Revista Colombiana de Matemáticas Volumen X (1976), págs. 151-160

ANY EQUIVALENCE RELATION OVER A CATEGORY IS A SIMPLICIAL

HOMOTOPY

by

C. RUIZ SALGUERO^{*} and R. RUIZ

§ 1. Simplicial Systems.

Definition.([1]) A simplicial system over a category \mathcal{C} is a triple $J = (\mathcal{H}, \Phi, \lambda)$ where $\mathcal{H} : \mathcal{C}^{o} \times \mathcal{C} \to \Delta^{o} S$ ($\Delta^{o} S$ = the category of simplicial sets) is a covariant functor, Φ is an associative "composition law" with $\Phi_{XYZ} : \mathcal{H}(X,Y) \times \mathcal{H}(Y,Z) \to \mathcal{H}(X,Z)$ natural in X, Y, Z, and γ is a natural isomorphism $\gamma_{X,Y} : \mathcal{C}(X,Y) \to \mathcal{H}(X,Y)_{o}$ (We will denote $\alpha \bullet \beta = \Phi(\beta, \alpha)$ for $\alpha \in \mathcal{H}(X,Y)_{n}$ and $\beta \in \mathcal{H}(Y,Z)_{n}$). Moreover, I is subjected to the following conditions :

(i) for each morfism $u: X \to Y$ of \mathcal{C} , and each $f \in \mathcal{H}(Y,Z)_n$, then $f \bullet s^{(n)}(u) = \mathcal{H}(u, Z)$ (f);

(ii) for each $g \in \mathcal{H}(W,X)_n$ and each $u \in \mathcal{C}(X,Y)$, $s^{(n)}(u) \bullet g = \mathcal{H}(W,u)(g)$, where $s^{(n)}(u)$ stands for the image of u by the following composition $s_0 \dots s_0$ (n-times), where s_0 denotes the 0-tb degeneracy in each dimension. Also we have used for a fixed Z in \mathcal{C} the restriction $\mathcal{H}(-,Z): \mathcal{C}^0 \to \triangle^0 S$ of the functor \mathcal{H} which for each $u: X \to Y$ in \mathcal{C} , induces a simplicial map $\mathcal{H}(u,Z): \mathcal{H}(Y,Z) \to \mathcal{H}(X,Z)$. Similarly, if one fixes the first variable.

^{*} Partially supported by the Universidad Pedagógica Nacional.

A simplicial category is a pair (\mathcal{C}, J) where J is a simplicial system over a given category \mathcal{C} .

The homotopy relation over morphism associated with the system J is given as follows: $f,g: X \to Y$ (in \mathbb{C}) are J-homotopic, or more precisely, f is J-homotopic to g (in that order), if there exists $v \in \mathbb{H}(X,Y)_I$ such that $d_o(v) = f$ and $d_I(v) = g$. It is well known that if $\mathbb{H}(X,Y)$ is a Kan simplicial set – in lower dimensions- then this homotopy relation es an equivalence relation. Fur thermore, it is compatible with composition. In fact, the categorical simplicial structure allows a composition of homotopies : if $H \in \mathbb{H}(X,Y)_I$ and $K \in \mathbb{H}(Y,Z)_I$ are such that $H: f \sim g$ and $K: u \sim v$ then $K \bullet H = \Phi(H, K)$ is a homotopy $uf \sim vg$.

§ 2. Some examples of simplicial categories.

a) In the category of topological spaces taking $\mathcal{H}(X,Y)_n = Top (\triangle (n) \times X, Y)$ with faces induced by the co-faces of the standard co-simplicial topological space \triangle , we obtain a simplicial system.

b) The same construction in $\triangle^{O}S$ using $\triangle [n]$ instead of $\triangle (n)$.

c) Generalizing a) and b), above, if a category \mathcal{C} is closed for finite products, then for each model $Y: \Delta \to \mathcal{C}$ (that is, a covariant functor) such that Y[0] =final object of \mathcal{C} , whenever it exists, one defines $\mathcal{H}_Y(A, B)_n = \mathcal{C}(Y[n] \times A, B)$ and completes it by the same categorical procedures as in a) and b). Given the importance of this example and its generality we will devote the next paragraph to a detailed discussion of it.

