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ANY EQUIVALENCE RELATION OVER A CATEGORY IS A SIMPLICIAL

HOMOTOPY
by

C. RUIZ SALGUERO " and R. RUIZ

§ 1. Simplicial Systems.

Definition.([1]) A simplicial system over a category Cisa triple J (H,®,)
where H : €9« C
functor, @ is an associative “composition law " with (1)\),7.' Hix. vy« Xy, 7)
Vyy CXY) Hix ),
(We will denote ces= @ (5, o) for ¢ }((‘\',Y)” and -« H(Y,'/‘)”), Morcover,

<

AN ) (‘/\05 = the category of snnph('lal s(‘ls) 1S a covarianl
H(x,7) natural in X,Y,7, and , is a natural isomorphism

J is subjected to the following conditions :

(i) for each morfism #:X —»Y of ¢, and cach [ ¢ ]((Y,Z)” . then /-.b{”)(”)
Ku, 72) (f) ;

(ii) for each g«¢ .H(W,X)” and each z € CX,Y), s™w) o g = H(W.u) (g), whe-
re s(”)(u) stands for the image of « by the following composition s ...s (n-

times), where S, denotes the 0-th dvgt‘n(‘ru("\ in cach dimension. Also we have

5 g S0 s X )
used for a fixed Z in C the restriction He-,7): ¢ C A%5 of the functor H

which for each #: X Y in €, induces a simplicial map Ww,7): v, 7)

H(x,7). Similarly, if one fixes the first variable.

* Partially supported by the Universidad Pedagogica Nacional,
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. . . . . n . . . .
A Hllllpll(‘lal category is a pair (¢ ,J) where | is a snmpll(‘lal system over a

. 0
given category G

I'he homotopy relation over morphism associated with the system J is given
oL 7 g ;

as follows : f,g: X =Y (in ) are J-homotopic, or more precisely, f is J-ho-
wotopic to g (in that order), if there exists v € .H(X.Y)I such that do(r) = f
and dI (v) = g . Itis well known that if H(x.y) is aKan simplicial set - in
lower dimensions- then this homotopy relation es an equivalence relation. Fur -
thermore, it is compatible with composition. In fact, the categorical simplicial
structure allows a composition of homotopies : il H X (\",Y)l and K e J (v, 7,)1

are such that H: frr g and K:un~s v then KeH = ® (H, K) is a homotopy

uf~ vg.
§ 2. Some examples of simplicial categories.

a) In the category of topological spaces taking }((X.Y)” = Top (A (n) x X,Y)
with faces induced by the co-faces of the standard co-simplicial topological spa -

ce ', we obtain a simplicial system .
) The same construction in %S using A\ ln) instead of A (n).

¢) Generalizing a) and b), above, if a category C is closed for finite products,
. A o ; : . [
then for each model Y: /A > ¢ (that is, a covariant functor) such that Y | 0]
- y - O ; . " o Lk \
final object of €, whenever it exists, one defines ](Y (A, B), = C(Y [n] x A,B)
and completes it by the same ('an('gnri(‘ul prn('v(lur(-s as in a) and b). Given the
importance of this example and its generality we will devote the nexi paragraph

to a detailed discussion of it.

2 . . . Y. . LR [ [ 1
d) In the paper “Homotopic Systems in categories with a Final Object’’ (15 1)

. 7 . N . ygx it Ry N
it is shown that, il Y : A~ is a model in which Y [0] is not necessarily the

- . o 7Y " : y 1
final object of € , then one can consider the category of objects over Y (o], de-

0)

) r m . » i F ’y A D /v
noted C/Y 0] * The model Y induces a model Y/Y (0] =Y :A—C/Y

in which , of course, Y’ [0] is then the final object of C/y [o]l. If C isclo-
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sed for fibered products over Y (0] , then we can apply the procedure of part ¢)
1o induce over C/yY [0] a simplicial structure. For example, if ¢ = Ab - the ca-
tegory of abelian groups and Y : /A > Ab s the free abelian group functor, res-
tricted to A, then there exists over Ab/Z a simplicial structure associated with
Y. Similarly, if one tensorizes Y by an abelian group M to get (Y & M)

Y(in] @ M, then Y ® M induces a simplicial structure over Ab/M (since

(Y ® M) [0] = M), which is natural in M, in the sense that this assignent

'l * Ab/M can be completed to a functor from Ab into the category C. Sim

(ef. §4).

e) A group G can be considered as a category with onl) one object, say e,
and one morphism g :e ¢ for cach element g of G, the composition then
given by g.? = gh. We will denote by G both the category and the group. N(G)
will represent the nerveol the category G (in (2], p- 32, this is denoted by
D(G) ). We will prove that there exists a non trivial (natural) simplicial structure
over G when G is abelian. In fact we take H (e,e) to be the simplicial set
RC (N(G)) where RC stands for the right - cut- functor RC : 0§ - A% (ef.

