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LOCALLY CONVEX * - ALGEBRAS
by
Steven M. MOORE

ABSTRACT

We generalize some of the known re-
sults about C*-algebras to the case of a

*

locally convex *-algebra. In particular, we

analyze the continuity of positive functio -
nals, construct the primitive ideal space ,

and study a theory of representations.

RESUMEN

Generalizamos algunos de los resulta-
dos conocidos sobre las C*-algebras al ca-
so de una *-algebra localmente convexa. En
particular, analizamos la continuidad de los
funcionales positivos,construimos el espacio
de los ideales primitivos y estudiamos una

teoria de representaciones.

§ 1. Introduction. In quantum field theory in recent years a locally convex
*.algebra known as the field algebra or Borchers’algebra [1] has played an in-
creasingly prominent role. The field algebra as a topological vector space is
the direct sum of € and the Schwartz spaces S(IR“"), n=1,2, ete. It is the au-
thor’s intention to show that manyvnf the results on C*-algebras [2] extendable to
the field algebra are also extendable to the general case of certain topological

*-algebras which we will call locally convex *-algebras.
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1.1. DEFINITION. Let ( be a complex *-algebra with identity 1. Suppose
is a complete locally convex Hausdorff topological vector space such that the *
operation is continuous and multiplication is at least separately continuous. Then

({ is called a locally convex*- algebra.

When we say that multiplication is separately continuous we mean that x—xy
and x —~yx for fixed y are both continuous functions. This does not imply  that
multiplication is jointly continuous, i.e. we do not assume that (x,y) — xy is con-
tinuous. A C*-algebra or even a Banach *-algebra is an example of a locally con-
vex *-algebra. The field algebra is another, and for it the multiplication is not
jointly continuous.

§ 2. Positivity. We now generalize the positivity concepts of C*-algebras 1o

locally convex *-algebras. First some definitions.

2.1. DEFINITION. x ¢ ( is self-adjoint if x=x*. The set of all selfadj oint
elements in ( is denoted by ({_. x is positive if x = 2 x* x_, where the
Y S ) }l:l n n
sum is either finite or convergent in d. d ¢ denotes the set of positive elements,

We write x> y if and only if x-y is an element of a ‘e

2.2. PROPOSITION. a. (‘fs is a complete real topological vector space and
a, -+ id, - q.

b. (. is a pointed convex come in ds 3

c. U, is generating for ds, i.e.the real subspace generated by ('f+ is Gs ;

~ . ¢ i 5 ) ] Pl
Since (A, is a convex come, this means that U - a,-a, -

. o . . D
Proof. a. The only part that merits comment is that the completeness of ds
follows froin the continuity of * .

e o] [o0)

b. Suppose «x ¢ (‘ff sif% ='”Z1 x‘n %, Then Ax ="5;. (\//T\xn)‘ (\/Xxn) for
A >0, Thus (‘f+ is a cone. Moreover 0 € ('L , So (‘f+ is pointed. To show that
(o]

it is convex, suppose 0 < A< I, x as above, and y= ZI g Then
n=1"n

[0 9]
At (1=-N) y = *
xt (1 )y ngl z, z,

where
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2= VN 5

Z2k-1 \/ﬁ‘yk
and k=1, 2, etc.
c. Let x ¢ @s. We have
x= 1+ (+x)-(1-%"(1-2]
which is an element of @, -(, . Q. E. D.

2.3. DEFINITION. Let « be a continuous lineal functional on (1, i.e. an
’
element of ( . Define w* by

w*(x) = wx™)

Notice that @ is linear and that «w*(x 3 = A_(_m 0 if x 0 in (, since
w and * are continuous functions. Thus w*e @ if we Q. w is self-adjoint

if w =w*. The set of all self-adjoint elements of (" is denoted by @ 's w is
positive if w(x) > 0 forall x € (‘f+ *The set of all positive functionals in @’
is denoted by @; * A functional « is a state il we (f; and «(1)=1. The set

of all states is denoted by E.

2.4. PROPOSITION. a. d; is a complete real topological vector space and

w (xy) = w(y*x) (2.1)
together with the Cauchy-Schwartz inequal ity
2 ,
lwxey) | "< wlx*x) wly*y). (2.2)

d. we &; and w (1) = 0 imply «=0.

’
e. G+ is a pointed convex come with E as a convex -base.