d) In the paper "Homotopic Systems in categories with a Final Object''([5]) it is shown that, if $Y : \triangle \to \mathcal{C}$ is a model in which Y[0] is not necessarily the final object of \mathcal{C} , then one can consider the category of objects over Y[0], denoted $\mathcal{C}/Y[0]$. The model Y induces a model $Y/Y[0] = Y' : \triangle \to \mathcal{C}/Y[0]$, in which, of course, Y'[0] is then the final object of $\mathcal{C}/Y[0]$. If \mathcal{C} is clo-

sed for fibered products over Y[0], then we can apply the procedure of part c) to induce over C/Y[0] a simplicial structure. For example, if C = Ab = the category of abelian groups and $Y: \triangle \rightarrow Ab$ is the *free abelian group functor*, restricted to \triangle , then there exists over Ab/\mathbb{Z} a simplicial structure associated with Y. Similarly, if one *tensorizes* Y by an abelian group M to get $(Y \otimes M)_n =$ $Y[n] \otimes M$, then $Y \otimes M$ induces a simplicial structure over Ab/M (since $(Y \otimes M)[0] = M$), which is natural in M, in the sense that this assignent $M \rightarrow Ab/M$ can be completed to a functor from Ab into the category C. Sim (cf. § 4).

e) A group G can be considered as a category with only one object, say e, and one morphism $g: e \rightarrow e$ for each element g of G, the composition then given by $\overline{g \cdot b} = \overline{gb}$. We will denote by G both the category and the group, N(G)will represent the nerve of the category G (in [2] , p. 32, this is denoted by D(G)). We will prove that there exists a non-trivial (natural) simplicial structure over G when G is abelian. In fact we take $\mathcal{H}(e,e)$ to be the simplicial set *RC*(*N*(*G*)) where *RC* stands for the right - cut- functor *RC* : $\triangle^{o}S \rightarrow \triangle^{o}S$ (cf. [4]) defined for a simplicial set X by the formulae : (i) $RC(X)_n = X_{n+1}$, $(n \ge 0)$ (ii) $\partial_i^n : RC(X)_n \to RC(X)_{n-1}$ is the morphism $d_i^{n+1} : X_{n+1} \to X_n \ (i=0,\ldots,n);$ (iii) $\sigma_i^n: RC(X)_n \to RC(X)_{n+1}$ is the morphism $s_i^{n+1}: X_{n+1} \to X_{n+2}$ $(i=0,\ldots,n)$. In order to complete the definition of $\mathcal{H}: G^o \times G \xrightarrow{i} \triangle^o S$ we associate to x, y: $e \rightarrow e$ the map $(x,y)_{\#} : \mathcal{H}(e,e) \rightarrow \mathcal{H}(e,e)$ defined by the following equality. $(x,y)_{\#}(g_0,\ldots,g_n) = (g_0,\ldots,g_{n-1},yg_xx)$. In order to this maps be simplicial it is necessary and sufficient that G be an abelian group. As for the simplicial composition $\Phi_{ee} = \Phi : \mathcal{H}(e,e) \times \mathcal{H}(e,e) \to \mathcal{H}(e,e)$, it is given by $\Phi((g_0, \dots, g_n);$ $(b_0, \ldots, b_n) = (b_0 g_0, \ldots, b_n g_n)$. Again, Φ so defined is a simplicial map if and only if G is an abelian group. Furthermore, $\mathcal{H}(e,e)_{O} = CR(N(G))_{O} = N(G)_{I} =$ $= G = Hom_G(e, e)$. Now for $u \in Hom_G(e, e)$ it holds that $\Phi(f, s^{(n)}(u)) = \mathcal{H}(u, e)(f)$. since the right hand member of the equality is $(u, 1_e)_{\#}(f) = (f_0, \dots, f_{n-1}, f_n u)$ for $f = (f_0, \dots, f_n)$, and $s^{(n)}(u) = s_0 \dots s_0(u) = (1, \dots, 1, u)$. Similarly $\Phi(s^{(n)}u, f)$ $= \mathcal{H}((e, u) (f) = (1_e, u)_{\#}(f).$

153

Remark: In the previous construction $\mathcal{H}(e, e)$ becomes the total space W(G) of $\widetilde{W(G)}$, the classifying space of \widetilde{G} , where $\widetilde{G_n} = G$ for each *n* and the faces being the identity morphism. That is to say W(G) = RC(N(G)).

