Revista Colombiana de Matemáticas Vol. XI (1977), págs 51 - 58.

QUASI-COVARIANT REPRESENTATIONS

OF NUCLEAR *-ALGEBRAS

can oith for a first the transfer and dit to man

Steven M. MOORE

ABSTRACT

We consider the extension of the concept of a quasi-covariant representation of C*-algebras to nuclear *-algebras. Necessary conditions for a representation to be quasi-covariant are obtained.

RESUMEN

Consideramos la extensión del concepto de una

representación cuasi-covariante de C*-álgebras a *-álgebras nucleares. Condiciones necesarias para que una representación sea cuasi-covariante son obtenidas.

§ Introducción.

In [1] we introduced locally convex *-algebras. Although this is a new type of topological algebraic structure that is ripe for more mork, it has become clear that stronger properties are needed in order to get substantial results. Since a C*-algebra is a nuclear *-algebra if and only if it is finite dimensional [2], one might expect that the additional hypothesis of nuclearity would be interesting. Thus here we consider nuclear *-algebras, i.e. a locally convex *-algebra \mathcal{Q} that is also a nuclear space. This still includes the physically interesting case of the field algebra [3].

For nuclear *-algebras it is not possible to define quasi-equivalent representations in the same way as in the C*-algebra theory [4] (e.g. in the field algebra [3], all projections are trivial). But Kadison [5] has given an equivalent definition using the following concepts: Let I be a representation of \mathcal{A} in the sense of [1]. ω_{Φ} is a <u>vector</u> <u>state</u> of I if $\omega_{\Phi}(\mathbf{x}) = (\Phi, \Pi(\mathbf{x})\Phi)$ where $\Phi \in \mathcal{D}(\Pi)$, $\|\Phi\| = 1$. The set of all vector-states of I is denoted by $E(\Pi)$ and the closure of the convex hull of E(II) by F(II) (closure in the weak topology). A representation Π_1 is <u>quasi-equivalent</u> to a representation Π_2 if F(II) = F(II).

§ 2. Quasi-covariant representations.

In [1] we also introduced the concept of covariant representation. We say that a representation If is <u>quasi-covariant</u> if it is quasi-equivalent to If, where (If, V') is some covariant representation of (\mathcal{U}, Q) .

We remember that our working hypothesis is that $g \rightarrow qx$ is continuous for each $x \in \mathcal{OL}$. The question of the continuity of $g \rightarrow g\omega$ is more delicate, partly because of possible ambiguities in the topology of Of. There is a large class of topologies for \mathcal{U} for which (\mathcal{U} , \mathcal{U}) is a dual pair. Among these are the weak topology and the strong topology [2] . In analogy with the C^{\bullet} -algebra case [6,7], one might be tempted to elect the strong topology. However, for the field algebra [3] , the fact that the w are products of tempered distributions and that we are in general treating a nuclear *-algebra which possesses very different properties than those of a C*-algebra suggests that we should consider instead the weak topology. Thus we let E^C be the set of all states such that $g \rightarrow g\omega$ is continuous with respect to the weak topology on ${\it O}\!{\it L}$.

53

2.1 <u>Theorem</u>. Let (Π, V) be a covariant representation of $(\mathcal{U}, \mathcal{Q})$. Then $E(\Pi) \subset E^{c}$

<u>Proof</u>. Let $\Phi \in \mathcal{D}(\Pi)$, $\|\Phi\| = 1$. Then $g\omega_{\Phi}(x) = (\Phi, \Pi(g|x)|\Phi)$. Thus $|g\omega_{\Phi}(x) - \omega_{\Phi}(x)| = |(\Phi, \Pi(gx-x)\Phi)|$. Since $g \rightarrow gx$ is continuous, $gx \rightarrow x$ when $g \rightarrow e$. Thus $(\Phi, \Pi(gx - x)\Phi) \rightarrow 0$ when $g \rightarrow e$. QED.

2.2 <u>Theorem</u>. E^C has the following properties:

a. E^cis convex.

b. E^cis weakly closed.

c. E^{c} is invariant with respect to Q, i.e. $gE^{c} = E^{c}$ for all $g \in Q$.

(Q. M.A. to

<u>Proof</u>. a. Let $\omega_1, \omega_2 \in E^C$ and $0 \leq \lambda \leq 1$, Then $|g(\lambda\omega_1 + (1-\lambda)\omega_2)(x) - (\lambda\omega_1 + (1-\lambda)\omega_2)(x)|$ $= |\lambda (g\omega_1 - \omega_1)(x) + (1-\lambda)(g\omega_2 - \omega_2)(x)|$

 $\leq \lambda | (g\omega_1 - \omega_1)(\mathbf{x})| + (1 - \lambda) | (g\omega_2 - \omega_2)(\mathbf{x})|.$

b. Suppose $\omega_{\beta} \xrightarrow{} \omega$ and $g_{\alpha} \xrightarrow{} e$. We have $|(g_{\alpha} \omega - \omega)(x)| \leq |g_{\alpha}(\omega - \omega_{\beta})(x)| + |(g_{\alpha} \omega_{\beta} - \omega_{\beta})(x)| + |(\omega_{\beta} - \omega)(x)|.$

Fix x for the moment. Since $g \rightarrow g\omega(x)$ is $\operatorname{cont}_{\underline{i}}^{\underline{i}}$ nuous, we can find β_0 such that $\beta \ge \beta_0$ implies $|(\omega_{\beta}^{-}\omega)(x)| \le \varepsilon/6$. Now $\psi: g \rightarrow g (\omega - \omega_{\beta})(x) = (\omega - \omega_{\beta})(g x)$ is a conti-54 nous function. Consider

