^{2}+q^{2}+r^{2}-3pqr] \geq (|p|-|q|)^{2}+(|q|-|r|)^{2}+(|p|-|r|)^{2} \geq 0
$$

Therefore

$$
p \frac{\partial f}{\partial p} + q \frac{\partial f}{\partial q} + r \frac{\partial f}{\partial r} \leq 0 \quad \text{in} \ \ E \ .
$$

The above inequalities show that for any rectangle V contained in E , f attains its minimum value on the surface of *V.* **In** particular, this is true for the cube *E* . Now consider the Grammia
(x x)

or equivalently,

$$
1-a_1^2-a_2^2-a_3^2+2a_1a_2a_3^2-b_1^2+b_2^2+b_3^2+2b_1(b_2a_3-b_3a_2)-2a_1b_2b_3.
$$

If we take (a_1, a_2, a_3) on the surface of E and assume, for example, that $\|a_1\|$ = 1 then $b_1 = 0$ and we have

$$
1-a_1^2-a_2^2-a_3^3+2a_1a_2a_3\geq b_2^2+b_3^2-2a_1b_2b_3\geq b_1^2+b_2^2-2|b_2||b_3|=(|b_2|-|b_3|)^2\geq 0,
$$

that is to say the desired inequality.

Q.E.D.

Proof of *inequality* (1). If $\theta_{xy} + \theta_{yz} \geq \pi$, there is nothing to prove. If θ_{xy} + θ_{vz} < π , it follows from (2) and the fact that cosine is a non-increasing function on $[0, \pi)$ that inequality (1) holds.

References

- 1. M. *Krein: Angular localization of a multiplicative integral in a Hilbert space, Funct.* Anal. Applic. 3 (1969).
- *2. K. Gustafson: The angle of an operator and positive operator products,* Bull. Amer. Math. Soc. 74 (1968), 188-192.

Departamento de Matematicas Universidad del VaUe Ap artado Aireo 2188 Cali, Colombia, S. *A.*

(Recibido en abril de 1976).