This construction can certainly be generalized to abelian monoids, in which case the homotopy obtained is non trivial (aggainst the case of abelian groups in which it is trivial): $f \sim g$ if there exists $a \in G$ such that f = g. The problem of existence of homotopy is thus equivalent to the problem of solution of first degree equations in G.

f) There is a way to induce, trivially, a simplicial system on a category \mathcal{C} by taking $\mathcal{H}(X,Y)_n = \mathcal{C}(X,Y)$, for each *n*, and faces to be the identity function. The homotopy relation obtained is the relation of equality.

§3. The simplicial system associated to a model Y: $\triangle \rightarrow \mathcal{C}$.

Let \mathcal{C} be a category with a final object and with finite products. Let $Y: \triangle \rightarrow \mathcal{C}$ be a covariant functor such that Y[0] = the final object of \mathcal{C} . We define, for each pair of objects A, B in \mathcal{C} , the simplicial set $\mathbb{H}(A, B)$ by the formulae : (i) $\mathbb{H}(A, B)_n = \mathcal{C}(Y[n] \times A, B)$; (ii) if $w: [n] \rightarrow [m]$ is a morphism in \triangle , then $w^* \colon \mathbb{H}(A, B)_m \rightarrow \mathbb{H}(A, B)_n$ is the map $u \rightarrow u \circ (Y(w) \times A)$, where A stands for the identity morphism of A. The simplicial composition $\Phi: \mathbb{H}(A, B) \times \mathbb{H}(B, C)$ $\rightarrow \mathbb{H}(A, C)$ is given for $f: Y[n] \times A \rightarrow B$ and $g: Y[n] \times B \rightarrow C$ by

$$Y[n] \times A \xrightarrow{\partial \times A} Y[n] \times Y[n] A \xrightarrow{Y[n] \times f} Y[n] \times B \xrightarrow{g} C,$$

where ∂ is the diagonal morphism. To prove that Φ is simplicial it suffices to prove that, for morphisms $w: K \to L$, $f: L \times A \to B$, and $g: L \times B \to C$ the following diagram commutes.

In order to do this it suffices to apply, for each X of \mathcal{C} , the functor $\mathcal{C}(X,-)$ to the diagram above. Then it becomes the same statement (or diagram) but in the category of sets. (recall that in order to prove that a diagram in a category commutes, it is necessary and sufficient that for each object X, the image of the diagram

by $\mathcal{C}(X, -)$, resp. $\mathcal{C}(-, X)$, commutes in the category of sets). This is due to the fact that $\mathcal{C}(X, -)$ commutes with products and that $\mathcal{C}(X, \partial_Y) = \partial_{\mathcal{C}}(X, Y)$.

As far as associativity is concerned (of the simplicial composition Φ) it reduces to proving that the following diagram commutes in \mathcal{C} for any morphism $f: K \times A \rightarrow B$

§ 4. The categories C. Sim and C. Rel.

K

A simplicial functor $(\mathcal{C}, J) \rightarrow (\mathcal{C}', J')$ between simplicial categories is a pair (F, δ) , where $F: \mathcal{C} \rightarrow \mathcal{C}'$ is a functor and $\delta: \mathcal{H}_{\mathcal{C}}(-, -) \rightarrow \mathcal{H}_{\mathcal{C}'}(F(-), F(-))$ is a natural transformation such that for any objects X, Y, Z of \mathcal{C} :

SF.1) the following diagram commutes

$$\begin{array}{c} \mathcal{H}_{\mathcal{C}}(X,Y)_{o} \xrightarrow{\delta_{XY}} & \mathcal{H}_{\mathcal{C}}' \left(F(X), F(Y)\right)_{o} \\ \downarrow & \gamma_{XY} & \downarrow^{\gamma'_{F}(X)F(Y)} \\ \mathcal{C}(X,Y) \xrightarrow{F} & \mathcal{C}' \left(F(X), F(Y)\right) \end{array}$$

155

S.F.2) the following diagram commutes

In this case we will say that (F, δ) is compatible with the simplicial composition.