Proof. a.Again this merits no comment.
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b. Let w e (1; * Then for x,y € (, define the sesquilinear form

(x,y) = w(x"y) (2.3)
It is nonnegative, hencé (x,y) = (y,x), which is the same as (2.1). Moreover it
satisfies the Cauchy-Schwartz inequal ity, so | (x,y) !2 < (x,x) (y,y), which
is (2.2).
c. Note that x=1 in (2.1) gives w(y) = w(y*) =w*(y), so we‘a; if
w € d'* *
d. For we CI‘; we have

‘ 2 2
lwx) | =] wxD | < wx*x) wd),

so w(l) =0 imp]i('s o(x) = 0 for all x.

.’

c. Let vy, Wy € (..0< <1, Then
( /1“(1—‘);‘\2)(,\'*3«'):w‘u‘I(x*x) il = A ) ,2(,\"‘,\') > 0

so ( . is convex. Since 0 ¢ 4+, it is pointed. Moreover, if @ #0 is an
element of (M , then by part d, w (1) #0, so that « (I)'Iu is an element of
E . Thus E is a base. It is convex because

A /1(1) *(1—\)«,1,2(])'—.\,‘«‘(]—‘)-‘1
for vy, wy € E and 0 < A< 1. Q.E.D.

§ 3. Positivity and continuity. In C*-algebras a positive linear functio -

nal is automatical ly continuous. It is interesting to see what conditions  we
need to i)ul on ( in order to insure that every positive lincal functional «
(ice. w(x)> 0 forall x ¢ ({,) is automatically an element of (f; *We quote
the following theorem of Schaefer [3] :

3.1. THEOREM. Let & be an ordered real topological vector space with

positive cone C. Suppose one of the following holds :

a. C has non-empry interior.
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b. & is metrizable and complete with & = C - C.
c. & is bornological and C is a sequentially complete strict B - cone. Then

every positive linear functional on & is automatically continuous.

Conditions a. and b. are the condition applicable to C* -algebras. In gene -
ral condition b. is not applicable to locally convex *-algebras since they are
general ly not metrizable. Condition a. has an air of generality, but at least one
important locally convex *-algebra, the field algebra, does not fulfill condition
a. because @+ has empty interior in that case. Thus we should try to understand
condition c. more. It is easy to see that (15 is an order ed real vector space
with the order relation defined in 2.1. (fs has positive cone ({, *Schaefer’s
theorem applies only to (fs with its positive cone (I, but what we really
want are conditions that show that every positive lineal functional on { is con-
tinuous. However, by a now standard trick, we can reduce the positivity- conti -
nuity question on (d to one on @s 3 E\'(‘ry linear functional « on ({ can be

decomposed as
w (x) = ((‘I(x,‘—l'ul (zx) ,
where w; is a real linear functional on (‘fs . @ is continuous if, and only if,
@, is continuous. w > 0 if, and only if, @, >0 on Gs . Thus Schaefer’s
theorem applies to (.
3.2 PROPOSITION. (A, is a strict B- cone in U .

Proof. We know that (fs —= @Jr—(‘h * Thus, if B is bounded in Gs' then
B=-BNA =8BNn0d,-BNd,

so G+ is a strict B -cone. Q.E.D.

This proposition shows that we only have to check that (1, is sequentially
complete and that ds is bornological in order to apply Schaefer’s conditionc.

to a locally convex *-algebra.

§ 4. The primitive ideal space. We now want to introduce a structure space
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for (4 as the space of primitive ideals with the Jacobson topology [4] -We re-
call that a two-sided ideal P is primitive if it is the maximal two-sided ideal
contained in some maximal left ideal 1. We denote the set of primitive ideals by
Prim ((f ). A closure relation defines a t opology [5] . The closure relation for

Prim ((f) is defined as follows : Let § C Prim (@) and define

D.=N{PecPrim(d):Pecs}- (4.1)

Then

cis)={pPepPrim(@)r POD, } (4.2)
is a closure operation on Prim (@). Prim({) is a compact space and is con -
nected when (f has no non-trivial id('mpol('nls.

We note that (ﬁ*-algvl»rns have non-trivial i(l(‘mpnl(‘nls (the pruj(’('lions), S0

the structure space of a C*-algebra is not connected. However the field algebra
: N 4n o ) 3 .
@ O(IR") has no non-trivial idempotents, so its structure space is connected .
n=o0
Nevertheless Prim () as a topological space in either of these cases is very compli-
cated. Questions we would like 1o have the answers to are : When is Prim (G) 'I'O.’ TI ?

T, ? How do we recover the essential structure of the algebra A from Prim () ?