[4]1) defined for a simpliviaﬂ set X by the formulae : (i) R(.‘(X)” X,+p(n > 0)

aah v v . ; ntl o ;s
(ii) i R (4(,\)” ~ R(,(,\)"_I is the morphism (Ii : \”” ? A” (i =0,..., n);
(iii) u;]: R(,'(,\')” —+ R(J(,\’)”” is the morphism s:,”l.‘ .\'”” * X042 (i=0,..., nk

In order to complete the definition of H: G2« G — A% we associate to x,y!

¢ e the map (.\',_\)# s He,e) + H(e,e) defined by the following cquality
(xy)y(gyrveo By? = A8y vy s By1v Y By x). In order to this maps be simplicial it
is necessary and sufficient that G be an abelian group. As for the simplicial
composition ‘D?e =@ He,e) x Hie,e) — H (e.e), itis given by ®((g,. ..., gy
(by,....b, )) = (b

S PERREY ﬁ"g”), t\gum, ® so defined is a simplicial map il

and only if G is an abelian group. IFurthermore, K (e,())u = ("R(\'((i))() N(G)
=G = Homg (e,e). Now for u ¢ Homg (e,e) it holds that ®(f, sPw) = X (u,e)(f),
since the right hand member of the equality is (w1 ,), () = (f5. .- fyopr fyw) for
[=(fgseunsf,), and sM() - Sgeee S, =0, L u). Similarly d (s,
= H(e,u) (P (1,,u)(f).



Remark : In the previous construction H(e,e) becomes the total space W(G)

of W(G), the classifying space of G , where G = G for each » and the fa-

ces being the identity morphism. That is to say W(G ) = RC(N(G) ).

This construction can certainly be generalized to abelian monoids, in which
case the homotopy obtained is non trivial (aggainst the case of abelian groups in
which it is trivial }: f - g if there exists a ¢ G suchthat [ a- g The
problem of existence of homotopy is thus equiv alent 10 the problem of solution of

first degree equations in G .

) There is a way to induce, trivially, a simplicial system on a category ¢ by
5 5 S £ 5 N g g i 5 . 4 r
taking Hix.y )n - C(X.Y), for each n, and faces 1o be the identity function. I'he

homotopy relation obtained is the relation of equality.

3. The simplicial system associated to a model Y: Ao

A

Let ¢ be a category with a final object and with finite products. Let Y:2 e
be a covariant functor such that Y 0] the final object of ¢ . We define, for
cach pair of objects A,B in ¢, the simplicial set H(A,8) by the formulae
() HeaB), = Covlnl « AB) G if w:[n] = [m] isamorphismin A
then w*: H (A,B)m - H (A.B), is the map « > wo (Y(uw) x A), where A stands
for the identity morphism of A, The simplicial composition O J(a,B) < H(B,C)

HeA,) isgivenfor f:Y lnl <A * B and g:Y nl < B 2 C by
r y / r 1 7 | |
Y (2] xA —_‘__\‘_‘\;Ytn‘;x)'[n}A)_‘L"/»YIH}XB_g.»C,

where & is the diagonal morphism. To prove that @ s simplicial it suffices to
prove that, for morphisms  w: K » L, f: LxA B, and g: L«B — C the
following diagram commutes.
& o ; o D . >
In order to /do this it suffices to apply, for cach X of C, the functor C(X,-)
. Le o . . .

to the diagram above. Then it becomes the same statement (or diagram) but in the
category of sets. (recall that in order to prove that a diagram in a category commu-

tes, it is necessary and sufficient that for each object X, the image of the diagram
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KxA OxA, KxkxA Kxwx4 x.1xa Kx/  xxB

l wxA wxB
\)
LxA L xB
aXA g
" ¥
LxLxA o</ 5> LxB By

by C(X,-), resp. C (-, X), commutes in the category of sets). This is due 10

the fact that C(X,-) commutes with products and that Cx, 7’y) =9 C(x,y) -

As far as associatiy ity is concemed (of the simplicial composition ®) it re-
2 : ; ) .
duces to proving that the following diagram commutes in ¢ for any morphism

f:KxA - B

KxA %A kykxA Kx/ _kxB
IxA Jdx B

KxK x A Kxf(;X}AKxKxKxA m Kx KxB

'§4. The categories C. Sim and C. Rel.