We will denote by *C.Sim* the category of simplicial categories and simplicial functors, and by *C. Rel* the category of categories with *compatible relations* in the following since: (a) a category (\mathcal{C}, R) with a compatible relation *R*, consists of a category \mathcal{C} and, for each pair of objects *X,Y*, of a reflexive and transitive relation over the set $\mathcal{C}(X,Y)$ which is compatible with the composition in \mathcal{C} ; (b) a morphism $F:(\mathcal{C}, R) \to (\mathcal{C}', R')$ between categories with compatible relations is a relation-preserving functor $F: \mathcal{C} \to \mathcal{C}'$ in the sense that if $(f,g) \in R_{XY}$ then $(F(f), F(g)) \in R'_{F(X)} F(Y)$.

The procedure that to a simplicial category (\mathcal{C}, J) associates the reflexive and transitive relation generated by homotopy, denoted by $(\mathcal{C}, R(J))$, gives rise to a functor $\mathcal{R} : C.Sim \rightarrow C.Rel$.

We now give the main theorem of this paper :

THEOREM. The functor \Re admits a right adjoint $S: C. Rel \rightarrow C. Sim$.

We devote the rest of this paper to the proof of this theorem. To begin with we define the functor δ .

Let (\mathcal{C}, R) be a category with a reflexive, transitive, and compatible relation. Since R_{XY} is reflexive and transitive it can be considered in itself as a cate gory with objects the elements of $\mathcal{C}(X,Y)$ and a morphism $f \to g$ (and only one) if $(f,g) \in R_{XY}$. We define $\mathbb{H} \notin \mathbb{C}^o \times \mathbb{C} \to \triangle^o S$ by taking as $\mathbb{H}(X,Y)$ the nerve (see [2] p.32 for the definition of nerve, which is denoted by D) of the category R_{XY} . We will use $\mathbb{H}_{(\mathbb{C},R)}(X,Y)$ instead of $\mathbb{H}(X,Y)$ when emphasis on the category and the relation is necessary.

We remark that the functor H is the composite

where $\mathcal{C}^{o} \times \mathcal{C} \to Cat$ maps (X,Y) into the category associated with the relation R_{XY} . One also notices that if $\alpha: X' \to X$ and $\beta: Y \to Y'$ are morphisms of \mathcal{C} , then the functor $(\alpha, \beta)_{\#}: (\mathcal{C}(X,Y); R_{XY}) \to (\mathcal{C}(X',Y'); R_{X',Y'})$ is the map $f \to \beta f \alpha$. $N((\alpha, \beta)_{\#})$ is given in dimension n by $N(\alpha, \beta)_{\#}(f_{o}, \ldots, f_{n}) = (\beta f_{o} \alpha, \ldots, \beta f_{n} \alpha)$, for each $(f_{o}, \ldots, f_{n}) \in N(\mathcal{C}(X,Y); R_{XY})_{n}$.

We now define the simplicial composition $\Phi_{XYZ} : \mathbb{H}(X,Y) \times \mathbb{H}(Y,Z) \to \mathbb{H}(X,Z)$. We recall that the nerve $N: Cat \to \Delta^o S$ commutes with products and since $\mathbb{H}(X,Y) = N(R_{XY})$ then we take $\Phi_{XYZ} = N(\Phi_{XYZ})$, where Φ_{XYZ} is the functor (natural in X,Y,Z) defined on the objects by the composition $\mathcal{C}(X,Y) \times \mathcal{C}(Y,Z) \to \mathcal{C}(X,Z)$, and on the morphisms $R_{XY} \times R_{YZ} \to R_{XZ}$ by the compatibility of the relation R. More explicitly the composition in dimension n is given by $(g_0, \ldots, g_n) \bullet (f_0, \ldots, f_n) = (g_0 f_0, \ldots, g_n f_n)$, easily proved to be well defined.