§

5. Representations. The most interesting part of the theory to us is the
study of the representations of a locally convex *-algebra (mainly because we
have heen able to obtain results in this part of the Ih(‘ory D. In this section we
generalize the well-known GNS construction of (,'*-ulg('brus [6,7] to locally
convex *-algebras. Since the algebra is not normed in general, it should not be
surprisong that we have to consider unbounded operators on Hilbert space.

5.1 DEFINITION. Let H be a s(-puralyl-v Hilbert space and 7 a map from @
into the closed and densely defined operators on H such that :

a. There is a dense set of vectors D(77) C H such that the operators  77(x)
for x ¢ @ are all defined and closed on D(77) and 77 (x) D(77) C D(77) .

b, If X X in (, then (P, 7/(x(14)‘]’) (D, 77(x)¥) forall ®,¥Y eD(77)

c. Forall @, WeD(7), (0,7(x)W) = (7(x)D,¥), ice. 7(x*) C71(x)". Thus for
self-adjoint x, 77(x) is a symmetric operator (Note that we do not require that

self-adjointness be preserved.)
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d. Except possibly for the* operation, 7 preserves the algebraic operations

of (.

Then 7 is called a represent ation of the locally convex *-algebra (L.

5.2 LEMMA. Let «w € E. Define

Liw)={xed :cw(x*x)=01} - (5.1)

Then L(w) is a self-adjoint proper closed left ideal of (. Thus {/L() is a
Hausdorff space.

Proof. Let xeL(w), yF(f. Then
1 2
;w(yx)! < wlyy*)w(x*x) =0.

Thus yx €L(w). Obviously x* €L(«). Using(2.1) and taking x,y e L(w),

we have
w((xy)* xy) =wly*x* xy) = w ((y*x*x)y) =0,

| |

_ 2
w((x tAy)* (xtAy)) = w(x*x) + ANw(y*x)t Aw(x*y) + |[A] «wly*y) =0
so L(w) is a left ideal. Since «@#0, 1¢L(w), so L(w) is proper.

Let (x ) be a Cauchy generalized sequence in L(«). Since (1 is com-
plete, x, — x for some xe¢ (. Since multiplicat ion is separately continuous

L Rl Thus 0 = ;v(x*xl) — w(x*x), so L(w) is closed. Q.F.D.

5.3 DEFINITION. 77 is a cyclic representation if there exists a unit vector
) in D (77) such that {7 (x) (0 : x ¢ (A} is dense in (. In this case (is ca-
lled a cyclic vector.

5.4 THEOREM. (GNS Construction) Let weE. Then there exists a Hilbert
space }(u‘ and a cyclic representation 77 of A with cyclic vector §,, such
that

w(x) = (7 (x) Q,,,Q,). (5.2)

This representation is unique up to unitary equivalence in the sense that, if

77 is another cyclic representation with cyclic vector () such that (5.2) holds,
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then there exists a unitary operator U such that v U = L (x) D, for all
xeld, ®enim ),

Proof. We have just shown that ({/L () is a Hausdorff space. Let x, de-

note the image of x under the canonical map d - /L (w). We define the fo-

llowing sesquilinear form on (/L(w) :
(x, .y, )=w (x'y) (5.3)

(71 T8

2
Now H X H = w(x*x) = 0 if and only if x € L(w), so the sesquilinear

form is non-degenerate and positive. Let bl'b2 € L(«w) and note that

o*((x *171)*()'”)2)): w(x*y) twlb*y) tw(hy® x) ‘rw(bl'bz) = wlx*y),

since 1.(.) is aleft ideal. Thus the value of (x ,y ) depends only on the
cosets and not their represent atives. Hence ({/L(w) is a pre-Hilbert space.

Let H he its completion, and take Qw =p Since 1¢L(w), Qa #0, and

clearly r Q. | =1.We 1ake D(r )= (/L(w) and define ., by
7 (dy .l =Mxy), (5.4)
To check that it is a representation, note that if b € L(w) , then
M) (v, b, ) =7, (x)y

and 7 (x) does not d(!pmld on the represent at ive of the coset Yoo r that
G

is lincar and satisfies c¢. and d. of 5.1 is casy to check by direct calcu-

£ D
lation. Now suppose Y, "y in (f. Then
* *
(x .7 (y ') zu;) = w(x y,z) " wlx yz) = (x(‘,,WL,“(y) zw) 3
The denseness of iii‘ (x) Q‘r } follows from

{/{’ (x) ) } = {xu,.' xe@}=A/L(w) = D(m,) .