A simplicial functor (C,J) — (@ J’' ) between simplicial categories is a
pair (F, &), where F: C ~C’ is afunctorand §: He(—, -)~- ‘HC' (F(-),F(-))
is a natural transformation such that for any objects X,Y,Z of (G

SFE.1) the following diagram commutes

by
Kex,v), —XY__» He' (F(X), F(Y)),
YXY Lyﬁmu«w
Cx,Y) v C(F(X), F(Y))

F
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$.F.2) the following diagram commutes

Kex.vx Hp(y,2) L — He (x, 2)
8x8 5
Ko (Ex),E(Y) x He (F(v), F(2) re >H@. (F(X), F(2))

In this case we will say that (F, &) is compatible with the simplicial compo-
sition.

We will denote by C.Sim the category of simplicial categories and simplicial
functors, and by C. Rel the category of categories with compatible relations in
the following since : (a) a category (C,R) witha compatible relation R, consists
of a category ¢ and, for each pair of objects X,Y, of a reflexive and transitive
relation over the set C(X,Y) which is compatible with the composition in € ;(b)
a morphism F: (C,R) - (C*,R’) between categories with compatible relations

’
is a relation-preserving functor F: C = C in the sense that if (/,g) € Ryy then
7 7 - ’
(F(f), F(g)) € R F(X) F(Y) *
The procedure that to a simplicial category (C’,]) associates the reflexive and

) 3 p
transitive relation generated by homotopy, denoted by (C, R(]) ), gives rise toa

functor R ¢ C.Sim — C. Rel.

We now give the main theorem of this paper :

THEOREM. The functor R admits a right adjoint d:C.Rel ~ C.Sim.

We devote the rest of this paper to the proof of this theorem. To begin with we
define the functor o .
Let (C,R) be a category with a reflexive, transitive, and compatible relation .

Since R xy is reflexive and transitive it can be considered in itself as a cate -

gory with objects the elements of C(Xx,Y) and a morphism f— g (and ohly one)
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if (1) €Ryy . Wedeline J ; C%% C —~ A%s by taking as H(X,Y) the
nerve (see (2] p.32 for the definition of nerve, which is denoted by D) of the
category Ryy . We will use K (C, g)X.Y) instead of H(X.Y) when emphasis

on the category and the relation is necessary.

We remark that the functor H is the composite

K

Cox @ ————s "%

\ N = nerve

Cat

where C%«< C ~ Car maps (X,Y) into the category associated with the relation
Ryy - One also notices that if o: X’ ~ X and S:Y —~ Y are morphisms of
¢ then the functor (=, 5),: (C(X,Y) ; Ryy) = (C(X*,¥"); Ry v ) is the
map f — SBfa. N((a, ,3)#) is given in dimension » by N(a, Blylfyseef,)
ol - I 5f, a), foreach (f,...., [ € NC(X,Y) ; Ryy), -

We now define the simplicial composition q)XYZ cHxon < Hey,z) - Hex, 7).
We recall that the nerve N: Cat — A%S  commutes with products and since H(X,Y)
= N(R Xy’ then we take D xy s = N( P xyz). where Pxyz is the functor ( na-
tural in X,Y,Z) defined on the objects by the composition C(X,Y) < C(v,7)
C(x,Z), and on the morphisms Rxyx Ryz " Rxz by the compatibility of
the relation R. More explicity the composition in dimension 7 is given by

8y - 8y) 0 (fyrooni])) = 8oy oo .8, 1,) . easily proved 10 be well defined.

As for the natural transformation ) it is, in our case, the identity of C(X,Y)

since by the definition of nerve, }(X.¥) =N(C(X,Y); Ryy), = C(X,Y).