 $I(\beta) =]c(\beta) - \varepsilon/6 , c(\beta) + \varepsilon/6[$ where $c(\beta) = (\omega - \omega_{\beta})(x) = \psi(e) \cdot \psi^{-1}I(\beta) = \Psi(\beta)$ is then a neighborhood of e in Q. There exists $\alpha(\beta)$ such that $\alpha \ge \alpha(\beta)$ implies $g_{\alpha} \in \Psi(\beta)$ since $g_{\alpha} \rightarrow e$. If $\beta \ge \beta_{0}$, then $|c(\beta)| \le \varepsilon/6$, so for $\alpha \ge \alpha(\beta_{0})$, $|\psi(g_{\alpha}) - \psi(e)| \le \varepsilon/6$, i.e.

 $|g_{\alpha}(\omega-\omega_{\beta})(x)| \leq \varepsilon/6 + |(\omega-\omega_{\beta})g(x)| \leq \varepsilon/3.$

Fix $\beta \ge \beta_0$. There eixists α_1 such that $\alpha \ge \alpha_1$ implies $|(g_{\alpha} \ \omega_{\beta} - \ \omega_{\beta})(x)| \le \varepsilon/3$. Thus for $\alpha \ge \alpha_1$ and $\alpha \ge \alpha(\beta)$ we have $|(g_{\alpha} \ \omega - \omega)(x)| \le \varepsilon$.

c.To show $h \ \omega \ \varepsilon \ \varepsilon^{c}$, if $\omega \ \varepsilon \ \varepsilon^{c}$, let $g_{\alpha} \rightarrow e$. Then $h^{-1} g_{\alpha} h \rightarrow e$. Hence $h^{-1} g_{\alpha} h \omega \rightarrow \omega$. $h \rightarrow h \omega(x)$ continuous implies $h(h^{-1} g_{\alpha} h) \omega(x) = g_{\alpha} h \omega(x) \rightarrow h \omega(x)$. QED.

§ 3. <u>Necessary conditions for a quasi-covariant</u> <u>representation</u>.

We have obtained the following necessary conditions for a quasi-covariant representation:

3.1 <u>Theorem</u>. Let II be a quasi-covariant representation. Then the following conditions are satisfied:

a. $F(\Pi)$ is invariant. b. $F(\Pi) \subset E^{C}$. <u>Proof</u>: Let II be a quasi-covariant representation. Then there exists a covariant representation (Π_1, V_1) of $(\mathcal{A}, \mathcal{G})$ to which II is quasi-equivalent. For $\Phi \in \mathfrak{D}(\Pi_1), |\Phi| = 1$,

$$g\omega_{\Phi}(x) = \omega_{\Phi}(gx) = (\Phi, \Pi_{1}(gx)\Phi)$$
$$= (V^{*}(g)\Phi, \Pi_{1}(x)V^{*}(g)\Phi)$$
$$= \omega_{V^{*}}(g)\Phi (x)$$

This means that $E(\Pi_1)$ is invariant. Thus the convex hull of $E(\Pi_1)$ is invariant. Since $E(\Pi_1) \subset E^c$, it follows that the closure of the convex hull is invariant. Thus $gF(\Pi_1) = F(\Pi_1)$. But $F(\Pi) = F(\Pi_1)$, so part a follows.

Now let $\omega \in E(\Pi_1)$. Then there exists $\Phi \in \mathcal{D}(\Pi_1)$, $\|\Phi\| = 1$ with $\omega = \omega_{\Phi}$. Hence

 $|g\omega(x) - \omega(x)| = |\omega(gx - x)| = |(\Phi, \Pi_1(gx - x) \Phi)|$ Since $gx \rightarrow x$ is continuos, $gx \rightarrow x$ when $g \rightarrow e$. Thus $(\Phi, \Pi_1(gx - x)\Phi) \rightarrow 0$ when $g \rightarrow e$. Hence $\omega \in E^C$. Thus $E(\Pi_1)\subseteq E^C$. E^C convex and closed implies that $F(\Pi) = F(\Pi_1) \subset E^C$. QED.

It is not known whether these conditions are also sufficient as they are in the C*-algebra case [7].

REFERENCES.

- [1] S.M. Moore, Rev. Col. Mat. X, 99-120 (1967).
- [2] A. Pietsch, Nuclear Locally Convex Spaces, Springer, Berlin, 1972.
- [3] H.J. Borchers, Algebraic aspects of Wightman field theory, in Statistical Mechanics and Field Theory, R.N. Sen, C. Weil, eds., Israel Universities Press, 1972.
- [4] S. Sakai, C*-algebras and W*-algebras, Springer, Berlin, 1971.
- [5] R.V. Kadison, Trans. A.M.S. 103, 34-52 (1962).
- [6] H.J. Borchers, Commun. math. phys. 14, 305-314 (1969).
- [7] H.J. Borchers, Uber C*-Algebren mit lokalkompakten Symmetriegruppen, Gottingen preprint (1973).

Departamento de Física Universidad de los Andes Apartado Aéreo 4976, Bogotá 1, DE, Colombia, S.A.

57

Recibido en agosto de 1977).

LAPPENCES.

[5] R.V. Kadison, Trabs. A.M.S. 103, 34-52