As for the natural transformation γ it is, in our case, the identity of $\mathcal{C}(X,Y)$ since by the definition of nerve, $\mathcal{H}(X,Y)_{o} = N(\mathcal{C}(X,Y); R_{XY})_{o} = \mathcal{C}(X,Y)$.

In order to complete the proof that $(\mathcal{H}, \Phi, \gamma)$ is a simplicial system let $u: X \to Y \in \mathcal{C}$ and $f \in \mathcal{H}(Y,Z)_n$; then $f \circ s^{(n)}(u) = \mathcal{H}(u,Z)$ (f) because if $f = (f_0, \dots, f_n)$ then $\mathcal{H}(u,Z)$ (f) = $(u, 1_Z)_{\#}$ (f) = $(1_Z \circ f_0 \circ u, \dots, 1_Z \circ f_n \circ u)$ = $(f_0, \ldots, f_n) \bullet (u, \ldots, u) = f \circ s^{(n)}(u)$. Similarly, one can prove that $s^{(n)}(u) \circ g = \mathcal{H}(W, u)$ (g), for each $g \in \mathcal{H}(W, X)_n$ and each $u \in \mathcal{C}(X, Y)$.

we denote $J(\mathcal{C}, R) = (\mathcal{H}, \Phi, \gamma)$ given above and $\delta(\mathcal{C}, R)$ the simplicial category $(\mathcal{C}; J(\mathcal{C}, R))$.

We proceed now to give δ on the morphism : since $\mathbb{H}(X,Y)_n = \{(f_0,\ldots,f_n) | (f_i, f_{i+1}) \in \mathbb{R}_{XY}, 0 \leq i \leq n-1\}$ it is easy to verify that to a relation preserving functor $F: (\mathcal{C}, \mathcal{R}) \to (\mathcal{C}'\mathcal{R}')$ there corresponds a simplicial function for each pair X,Y of objects of $\mathcal{C}, \widetilde{F}_{XY} = \widetilde{F}: \mathbb{H}(X,Y) \to \mathbb{H}(F(X), F(Y))$, given by $(f_0,\ldots,f_n) \to (F(f_0),\ldots,F(f_n))$. It is also easy to verify that, if $f \in \mathbb{H}(X,Y)_n$ and $g \in \mathbb{H}(Y,Z)_n$, then $\widetilde{F}(g \bullet f) = \widetilde{F}(g) \bullet \widetilde{F}(f)$ which proves the functorial condition SF.2. Thus, to a functor $F: (\mathcal{C}, R) \to (\mathcal{C}', R')$ we have associated the pair $(F,\widetilde{F}): (\mathcal{C}, J(\mathcal{C}, R)) \to (\mathcal{C}', J(\mathcal{C}', R'))$ which also verifies SF.1, and which we will denote by $\delta(F)$, thus completing the definition of the functor $\delta: C. Rel \to C. Sim$.

It remains to prove that the pair $(\mathcal{R}, \mathcal{S})$ is adjoint $(\mathcal{R}$ is left adjoint of \mathcal{S}).

We give first the natural transformations for adjointness: if $X = (\mathcal{C}, J)$ is a simplicial category with $J = (\mathcal{H}, \Phi, \gamma)$ and $V = (\mathcal{D}, R)$ is a category with a compatible, reflexive and transitive relation R, we will give $\theta_X: X \to S\mathcal{R}(X)$ and $\mu_V: \mathcal{R}(V) \to V$ for which we notice that $\mathcal{R}(V) = V$ and therefore the functor \mathcal{R} is a retract of the functor \mathcal{S} . Thus the transformation μ is simply the identity. θ_X is a pair (F, δ) where F is a functor with source and target the category \mathcal{C} and $\delta: \mathcal{H}_X(...) \to \mathcal{H}_{S\mathcal{R}(X)}(F(...), F(...))$ is a natural transformation: F will be the identity of \mathcal{C} hence it remains to give $\delta_{A,B}$ for objects A,B in \mathcal{C} . Notice that, in general, we can define $\delta_W: W \to W'$ where W is any simplicial set and W' is the following simplicial set : on W_0 let R be the transitive relation associated to the homotopy relation of W. We take W'' = N(R) = the nerve of R. We recall that W' so obtained is level-wise given by $W'_0 = W_0$, $W'_1 = \{(u,v) \mid u, v \in W_0, (u,v) R\}$, and in general $W'_n = \{(u_0, \ldots, u_n) \mid (u_i, u_{i+1}) \in \mathcal{R}, \ldots\}$