For the uniqueness, if 7 satisfies (5.2), define U on D(7. ) by

U, (x) ch = 17(x) () (5.5)
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Then U is linear on D, ) and

| 2
v o, [|7=,00,.7, (x)0Q,)
w .3
= (x"x)Q, ., Q)= =(mx*0Q,Q) = |70
shows that U extends toa unitary operat or. Moreover,
Ul U, (0Q, = U () Q = 7, (x) Q

gives the intertwining property. 0.E.D.

In what follows we will take the representation 77, as our prototype repre-
sentat ion, i.e., from now on, 77 is a cyclic representation of { with cyclic

vector () and D(7) = {7(x) 0 ;xed } -
§ 6. Irreductibility. ~ We take a weak form of a Schur-type criterion for the

irreducibility of matrix algebras as our definition of irreducibility. This defini-

tion is borrowed from quantum field theory (8] .

6.1 DEFINITION. The commutant of 77 , denoted by 77(@)' , contains all

the bounded operators B on H for which
W,B7(x) ®)=(1(x") V,B®D) (6.1)

. o @ "
forall x e @, ¥, ® e D). 77 is irreducible if 7(0) = 1.
’ o a . .
77(d) is a lincar manifold and symmetric in B(H), the C*-algebra of all
bounded operators on H.In general it is not an algebra, as we will see later.

6.2 DEFINITION. Let «w € E . @ is pure if it cannot be written as a non -
trivial convex combination of states, i.e. as  w =\« pH - N w4 where
0<>\<1,.’.U1 ?'(/.L>2€E.

We will see that the connection between 6.1 and 6.2 is the same as that of
C"-algebra theory [9] -

6.3 LEMMA. Let b be a bilinear form on a dense domain DxD, DC K, such
that 0 < b(®,®) < H d HZ, for ® £0 in D. Then there exists a positive
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operator B such that 0 < B <1 and b(¥Y ,®)=(¥Y ,B®) for &, ¥ D,
Proof. The Cauchy-Schwartz inequality gives
i g 12 ! 2
e < pv )@ o)< v [T e |7,

Since D is dense, b extends by continuity to a bounded bilinear form on H H
which is symmetric. By the Riesz representation theorem, there exists a uni -
que bounded operator B such that b(W,®)=(¥,B ®). Since b is symmetric,
B is self-adjoint. 0 < B < I follows from 0 < (¥Y,BVY) < (V,¥). Q.E.D.

6.4 THEOREM. Let € E. Then 71 is irreducible if, and only of, «w is
pure.
Proof. Suppnso @ is not pure. Then there exists @y # Wy both in E ,

such that « = M« 1 +(1- ,\)(02 ,0 < A < 1. Define b by
b(7, (x) € m,0)8,,) = Aawy(x* y) .
For x ¢ L(w) ,
0<b(m (x) Q“'. 7., (x) Q(r) = A @ (x*x) < w(x*x) < H 7., (%) Qm”
so using the lemma we have 0 < B <1, so that
A wy(x*y) = (Nm(x) S'z“‘, wa(y) $.0
for all x and Yy . But
A (ul(x‘y z) = «\a\l ((y*x yhmi)s
written in terms of B, gives
(71, ()€, B 71, (9) T (2) 1)) = (77, (y*) 71, (x) (1, BT, (2) Qo) &

so B ¢ 77(0 (@)' . Now suppose B = u L Then >\u'1 (x) = w aw(x) for all x.

Taking x=1 gives A=, or w= wyp . This is impossible since a)ﬁla)z.

’
Conversely , if 7, is not irreducible, then there exists B¢ 77&;(6) S0
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that B # 1. 1. Without loss of generality, take 0 < B <1 since 77 _(G)‘ is a

symmetric subspace of .‘B(.HJ ) . Notice that () ,B {1,,) > 0 since otherwise

(7, (x) 0, BT, (x) Q) = (7 (x*x) Q ,BQ )< | B3, (x*x)02 I[l]|B200, I

=1,

Since D(m, ) is dense, this would imply B=0. From this observation we find

Q7 (x*x) BQ, ) = (7,(x) Q) BT, (x)0,) > 0,

Q7 (x*x) (1-B) Q) = (7,,(x) Q. A-B) 7, (x) €1,)) > 0.

