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APPLICATIONS OF A MAX-MIN PRINCIPLE

by

Alfonso CASTRO and A. C. LAZER

RESUMEN

Sean H un espacio de Hilbert y X,Y dos subes-
pacios cerrados que satisfacen: dimX < «y HOY.
En (6] se demostré que si f esun funcional de
C2 definido en H, tal que para cada wu¢ H’sz(u) es
acotado superiormente en X por una constante nega-
tiva y acotado inferiormente por una constante posi-
tiva en Y entonces f tiene un Unico punto critico.
Aqui notaremos que aln existe un punto critico
cuando la hipétesis sobre el comportamiento de
sz(u) en X se reemplaza por una condicién sobre
el crecimiento de f en X. Este resultado se aplica,
en los teoremas 2 y 3, a la existencia de solucio-
nes periédicas de sistemas de ecuaciones ordina-

rias y a un problema de Neumann no lineal.

In [6] it was shown that il / is areal € function defined on a real Hilbert
space H, then f has a unique critical point provided that # is the direct sum ol
closed subspaces X and Y with dim X = @ such that l)zf(u) is bounded above

by a negative constant on X and hounded below on Y by a positive constant for
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all < H. In this note we point out that the assumption that n? f(u) be negative
definite on X may be replaced by a much weaker growth condition on the restric -
tion of / to X to ensure existence of a eritical point.

We apply this result to a class of periodic differential equations which have

been studied by several writers and to a nonlinear Neumann problem.

Let H be areal Hilbert space and fa real function defined on H with a second
continuous Frechet derivative. As is customary we define a continuously differen -
tiable map Vf: H—H such that [’ (Ww = <V f(u), w> by means of the Riesz-
Frechet theorem. We will denote the derivative of Vf at u < H by I)Zf(u). As is

well known I)zf(u) is a sell-adjoint operator defined on H (sce (3, p.130-131]) .

THEOREM 1: Let X and Y he two closed subspaces of H (not necessarily or-
thogonal) such that X is finite dimensional and H = Xe Y. If there exists da cons -

tant m = 0 such that

< p? ! Lol
(1) DS f(u)y, y > = ml|y]l
for all ucH andall yeY and if

(2) f(x) - as ‘\, » O with x € X

then there exists u, H such that

(3) . f(u()) max min f(x ty)
NeXyeY

and

(4) v /(”0) o,

Proof. : Since the proof is only a modification of the proof of a similar theo -
rem in (6] we only give it in part. Fix % ¢ X and define g:Y °R by  gly) =
fix ty) U keY then - Veglhyk> = :: gly 1 th) \, = <V/f(xty), k> and
' =0
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2 2 -
<D gk, k> = ﬁz gy ttk) lt‘-'o = 1)2/(.\' ty) kk > . Hence by (2) for ye v,
keY

2
(5) <Dlg) kk> > ml|k]| .

As is well documented (see for example (8, ‘).79-80} ), (5) implies the existence
of y €Y such that

g(y) = min gly) and Vg(3) = 0.
yeY

Qs y, 7 " 2
Since /\/g(_vl)— \ g(_\'z). Yy =¥y~ = <D glyy "slyp-y2) -y yi-y)
2 ml| Yy -)'Zliz for some se (0,1) (see [8, p.flf ), Vg can have only one zero

on Y. Sctting y = /(%) we can define amap < : X 'Y such that

(6) f(x+ E(x)) = min fixty)
yeY

and such that

(7) <V fixtd(x), k>=0,

forall ke Y. MNsin 16, p.597-598} a simple argument based on the implicit func-

tion theorem shows that ¢ (x) is a of class ¢!, Define G:X R by  G(x)

+» =1

fix + ¢(x)). Setting y =0 in (6) we see that G(x) = f(x), so by (2), G(x)
as || x|[| *@. Thus, as dimX < @, there exists x ¢ X with G(x()) = max G(x).
xe
Hence, if b€ X is arbitrary, 0 = -dd—tG(.\‘O tth) \ g Vf(xy,t E(x ) bAE" (x)h>
=0 . Bu, as ¢'(x,) is a linear map from X to Y, k= ¢ (x )hcY soby (7).
('Vf(.\'o t ¢ (x,)), b>=0. If weH, w=»h+k with heY so by (7) and the abo-
ve <V flx,* F(xy) ), w> = 0. Consequently, if uozxohf(xo) then V/(u,)=0,
and from (6) and the above f(u) = max f(x+ ¢ (x))) = max min f(x ty). This pro -
xeX xeXyeY
ves the theorem.

In general there will be other critical points.
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Example 1 : Periodically Perturbed Gonservative Systems.

Let G be a real valued function defined on R” and p a continuous 277 - pe -
riodic function defined on the real line with values in R”. The existence of 2 7-

periodic solutions of the differential equation
(8) u'’ + grad G(u) = p(t) = p(t+27)

has been investigated by several writers (see, for example (1], [4], (51, [7]

and [9] ). In [1] and [3] it is assumed that if

~2
) M(x) = (=26 ) (x)
(o] .\’I Ax]

then there exist symmetric matrices A and B, with A< M(x) < B forall x
such that il * ,(A) (\k(B) ) denotes the k-th eigenvalue of A(B) then [ p(A) .
k (B) | does not contain the square of a non-negative integer for k=1,..., n.

