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ABSTRACT

The purpose of this article is to present
a result about eigenvalues of nonsingular ma-
trices and to observe that this result implies a
theorem of this author on combinatorial designs
as well as other combinatorial results. The ma-
terial presented herein lends itself well for use
as an illustration of some nontrivial applica —
tions in a first course in Linear Algebra; these
applications may be mentioned right aofter the
concepts of eigenvalue and eigenvector have

been defined.

Throughout the sequel, J will denote the matrix having all its entries equal
to 1, and I will denote the identity matrix. Subscripts will be used whenever
it is necessary or convenient to emphasize the order of a matrix ; thus, Am,n“i“
be an m by » marrix, and A, will be a square matrix of order m. The transpose
of the matrix A will be AT, The scalar 4 is an eigenvalue of the matrix UAy

with corresponding (nonzero) eigenvector (al,az, coay, )T if A(aI,az, cen ,aUIT-

T
p(al,az,...,av) :
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Let X={ Xy, Xy .,xv} . and let X; X,,.... X, be subsets of X. The
subsets XI,Xz ..... X, are said to form a (v, k, \)- design if each X]-(If’ i<v)
has k£ elements ; each two distinet X, X,- (1 <i,j< v) intersectin A ele-
ments ; and 0 < A< k < v-1.

The preceding combinatorial design is completely determined by its incidence
matrix ; this is the (0,1)- matrix A = [aij] defined by taking a4 = 1 if x]-GX,-
and a;; =0 if x]-c'f X;.

Let 0 < A<k < op-1.Then a (0,1) -matrix A is the incidence matrix of a
(v,k, ) - design if and only if AAT = (k-)) 1+ 7] . More information about

(v,k, \)- d(‘ﬂigns is available, for (‘Xampl(‘, in [1] and [3) .

LEMMA. Let A be a v by v nonsingular matrix, and suppose that k is an ei-

genvalue of A with corresponding eigenvector (1, 1, ..., I)T, Then Alay,ay. ..

o av)T =m(L1,..., I)T for some scalar (o if and only if a;=ay=...=a, =
-1

ik

Proof. First, it is observed that & £ 0, for det A is the product of the v (not
necessarily distinet) eigenvalues of A, and det A #0 since A is assumed non-
singular.

Now, using the hypotheses that & is an cigenvalue of A with corresponding
eigenvector (1, 1,..., I)T, and that A is nonsingular, one sees that A(a;, aj,

. aI,)T = g (1, 1, 600 I)T for some scalar . if and only if A [(al A, .. ,a,,)T
; = | T] = o 1w d if T

wkA(1,1,..., 1) 0, which holds if and only i (aI,aZ, . ,av)

wel, urel, o ue )T

The preceding Lemma yields the following more complete version of the The-
orem in [2)

COROLLARY 1. Suppose the subsets X, X,5,..., X, ofaset X= {xl , X
R xu} form a (v,k, \)- design. Then, except for the empty set and X itself ,
X contains no subset Y that intersects each X]- (1 < j< v) inthe same number

1\1 of elements.

Proof. Let A be the incidence matrix of the given (v,k, A) - design; then A
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is av by v nonsingular matrix (for a proof of this, the reader is referred to the
first 4 sentences in the proof of Theorem 2.1 on p. 103 of [8] )and % is an ei-

genvalue of A with corresponding eigenvector (1,1,...,1) T ; that is ,

At ..., DT =k, 1,..., 7.

If there exists a subset Y of X intersecting each X’. in the same number /\1 of
elements, then there is a vector (ay.ay,... .aU)T (defined by taking a;= 1 if

x; €Y and a=0 if x].{Y for j =1,2,..., v) such that

Aay,ay,...,a )T =N\a,1,..., nT,

v

Now, as a consequence of the Lemma above, it follows that a; = a, = ... =a

therefore each a].:O, or each a]. =1, that is, Y is the empty set, or Y =X .

The following three combinatorial results, all of which are mentioned in (2],

are also simple consequences of the preceding Lemma (as well as of Corollary 1).

COROLLARY 2. (Theorem in [2] ). Suppose the subsets XpXyoon X, of
asetX = {xl L X5, i xV} form a (v, k, ))-design. Then there does not exist
another subset X i of X such that X ., has k; elements and X, .| intersects

each X;(1 < j< v) in N\ elements, where 0 < ky < v and 0 < | < k.

COROLLARY 3. Suppose the subsets X;,X,5,..., X, ofaset X=1x;x,,
e X, } form a (v, k, A )- design. Then there does not exist another subset

X 1 of X such that X, | has k elements and X, | intersects each \/

g
(1 < j< v)in A\elements.

COROLLARY 4. Suppose the subsets X, X5, ..., Xu of a set X= 1 X1 %y,

tis x,,} form a (v,k, \)- design. Then there does not exist another subset

Xv” of X such that Xuﬂ has b‘l elements and Xml intersects each X/. (1 <j

<w) in A elements, where 0 < kl‘f' v.

The author wishes to express bis gratitude to Professor Andrew M. Gleason

of Harvard University for his comments on an earlier version of this paper.
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