In order to complete the proof that (}(,®, ) ) is a simplicial system let
u:X-Y ¢ C and /I (Y.Z), ; then /os(n)(u) = H(u,2) (/) because if
[=(fyoeoihy) then HuZ) (N = (u.1,), (N = (17° Joo u..... 1,°f,°u)



Tl ) 0 (UL, u) = f° s(")(u) . %imilarly, one can prove that s(")(u)“g

= H(w,u) (g) , Tor cach g ¢ }((W,X)" and cach uc C(X,Y).

e denote j((‘“ R)=-(H,®, » ) given above and S(C,R) the simplicial
category (¢ ](C1 . R)).

We proceed now to give S on the morphism : since K XV, = Ulfysve, f");
(f;0 f;41) €R Xy 0< i<n-1 Yot is easy to verily that to a relation preser -
ving functor F : (C.R) .~ (C R") there corresponds a simplicial function for

~ ~

cach pair X,Y of objects of (D, Foo = Fl: ]‘((X,Y) ¢ }((I"(X), F(Y)), given
I J XY g

by (f ..., fp) — (Elf,), ..., F(f,) 2 It is alsor easy to verify that, if

/e H (X,Y), and ge X (Y,7),, then F(ge [f)= F (g) o r () which proves the
functorial  condition SF.2). Thus, to a functor F: (C.R) > (C* R ') we have
associated the pair (F, F):(C, JC,R)) = (C", J(C", R)) which also veri-
fies Sr.1), and which we will denote by 8(F), thus completing the definition of

the functor & : C. Rel — C. Sim.
It remains to prove that the pair (R.&) is adjoint ( R is left adjoint of S).

We give first the natural transformations for adjointness : if X = (C.J) isa
simplicial category with J = H. D, y) and V - D, R) is a category with a
compatible, reflexive and rransitive relation R, we will give Cy:X — S (X) and
fly ¢ R&V) vV for which we notice that RS(V) = vV and therefore the functor
R is a retract of the functor & . Thus the transformation j¢is simply the identi-
ty. Uy is a pair (I’, o) where F is a functor with source and target the catego-
ry € and & }(X AL T HSR (X) (F( ), F( )) is anatural transformation: F
will be the identity of C hence it remains to give o4 g for objects A,B in ¢
Notice that, in general, we can define 5,0 W W’ where W is any simplicial
set and W' is the following simplicial set : on M let R be the transitive rela-
tion associated to the homolnpy relation of W. We take W” = N(R) = the nerve of
R . We recall that W' so obtained is level - wise given by W(’) = WO { W; {(u,v) ‘

wv €W , (u,v) R }, and in general e { (uy, ... u,) | (ujou;iq)e R i
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0,....,n-11%, with faces dj (uo....,un) = (“o""'”j""’”n)'sj(”o""' u,)=
(u

y U, uU., u

005" 0 gy By Wgags s o u, ). Now we can give 0 W What is desired with this

map is to associate with a simplex x ¢ W, . the ordered set of its vertexes. More
precisely, with each w: [0] = [m] we associate w*: W, - v, and with this
we construct the faces w*(x). If we denote by wy: (0] ~[#n] the map wy (0)=F,
then we take bw (x) = (u'o*(x) , ul'(x) o el u';l(.\‘) ), which can be seen to  bhe-

lung to W'” . Notice that u'kj(x) = d() dI Ty dk i dn (x) (0< k < n). The fo-

llowing lemma implies that oy is a simplicial map.

LEMMA. In a simplicial set X the following relations hold :

-

d,...d;... d,(x) if i <j and xc X

>

o'’ i

djo. d, 1 (di(x))

d (x) if i> j and x ¢ X,

0°'* %41 8,

>

d...d. ... dn”sj(x) if i< jand xeX,

>

-~

|

5 i+1"'d71+15j(") if i>jand x ¢ \,

The desired natural transformation is precisely 51( (A.B)° Hea,B)~ H(Aa,B")

=NRH(A,B), A B, in C.

In order to prove that & and p are actualls the natural transformation of ad-
jointness, one uses the fact that R : A°S ~Rel and 8: Rel —~ A°S are adjoint
functors. Here R (X) = (X, ~ ) is the transitive relation associated to the homo-
topy of X, Rel is the category of the reflexive transitive relations (on sets),and

S(Y,R ) is the nerve of R .

COROI.ILARY. On each category with a compatible reflexive transitive rela -
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tion there exists a simplicial systems whose simplicial homotopy relation is the
given relation. Moreover, if the original relation is a symmetric one then the sim-

nlicial systems lies within the category of Kan-simplicial sets (3]
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