 $0, \ldots, n-1$, with faces $d_j(u_0, \ldots, u_n) = (u_0, \ldots, \hat{u_j}, \ldots, u_n), s_j(u_0, \ldots, u_n) = (u_0, \ldots, u_j, u_j, u_j, u_{j+1}, \ldots, u_n)$. Now we can give δ_W . What is desired with this map is to associate with a simplex $x \in W_n$, the ordered set of its vertexes. More precisely, with each $w : [0] \to [m]$ we associate $w^* : W_n \to W_0$ and with this we construct the faces $w^*(x)$. If we denote by $w_k : [0] \to [n]$ the map $w_k(0) = k$, then we take $\delta_W(x) = (w_0^*(x), w_1^*(x), \ldots, w_n^*(x))$, which can be seen to belong to W'_n . Notice that $w_k^*(x) = d_0 d_1 \ldots d_k \ldots d_n (x)$ $(0 \le k \le n)$. The following lemma implies that δ_W is a simplicial map.

LEMMA. In a simplicial set X the following relations hold :

$$d_{0} \dots \hat{d_{i}} \dots d_{n-1}(d_{j}(x)) = \begin{cases} d_{0} \dots \hat{d_{i}} \dots d_{n}(x) & \text{if } i \leq j \text{ and } x \in X_{n} \\ \\ d_{0} \dots \hat{d_{i+1}} \dots d_{n}(x) & \text{if } i \geq j \text{ and } x \in X_{n} \end{cases}$$

$$d_{o} \dots \hat{d}_{i} \dots d_{n}(x) = \begin{cases} d_{o} \dots \hat{d}_{i} \dots d_{n+1} s_{j}(x) & \text{if } i \leq j \text{ and } x \in X_{n} \\ \\ d_{o} \dots \hat{d}_{i+1} \dots d_{n+1} s_{j}(x) & \text{if } i \geq j \text{ and } x \in X_{n} \end{cases}$$

The desired natural transformation is precisely $\delta_{\mathcal{H}(A,B)} : \mathcal{H}(A,B) \to \mathcal{H}(A,B')$ = $NR\mathcal{H}(A,B)$, A, B, in \mathcal{C} .

In order to prove that θ and μ are actualls the natural transformation of adjointness, one uses the fact that $\Re: \triangle^o S \to Rel$ and $\Re: Rel \to \triangle^o S$ are adjoint functors. Here $\Re(X) = (X, \sim)$ is the transitive relation associated to the homotopy of X, Rel is the category of the reflexive transitive relations (on sets), and $\Re(Y, R)$ is the nerve of R.

COROLLARY. On each category with a compatible reflexive transitive rela -

tion there exists a simplicial systems whose simplicial homotopy relation is the given relation. Moreover, if the original relation is a symmetric one then the simplicial systems lies within the category of Kan-simplicial sets [3].

Bibliography

- 1. D. Quillen, Homotopical Algebra, Math. Lectures Notes 43. Springer Verlag, Berlin,
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Springer Verlag, Berlin, 1967.
- C. Ruiz Salguero and R. Ruiz, La condición de Kan y la noción de grupoide. Rev. Colombiana Mat. 5 (1971),
- R. Ruiz, Change of models in algebraic topology. (Thesis), Temple University, Philadelphia, 1976.
- 5. C. Ruiz Salguero and R. Ruiz, Homotopic systems on categories with a final object, (to appear in Rev. Colombiana Mat.).

Departamento de Matemáticas y Estadística Universidad Nacional de Colombia Bogotá 6, D.E. Colombia

and

Departamento de Matemáticas Universidad Javeriana Bogotá 2, D. E. Colombia

(Recibido en agosto de 1976).