Define
1 -2
wyx) = |IBEa Il T, 00, . BQ,)
. . 1 =2 \ )
wy = | -8, || T, 0, 4-B)Q,) .
Both Wy, wy € E, and « = J\,ul +(1L+N) 09 where /= (S)/ Bl ). 17@)

would imply that B =4 I, which is not so by assumption. Thus < is not pure.

0.E. D.

§ 7. Self-adjoint representat ions. We now concentrate on the problem of
when 77(x*) =7(x)* for each x, i.e. when x self-adjoint implies 77(x) self-ad-
joint. This is equivalent to asking when 7(x*)* = 77(x) for all x. 77(x*)* D 71(x)
always by property c. of 5.1. This suggests that we should define a new map
7% by

) @ = 7(x*)* D (7.1)
and ask when 7=7*, and this is the final form in which we shall pose the
problem. Of course, our first task is 1o see when 77* is a representation.

7.1 PROPOSITION. 7* defined by (7.1) for ® in

D(r*) = N D (7(x)*) (7.2)
X €

satisfies all the properties of 5.1 except possibly property c. Moreover 7
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cyclic implies 77* cyclic.

Proof. We recall that 77(x)* has domain

D(x)*) =1 ®: | (®,71(x) V)] < C- 'I vy H for some constant C > 0
and all ¥ < D(71(x)) } . Suppose ® eD(77*), ¥ € D(7). We have
(7(x*) W, 7% (y) D) = (1 (x*) ¥, T(y*)* D) = (7(y*)7(x*) VY, D)= (7 ((xy)*) ¥, D)
= (¥, 71((xy)*)* ® ) = (¥, 7* (xy) D ).
N()\\
| rx*) W, o) @) | < c |lw ]| .

for all W ¢ D(77), where C = I! 7* (xy) P i] , s0 7%(y) @ < D(7(x*)*). This
is true forall x ¢ @, so 7*(y) ® € D(7*). Hence m*(y) D(717*) C D(77*) for
all y €.

Using the above notation and results, we also have
(W,7* (xy) ®) = (7(x*) ¥ ,7*(y) D) = ¥, 7*(x) T*(y) D) ,
forall W D7) and & c D(77%). Since D(77) is dense, ~~*(x),) O =7 (x)
7*(y) @ forall x,y ¢ (I, ® cD(r*).

O iousl.\ D) 5 D). Thus a candidate for a (')(-li(' vecetor is (), the
cyelie vector of 7. But

rei) Qe xe@) = {mx*)*Q:xe@¥> (M) Q:x @Y,

so 1 77*(x) () x ¢ @} is dense in H. Q. E. D.

7.2 DEFINITION. A representation 7 of ({ is a self-adjoint representa -
tion it 7= 7% . In purti('ular, this means 77(x)* = 77(x*) for each x e (.

Obviously 77 is sel f-adjoint il and only it D(7) = D(7*). What is interes -
ting is that 7% is al ways sel f-adjoint if it satisfies property ¢ of 5.1

7.3 PROPOSITION. Let 77 be an extension of 77 (i.e. D () 5 D(77) and

T (x) O 71(x) for all x ¢ (1), Then 77 is a restriction of 71*.
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Proof. Let xe (. We have 7(x*) O 7(x*), so 77(x*)* D7 (x*)*. But 7 sa-
tisfies property ¢, so 77(x*)* D77 (x). Thus

7T(x')t D ?f(xt)t = ’7‘f’(x) o T7(x) .
This is true for all x, so 77 is a restriction of 7. 0. E.D.

7.4 COROLLARY. If77* satisfies property c. of 5.1, then 7* is a self-

adjoint extension of the representation 77

Proof. (7*)* 5 77*. But (7*)* is an extension of 77 so (7*)* C 77* by

the proposition. Thus (7*)* = 77* and 7* is self-adjoint. (. E.D.

I'he next basic question related to the self-adjoint problem is : What

conditions guarantee that 7 is self-adjoint ? Qur first condition is borrowed from

quantum field theory [10]. Later (see 8.4) we will give another.

7.5 DEFINITION. Let A be an operator on a Hilbert space H with domain
D(A) dense in H. Let ® € D(A) be such that the series

Il 7l A M

n
n=o n!

has a finite radius of convergence. Then @ is called an analytic vector for A.

Note that implicit in this definition is the hypothesis that A"® e D(A) for

cach n. We now quote a theorem due to Nelson (11] -

7.6 THEOREM. If A is a symmetric operator with dense domain D(A) and if

there is a dense subset S C D(A) of analytic vectors for A, then the closure of

A is self-adjoint.

