Revista Colombiana de Matemáticas Volumen X (1976), págs. 95 - 97

A TRIANGLE INEQUALITY FOR ANGLES IN A HILBERT SPACE

by

D. K. RAO

Let x, y, z be unit vectors in a Hilbert space, and define the angle θ_{xy} by $\cos \theta_{xy} = \Re e(x, y), \ 0 \le \theta_{xy} \le \pi$. The object this note is to give a proof of the following inequality

(1) $\theta_{xz} \leq \theta_{xy} + \theta_{yz}$.

This result was mentioned without proof in [1] and is important in inequalities for operator cosines introduced in [2].

In order to prove (1) we need the following lemma :

LEMMA. Let x, y, z be unit vectors in a Hilbert space, and $(x, y) = a_1 + ib_1$, $(y, z) = a_2 + ib_2$, $(x, z) = a_3 + ib_3$. Then

(2) $\cos \theta_{xz} \ge \cos (\theta_{xy} + \theta_{yz}).$

Proof. By Schwarz inequality we have $|a_j|^2 + |b_j|^2 \le 1$, j=1,2,3. On the other hand, (2) is equivalent to

$$(1-a_1^2)^{\frac{1}{2}} (1-a_2^2)^{\frac{1}{2}} \ge a_1 a_2 - a_3$$
.

This result is obvious if $a_1 a_2 - a_3 \le 0$. Otherwise we need to prove that

$$1 - a_1^2 - a_2^2 - a_3^2 + 2a_1 a_2 a_3 \ge 0$$

(It is interesting to note that the above expression does not contain b_1 , b_2 or b_3 .) For this let $f(p,q,r) = 1 \cdot p^2 \cdot q^2 \cdot r^2 + 2p \, qr$, so that

$$p \frac{\partial f}{\partial p} + q \frac{\partial f}{\partial q} + r \frac{\partial f}{\partial r} = -2 \left[p^2 + q^2 + r^2 - 3pqr \right]$$

In the cube $E = \{ |p| \le 1, |q| \le 1, |r| \le 1 \}$, we have $|pqr| \le |pq|$, etc., and hence

$$2[p^{2}+q^{2}+r^{2}-3pqr] \ge (|p|-|q|)^{2}+(|q|-|r|)^{2}+(|p|-|r|)^{2}\ge 0.$$

Therefore

$$p \frac{\partial f}{\partial p} + q \frac{\partial f}{\partial q} + r \frac{\partial f}{\partial r} \leq 0$$
 in E .

The above inequalities show that for any rectangle V contained in E, fattains its minimum value on the surface of V. In particular, this is true for the cube E. Now consider the Grammian

(x,x)	(x,y)	(x,z)	
(y,x)	(y,y)	(y,z)	<u>></u> 0
(z,x)	(z,y)	(z, z)	

in and

or equivalently,

$$1 - a_1^{2} - a_2^{2} - a_3^{2} + 2a_1 a_2 a_3 \ge b_1^{2} + b_2^{2} + b_3^{2} + 2b_1 (b_2 a_3 - b_3 a_2) - 2a_1 b_2 b_3$$

If we take (a_1, a_2, a_3) on the surface of E and assume, for example, that $|a_1| = 1$, then $b_1 = 0$ and we have

$$\frac{1-a_1^2-a_2^2-a_3^3+2a_1a_2a_3}{2} = b_2^2+b_3^2-2a_1b_2b_3 \ge b_1^2+b_2^2-2|b_2||b_3|=(|b_2|-|b_3|)^2 \ge 0,$$

that is to say the desired inequality.

Q.E.D.

Proof of inequality (1). If $\theta_{xy} + \theta_{yz} \ge \pi$, there is nothing to prove. If $\theta_{xy} + \theta_{yz} < \pi$, it follows from (2) and the fact that cosine is a non-increasing function on $[0, \pi)$ that inequality (1) holds.

References

- 1. M. Krein: Angular localization of a multiplicative integral in a Hilbert space, Funct. Anal. Applic. 3 (1969).
- 2. K. Gustafson: The angle of an operator and positive operator products, Bull. Amer. Math. Soc. 74 (1968), 188-192.

Departamento de Matemáticas Universidad del Valle Apartado Aéreo 2188 Cali, Colombia, S. A.

(Recibido en abril de 1976).