Revista Colombiana de Matemáticas Volumen X (1976), págs. 121-124

EIGENVALUES OF NONSINGULAR MATRICES

AND COMBINATORIAL APPLICATIONS

Ьу

Csvaldo MARRERO

ABSTRACT

The purpose of this article is to present a result about eigenvalues of nonsingular matrices and to observe that this result implies a theorem of this author on combinatorial designs as well as other combinatorial results. The material presented herein lends itself well for use as an illustration of some nontrivial applica – tions in a first course in Linear Algebra; these applications may be mentioned right after the concepts of eigenvalue and eigenvector have been defined.

Throughout the sequel, J will denote the matrix having all its entries equal to ± 1 , and I will denote the identity matrix. Subscripts will be used whenever it is necessary or convenient to emphasize the order of a matrix; thus, $A_{m,n}$ will be an m by n matrix, and A_m will be a square matrix of order m. The transpose of the matrix A will be A^T . The scalar μ is an eigenvalue of the matrix ${}^{\circ}A_v$ with corresponding (nonzero) eigenvector $(a_1, a_2, \ldots, a_v)^T$ if $A(a_1, a_2, \ldots, a_v)^T = \mu(a_1, a_2, \ldots, a_v)^T$.

121

Let $X = \{x_1, x_2, \dots, x_v\}$, and let X_1, X_2, \dots, X_v be subsets of X. The subsets X_1, X_2, \dots, X_v are said to form a (v, k, λ) -design if each $X_j (1 \le j \le v)$ has k elements; each two distinct $X_i, X_j (1 \le i, j \le v)$ intersect in λ elements; and $0 \le \lambda \le k \le v \cdot 1$.

The preceding combinatorial design is completely determined by its *incidence matrix*; this is the (0,1)- matrix $A = [a_{ij}]$ defined by taking $a_{ij} = 1$ if $x_j \in X_i$ and $a_{ij} = 0$ if $x_j \notin X_i$.

Let $0 \le \lambda \le k \le v \cdot 1$. Then a (0, 1) - matrix A_v is the incidence matrix of a (v, k, λ) - design if and only if $AA^T = (k \cdot \lambda) I + \lambda J$. More information about (v, k, λ) - designs is available, for example, in [1] and [3].

LEMMA. Let A be a v by v nonsingular matrix, and suppose that k is an eigenvalue of A with corresponding eigenvector $(1, 1, ..., 1)^T$. Then $A(a_1, a_2, ..., a_v)^T = \mu (1, 1, ..., 1)^T$ for some scalar μ if and only if $a_1 = a_2 = ... = a_v = \mu k^{-1}$.

Proof. First, it is observed that $k \neq 0$, for det A is the product of the v (not necessarily distinct) eigenvalues of A, and det $A \neq 0$ since A is assumed non-singular.

Now, using the hypotheses that k is an eigenvalue of A with corresponding eigenvector $(1, 1, ..., 1)^T$, and that A is nonsingular, one sees that $A(a_1, a_2, ..., a_v)^T = \mu (1, 1, ..., 1)^T$ for some scalar μ if and only if $A[(a_1, a_2, ..., a_v)^T - \mu k^{-1} (1, 1, ..., 1)^T] = 0$, which holds if and only if $(a_1, a_2, ..., a_v)^T = (\mu k^{-1}, \mu k^{-1}, ..., \mu k^{-1})^T$

The preceding Lemma yields the following more complete version of the Theorem in [2]:

COROLLARY 1. Suppose the subsets X_1, X_2, \ldots, X_v of a set $X = \{x_1, x_2, \ldots, x_v\}$ form a (v, k, λ) - design. Then, except for the empty set and X itself, X contains no subset Y that intersects each X_j $(1 \le j \le v)$ in the same number λ_1 of elements.

Proof. Let A be the incidence matrix of the given (v, k, λ) - design; then A

is a v by v nonsingular matrix (for a proof of this, the reader is referred to the first 4 sentences in the proof of Theorem 2.1 on p. 103 of [3]) and k is an eigenvalue of A with corresponding eigenvector $(1, 1, ..., 1)^T$; that is,

$$A(1,1,\ldots,1)^{T} = k(1,1,\ldots,1)^{T}$$

If there exists a subset Y of X intersecting each X_j in the same number λ_i of elements, then there is a vector $(a_1, a_2, \dots, a_v)^T$ (defined by taking $a_j = 1$ if $x_j \in Y$ and $a_j = 0$ if $x_j \notin Y$ for $j = 1, 2, \dots, v$) such that

$$A(a_1, a_2, \ldots, a_v)^T = \lambda_1(1, 1, \ldots, 1)^T$$

Now, as a consequence of the Lemma above, it follows that $a_1 = a_2 = \ldots = a_v$; therefore each $a_i = 0$, or each $a_i = 1$; that is, Y is the empty set, or Y = X.

The following three combinatorial results, all of which are mentioned in [2], are also simple consequences of the preceding Lemma (as well as of Corollary 1).

COROLLARY 2. (Theorem in [2]). Suppose the subsets X_1, X_2, \ldots, X_v of a set $X = \{x_1, x_2, \ldots, x_v\}$ form a (v, k, λ) -design. Then there does not exist another subset X_{v+1} of X such that X_{v+1} has k_1 elements and X_{v+1} intersects each $X_i (1 \le j \le v)$ in λ_1 elements, where $0 \le k_1 \le v$ and $0 \le \lambda_1 \le k$.

COROLLARY 3. Suppose the subsets X_1, X_2, \ldots, X_v of a set $X = \{x_1, x_2, \ldots, x_v\}$ form a (v, k, λ) - design. Then there does not exist another subset X_{v+1} of X such that X_{v+1} has k elements and X_{v+1} intersects each X_j $(1 \le j \le v)$ in λ elements.

COROLLARY 4. Suppose the subsets X_1, X_2, \ldots, X_v of a set $X = \{x_1, x_2, \ldots, x_v\}$ form a (v, k, λ) - design. Then there does not exist another subset X_{v+1} of X such that X_{v+1} has k_1 elements and X_{v+1} intersects each X_j $(1 \le j \le v)$ in λ elements, where $0 \le k_1 \le v$.

The author wishes to express his gratitude to Professor Andrew M. Gleason of Harvard University for his comments on an earlier version of this paper.

References

- 1. M. Hall, Jr., "Combinatorial Theory", Blaisdell, Waltham, Mass., 1967.
- O. Marrero, A property of (v,k, λ)- designs, Israel Jour. Math. 12(1972), 277 -278.
- 3. H. J. Ryser, "Combinatorial Mathematics", Wiley, New York, N.Y., 1963.

Department of Mathematics Francis Marion College Florence, South Carolina 29501, U.S.A.

(Recibido en mayo de 1976).