7.7 LEMMA. Suppose 71 is a cyclic representation with cyclic vector (). Let
x ¢ §. Then Q) is an analytic vector for 7(x) if and only if there exists

c(x) > 0 such that ~
L (7" Q, Q)| < n! c»” (7.4)

Proof. (7.4) implies that the series

S N ol
n=o n!
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is majorized by
oé \/ (2n)! c(x)n 2"

n=o n!

with the radius of convergence
_ -1
r=(2c(x))" # 0.

Conversely , if the series has finite radius of convergence, the sequence

\7uwm”ﬂu

» » ., Hence there exists c(x) > 0 such that

must be bounded for » -
Q.E.D.

| n .| n
li m(x) ) ‘,' S onlac(x) .
7 be a cyclic representation of (A with cyclic vector )

7

7.8 THEOREM. Let

with the following properties
a. () is an analytic vector for each 77 (x).

b. Foreach x, {7(y) Q) : xy = yx } is dense in H .

Then 7 is a self-adjoint representation.
Proof. Let x,y ¢ (I, with x=x* and xy = yx. We have

] 2
|7 )" 7 Q |l © = (12" Q, Tty* y) Q)

. l' 7(y *y) (1 H

< || 7(x2m Q |
< (rr(x‘*”) Q,Q) : l; 7(y*y) ) ”
e D
<\ (4n)! -c(x) vy ””T(y‘y) Q H .
Thus .
> || 77(x)" 7(y) (2 ” “—
n=o : n!
is majorized by
[0 9]
s 4fuwmr et E2
n!

| nep 0 |1?
n-=o
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which has the radius of convergence
r=(4€(x))-l #0.

Thus 7 (y) {1 is an analytic vector for 7(x) . 7(x) therefore has a dense set of
analytic vectors. 77(x) is already closed, so it is self-adjoint. ().F.D.

As we stated above, the condition for self-adjointness that we have given is
borrowed from quantum field theory. In the work of Borchers and Zimmerman men-
tion is made of the following example of Hamburger [12] : There is an operator
A which is symmetric but not self-adjoint which has a cyclic vector () that satis-

fies (A" (),Q) = 0(7711(1+ ¥ )) with ¢ arbitrarily small. Thus

(00}
S (A"Q,0) 22
n=o n!
does not have a finite radius of convergence. Let ( be the *-algebra generated
by an identity element 1 and another self-adjoint element x, 1 and x being ele-
ments of some locally convex *-algebra. Define the topology by taking the indu-
ced topology. Define 77 by 77(x") = A" and extend by linearity. Then 77 is not
a self-adjoint representation.
§ 8. Properties of the commutant. The commutant of a representation was de-
fined in § 6. Here we want to study some of its properties. Iirst of all, we note

2\? .
that Hamburger's example gives us an example where 7({)" is not an algebra.

8.1 PROPOSITION. Suppose the operator A is the one of Hamburger's exam -
ple and let 77 and ( be as defined in the final paragraph of § 7. Then m(@)y is

not an algebra.

Proof. Suppose 7(@)’ is an algebra. Let U be the partial isometry from

R(7 (xti)) onto R(77(x-1i)) defined by
U(r(xti)® ) =77 (x=i) ®

Note that U ® =0 for ® € R(77(x +i))J'. (Here R(A) is the range of the operator

A.) We have that U*U = P, and UU* = P_ pere P, and P_ are thr projec -
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tion onto R(77 (x+i)) and R (77 (x-i) ) respectively. From the definition of U

we have that
@, Ur(x)¥V)=@,Un7(x+ti)¥)-i (D, U¥Y) = (®,7(x-0) ¥ )-i (@, UVY)

whereas

(1(x)®,U¥) = (U*71(x) ®, V) =(U*77(x-)®,¥)-i(U*D W)
=((xtd) ® ¥V )-i (@, U¥) = (D,7(x-i) V)~ i@, UVY).
Hence U is an element of 77(()’. Since 7({®)" is symmetric, U* € 7(d)". But
7(A) is an algebra, so I-P; an I-P_ are contained in 7(({)". Thus
(O, (1-P)W)=(D,(1-P )W)+ i(D, (1-P )7 (x+i) ¥ )
= i@, (1-P )T ()W) = (70, (1P ) V)
Si((1-P ) 7 (x+i) @, ¥)-(®,(1-P ) ¥)
= (D, (1-P )W),

for all ®,¥ ¢ D(77). Since D(77) is dense "in H , we have P, =1 A similar cal-

culation shows P_=I. Hence 77(x) has deficiency spaeces
R(7(x i))‘L: R(77(x- i))'L: (0).
This means that 7(x) is self-adjoint [13] . Q. E. D.

