EIGENVALUES OF NONSINGULAR MATRICES
AND COMBINATORIAL APPLICATIONS

by

Osvaldo Marrero

ABSTRACT

The purpose of this article is to present a result about eigenvalues of nonsingular matrices and to observe that this result implies a theorem of this author on combinatorial designs as well as other combinatorial results. The material presented herein lends itself well for use as an illustration of some nontrivial applications in a first course in Linear Algebra; these applications may be mentioned right after the concepts of eigenvalue and eigenvector have been defined.

Throughout the sequel, J will denote the matrix having all its entries equal to $+1$, and I will denote the identity matrix. Subscripts will be used whenever it is necessary or convenient to emphasize the order of a matrix; thus, $A_{m,n}$ will be an m by n matrix, and A_m will be a square matrix of order m. The transpose of the matrix A will be A^T. The scalar μ is an eigenvalue of the matrix A^T with corresponding (nonzero) eigenvector $(a_1, a_2, \ldots, a_v)^T$ if

\[A(a_1, a_2, \ldots, a_v)^T = \mu(a_1, a_2, \ldots, a_v)^T. \]
Let \(X = \{ x_1, x_2, \ldots, x_v \} \), and let \(X_s = \{ x_1, \ldots, x_v \} \) be subsets of \(X \). The subsets \(X_1, X_2, \ldots, X_v \) are said to form a \((v, k, \lambda)\)-design if each \(X_j (1 \leq j \leq v) \) has \(k \) elements; each two distinct \(X_i, X_j (1 \leq i, j \leq v) \) intersect in \(\lambda \) elements; and \(0 \leq \lambda < k < v-1 \).

The preceding combinatorial design is completely determined by its incidence matrix; this is the \((0,1)\)-matrix \(A = [a_{ij}] \) defined by taking \(a_{ij} = 1 \) if \(x_j \in X_i \) and \(a_{ij} = 0 \) if \(x_j \notin X_i \).

Let \(0 \leq \lambda < k < v-1 \). Then a \((0,1)\)-matrix \(A_v \) is the incidence matrix of a \((v, k, \lambda)\)-design if and only if \(AA^T = (k-\lambda)I + \lambda J \). More information about \((v, k, \lambda)\)-designs is available, for example, in [1] and [3].

LEMMA. Let \(A \) be a \(v \) by \(v \) nonsingular matrix, and suppose that \(k \) is an eigenvalue of \(A \) with corresponding eigenvector \((1, 1, \ldots, 1)^T\). Then \(A(a_1, a_2, \ldots, a_v)^T = \mu (1, 1, \ldots, 1)^T \) for some scalar \(\mu \) if and only if \(\mu = k^{-1} \).

Proof. First, it is observed that \(k \neq 0 \), for \(\det A \) is the product of the \(v \) (not necessarily distinct) eigenvalues of \(A \), and \(\det A \neq 0 \) since \(A \) is assumed nonsingular.

Now, using the hypotheses that \(k \) is an eigenvalue of \(A \) with corresponding eigenvector \((1, 1, \ldots, 1)^T\), and that \(A \) is nonsingular, one sees that \(A(a_1, a_2, \ldots, a_v)^T = (1, 1, \ldots, 1)^T \) for some scalar \(\mu \) if and only if \(A(a_1, a_2, \ldots, a_v)^T = (\mu k^{-1}, \mu k^{-1}, \ldots, \mu k^{-1})^T \).

The preceding Lemma yields the following more complete version of the Theorem in [2]:

COROLLARY 1. Suppose the subsets \(X_1, X_2, \ldots, X_v \) of a set \(X = \{ x_1, x_2, \ldots, x_v \} \) form a \((v, k, \lambda)\)-design. Then, except for the empty set and \(X \) itself, \(X \) contains no subset \(Y \) that intersects each \(X_j (1 \leq j \leq v) \) in the same number \(\lambda_1 \) of elements.

Proof. Let \(A \) be the incidence matrix of the given \((v, k, \lambda)\)-design; then \(A \)
is a \(v \) by \(v \) nonsingular matrix (for a proof of this, the reader is referred to the first 4 sentences in the proof of Theorem 2.1 on p. 103 of [3]) and \(k \) is an eigenvalue of \(A \) with corresponding eigenvector \((1,1,\ldots,1)^T \); that is,

\[
A(1,1,\ldots,1)^T = k(1,1,\ldots,1)^T.
\]

If there exists a subset \(Y \) of \(X \) intersecting each \(X_j \) in the same number \(\lambda_1 \) of elements, then there is a vector \((a_1,a_2,\ldots,a_v)^T \) (defined by taking \(a_j = 1 \) if \(x_j \in Y \) and \(a_j = 0 \) if \(x_j \notin Y \) for \(j=1,2,\ldots,v \)) such that

\[
A(a_1,a_2,\ldots,a_v)^T = \lambda_1(1,1,\ldots,1)^T.
\]

Now, as a consequence of the Lemma above, it follows that \(a_1 = a_2 = \ldots = a_v \); therefore each \(a_j = 0 \), or each \(a_j = 1 \); that is, \(Y \) is the empty set, or \(Y = X \).

The following three combinatorial results, all of which are mentioned in [2], are also simple consequences of the preceding Lemma (as well as of Corollary 1).

COROLLARY 2. (Theorem in [2]). Suppose the subsets \(X_1,X_2,\ldots,X_v \) of a set \(X = \{x_1,x_2,\ldots,x_v\} \) form a \((v,k,\lambda)\)-design. Then there does not exist another subset \(X_{v+1} \) of \(X \) such that \(X_{v+1} \) has \(k_1 \) elements and \(X_{v+1} \) intersects each \(X_j (1 \leq j \leq v) \) in \(\lambda_1 \) elements, where \(0 < k_1 < v \) and \(0 < \lambda_1 < k \).

COROLLARY 3. Suppose the subsets \(X_1,X_2,\ldots,X_v \) of a set \(X = \{x_1,x_2,\ldots,x_v\} \) form a \((v,k,\lambda)\)-design. Then there does not exist another subset \(X_{v+1} \) of \(X \) such that \(X_{v+1} \) has \(k \) elements and \(X_{v+1} \) intersects each \(X_j (1 \leq j \leq v) \) in \(\lambda \) elements.

COROLLARY 4. Suppose the subsets \(X_1,X_2,\ldots,X_v \) of a set \(X = \{x_1,x_2,\ldots,x_v\} \) form a \((v,k,\lambda)\)-design. Then there does not exist another subset \(X_{v+1} \) of \(X \) such that \(X_{v+1} \) has \(k_1 \) elements and \(X_{v+1} \) intersects each \(X_j (1 \leq j \leq v) \) in \(\lambda \) elements, where \(0 < k_1 < v \).

The author wishes to express his gratitude to Professor Andrew M. Gleason of Harvard University for his comments on an earlier version of this paper.
References

2. O. Marrero, A property of \((v, k, \lambda)\)-designs. Israel Jour. Math. 12(1972), 277-278.

Department of Mathematics
Francis Marion College
Florence, South Carolina 29501, U.S.A.

(Recibido en mayo de 1976).