Under this condition there exists a unique 2 77-periodic solution of (8).

As an application of Theorem 1 we derive a condition which only requires a
one sided bound on the Hessian matrix and a growth condition on G. Let H de-
note the real Hilbert space of 2 77-periodic R” valued functions with components

which are ubsuhlll'l\' continuous and have square inu‘gral)l(' derivatives on bound-

ed intervals with inner prudm'l

2 )
(10) <uv> =] [@ (0, @)+, o)l dt.

0

Here (, )denoies the usual R” inner product. If we denote the set of constant
Munctions by X we can write H = X e Y where y(1) < Y iff
27
J y(1) dt = o.

0

If ycY and



y(1) :kfl a, cos kt + by sin kt, ay by e R”

then
2m o
(11) I (), y) de = 1 3 (||ak1|2+ bellz) <
- k=1
Py
TTkEIkZ(;;ak1i2+ e, 1120 = [ o,y @) ar
0

THEOREM 2. Suppose (i) : there exists a number ) < 1 such that “aM(x)a>
o112 " = ; ')
yllall” forall a< R and all x ¢ R”: (ii): G(x) * ™ as

< x || w; and

(iii) 2rvp(t) dt = 0,

0

Assertion : There exists at least one 27 - periodic solution of (8).

Proof : I we define  f: H > R by

o1
fw) = Jlu) = | (1@ G + (p(n), u(n) ] dt

Py 2

then by using the well-known fact that the imbedding of H into C( [0,277] ,R")

: 3 . [ o 1 5 2
is continuous (sce for example [2,p.26 /) we establish that /< C and

(12) <V fw), w> = d"’ flu+ tw) 1t:o =

21

| L (1,00 (1) - (grad G(u(1), w(B) + (w(2), p(1) ] dt,

o

e R s
(13) <D fvw> =—=< Vifiuttw), v> lt:o
27
I o 0, w (0 - M(u(®) v(9), w(n) ] dt,
(7]

forall v e H and w € H. From (12) we see that if u, is a solution of (8) then



\V f(u,) = 0 and conversely if Vf(u,) = 0 it follows from (12) and a classical
integration by parts argument that # e c? satisfies 8). If ueH and keY

then by condition (i) and (13)

2 2 2

<D¥fwhkk>> | (||ke| - || k]| ) ar.
Hence, according to (11) and (10)
' 2n
2 < ( ,2
D2k k> > (1-v) [ |k (0] dt>
0
1-9 ,2” 2 2 »
(L) Faww)”km T dr=me kok>
0

with m > 0 Hé) (D holds. Consider a constant function x ¢ X. It follows from (iii)
that f(x) = | (-(i(.\-) t(p(t),x) ) dt =- 27 G(x); so from (ii) f(x) - —® as

0
|| x|l = and condition (2) is established. Thus there exists i, such thal

Vf(u,) = 0 and by a previous remark u, isa solution of (8).
Example 2 : A Neumann Problem.

We discuss very briefly the problem of existence of weak solutions of the

boundary value problem

(14) Nut glu) = p(x) in U
ou . 0 on OU ,
In

Here U is a bounded domain in R” with sufficiently regular boundary , A is the

Laplacian, g is a continuously differentiable function which will satisfy other

conditions, and p ¢ I,Z(U) ;

1 g S
As our Hilbert space H we take H=H (U) which is the completion of the in-

ner product space ¢l (U,R) with inner product
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<wuv> = | [(Vu, Vo) + uv ] dx.

By a weak solution u, of (14) we understand a element of u, et such that for

all weH

_"’ [(V uo,Vu')— g(uo)u' tp(x) w) dx = 0.

i " & . " . . e
With enough regularity assumptions on g, p, and O U, u, will satisfy the diffe -
rential equation and the natural buundary condition. If X denotes the set of cons

tant functions on U we can write H=X @ Y where

yeyY iff [y dx=0.

If S A% A S Ay e denote the eigenvalues of the linear problem Vou
Au =0 in U —%—-’—‘- =0 on o U, then by the well known characterization of
on
(15) | y2(x) dx < (<L) [(Vy(x), Vy(x) dx
1

for all y e Y. Let us assume that
(16) Shalla il S5 R R T
If / is the functional defined on H by

flu) = |

( (V uz,\/u) - G(u) * p(x) w) dx

s
where G(s) = | g(x) dx, then
0

<NV flu), w> = \‘ [(Vau,Vw)-glww p(x)w | dx

so solutions of V /=0 coincide with weak solutions of (14). By imitating the
argument given in the previous section, using (15) and (16), we see that il z« H .

keY



<D2fw) k> = [[VEVE - gw) k2] dx >

Rl il Lise
m|| k|| . m }—(1—>\—1)~ :

From this we easily conclude

|

THEOREM 3. 1f peY. condition (16) bolds, and G(x) = ® as | x| — @ then

there exists a weak solution of 14.

Actually the condition that g’ be bounded below can be omitted il g’satisfies

a suitable polynomial growth condition.
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