In the proof of the proposition, we actually showed that 7((1) an algebra
implies that 77 is self-adjoint. This has a much stroger converse : i 77 is self-
adjoint, then 7 (@)’ is a W*-algebra. The proof is almost trivial : Let P be the
spectral measure corresponding to A=77(x). A bounded operator B commutes with
77(x) if and only if BP(E) = P(E) B for every Borel set E in the real line.
Hence 77 (ﬁ); { P(E) : E Borel }" which is a w*-algebra. We now ask if this is
the casein general. That is, if 77 is a self-adjoint representation, is (@) a
W*-algebra ? The answer is positive, as we will see after a preliminary result

interesting in its own right.

8.2 PROPOSITION. Suppose B € 7((1)*. Then BD(7)C D(77*) and
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B (x)®=7*(x) B® forall xc{,® D).
Proof. Forall xed, ®, ¥ e D(17),
(@, B7(x)¥)=(7(x*)®,BY)
Since

((r(x)®, BY) | < [|Brww || o]

for all ® € D (77), it follows that BY € D(77(x*)*) and

(®,B7(x)¥)=(D,7(x*)* BY)
D(77) dense implies B7(x) ¥ = 77(x*)*BY . Since BY € D (77(x*)*) for all x,
we have BY ¢ D(77*). Thus BD (7)) C D (77*) and B77(x) ® = 7*(x) B® for all
xe@, ®ebD(m). Q.E D

8.3 THEOREM . Let 77 be self-adjoint. Then () is a W*-algebra. Moreo -
ver for each B e () we have BD(7)C D(77) and B7(x)® = 7(x)B® for all
xe@, ®en(m).

Proof. D(77) = D(77*) and the lemma give that for Be 7 (@), BD(7)CD(77 )
and B77(x) ® =77(x) B® forall x ¢ A,® e D). We only need to show that
7({d) is a W*-algebra. Since (@) is symmetric and weakly closed, it is suffi-
cient to show Bl’ B2 €T (d)‘ impli(‘s BIBZ € "((f )| 14). But if 81,32 L”(Cf)'
then

BBy (x)® = B,7(x)By® -7 (x)B; By®
forallx c{, ® e D7) . O.F.D.

We conclude this section with another condition for self-adjointness.

8.4 PROPOSITION. Let xc¢ Gs and take B(x) to be the commuiative subalge-
bra of @ generated by 1 and x. If (B (x)) is an algebra for each xe @s ,then

77 is a self-adjoint representation.

Proof. Use the argument of 8.1. If 7(B (x))’ is an algebra, then 77(x) is
self-adjoint. Thus 77(x)* = 7(x) for all x € d;,so 7=m* Q.F.D.

§ 9. Covariant representations. The action of groups on C*-algebras has neen
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studied for some time and began with work by Segal (15] . The *-automorphisms
of (, denoted Aut,((), is a group. We consider a fixed locally compact group
¢ and a group morphism 7: G — Aut, (). 7 will be called the action of & on
(. The only continuity notion we will need is the following : We say 7is a con-
tinuous action if g — 7'g(x) is continuous for all x ¢ (. In what follows we will
simplify notation by denoting 'Tg(x) by g(x).

9.1 DEFINITION. Let U be a strongly continuous representation of G into

the unitary group of B(H) such that U (D (7))C D (77) and

U(g) 7(x) U*(g) ® = 7(g(x)) ® 9.1)

for all ® ¢ D(77). Then U is said 10 have the covariant property with respect
to 77 and the pair (7, U) is called a covariant representation of the pair ((‘f,,@).
9.2 PROPOSITION. [.et 7 be irreducible. Then (77, U) is unique up to a

multiplication by a one-dimensional representation of g.

Proof. Consider two representations U and U, which possess the cova -

riant property. Then for x ¢ {, gc G, ® e D(7), we have
property g€

D7 (g g - uz(g") 71(g (x)) Uz'(g")@ "Ug(g'l)Uz(g)”(-\-)l’,*(g)l'z'(g”) .

Thus forall & - D7), xc A, ey

p . -1 ;
(Ugh ) 70 @=7(0 (U, (@U 2] @.

*

Thus | l'g_(g—l) U, lg) | € (@ )' . Since 77 is irreducible, this means
Ul Uylg) = M@ 1

where f\.(g) I is a one-dimensional representation of Q . Q. F. D

In the following, we again generalize some results from the theory of C*- al-
gebras [9] .

9.3. DEFINITION. v < E is invariant if w(g(x) = cw(x) forall xe(,
ec§.

9.4 THEOREM. If « is an invariant state and 7T is a continuous action ,
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then there is a strongly continuous representation U, of G in B( }(w) so that

(r

e Um) is a covariant representation. Moreover, the cyclic vector is stable :

U&l(g) Qo.‘ = ()

(U.
Proof. To simplify the notation we drop the subscript « . We define U on
D(77) by
Ulg) 7(x) Q) = m(g(x)) 1+

Then
Ulg) 7(y) U*(g) 7(x) 0 = U(g) m(yg L(x) Q
= (g (yg l(x) Q= 7(g(y) 7(x) O,

so U has the covariant property. Moreover
Ue) Q= U(@m()Q=7(g(D)Q=m(1) Q=0Q -

To see that U is unitary, we calculate
2 *
!| = (17(g(x)) O, 7 (g(x) Q) =((g(x) g(x))§1,{1) =

2
= (g (x*x) Q) =wlglxx) =w(xx) = | 7 Q ||

v 70 ©

e, Then

For the continuity, let g

(1(x) 0, Ulg ) 7(y) Q) = (7(x)Q, 7(g_(y) 1) = (m(x) O, 7(y) Q) .

Thus U(g,) converges weakly to 1. But for unitary representations, weak con-

vergence implies strong convergence, so we have the strong continuity. Q.E.D.
For an invariant state we thus have U, (g) (1 = . ltmay be that Q, is

not the only vector with this property. (), is unique (up to a multiplication by

a complex number of modulus 1) if dim M;,=1 where
. p o o)
M, ={®:U, ()@=, forall g€§} (9.2)
We now connect these ideas with the notion of an ergodic state.

9.5 DEFINITION. Let « be invariant. If @ cammot be written as a non-tri-

vial convex combination of invariant states, then « is called an ergodic state.
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9.6. THEOREM- Let « be invariant. Consider the following statements :
a. w is ergodic.
p AN o
6. {7 (@), v, (§) =cI
c. dimM, =1
Then a <=>b <= c.

Proof. We again drop the subscript « . We first note that for D ¢ D(7) MM,

Cb‘q)(x) =(7(x)2, ®),
defines an invariant state if it is positive :
'd)(g(x)) = (7(g(x)) Q, d)= (U(g)””(x) U'(g) Q,®)=(7(x) U"(g)Q, L'*(g) D)

=((x) Q, ®) = wg (x) .

d
a=>b.Suppose { 7(({), U(g) }* # 1. Construct @y and w, as in6.4.

Now B() and (I-B){) are elements of M since
((x) 2, Ul(pg AQ) = (1(x)(), AU (g) Q)=(r(x) 2, AQ),

where A is either B or I-B. Thus Wy and w, are also invariant states by our
preceeding remarks.

b. => a. Suppose « is a non-trivial convex combination of invariant states
. Construct B as in 6.4. Since B € 7(R) , we only need to show that

2
B« U(g) . We calculate

Y1 all(l 4

(7(x) 1, BU(g) (y) Q1) = (1(x)QL, BU () 71(y) U*(g) (1)
(1m0, B7(gly) 1) = heop (3% g ()= N ((g 1 (x*) ¥)

& ‘\“‘2(g"(x*)~ y) =01 (g 1) Q, B7(y) Q)
=wghnmvee) Q.B 1) Q) =W 0By Q)

=(7(x) ), U(g) B7(y)1).
c. => b. Let P be a proyection in {7d), U(((j)}', As above, P(l is an

element of M since
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(17(x) 2, U(g) PSL) = (71(x) L, PU(g) Q1) = (11(x) ), P (L)

Hence P()l = A(0, so

(11(x) L, P7(y)Q1) = (17(y*) 71(x) L,PQ) = (11(y*) 71(x) (), P (1)
= (1(x) O, N7(y) Q)
forall x,y e . Hence P=Ar1. Q.E.D.

§ 10. Concluding remarks. In this paper we have only begun the study of lo-
cally convex *-algebras. There are many questions still open, some of these
being indicated already in previous sections. As for covariant representations,we
would like to know more about them when the state is not invariant. A lot of work
has been done for the C*-algebra case, but nothing has been done for the general

case, at least for the special case of the field algebra of quantum field theory.
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