$Revista$ *Colombiana* de *Matemáticas Vol.* XI (1977), págs 51 - 58.

QUASI-COVARIANT REPRESENTATIONS

OF NUCLEAR *-ALGEBRAS

tanoitibha san radh teag**por** de a

Steven M. MOORE

ABSTRACT

We consider the extension of the concept of a quasi-covariant representation of C*-algebras to nuclear *-algebras. Necessary conditions for a re presentation to be quasi-covariant are obtained.

RESUMEN

Conslderamos la extension del concepto de una

representación cuasi-covariante de C*-álgebras *-algebras nucleares. Condiciones necesarias para que una representacion sea cuasi-covariante son obtenidas.

§ Introducción.

In [1] we introduced locally convex *-algebras. Although this is a new type of topological algebraic structure that is ripe for more mork, it has become clear that stronger properties are needed in order to get substantial results. Since a C*-algebra is a nuclear *-algebra if and only if it is finite dimensional [2) , one might expect that the additional hypothesis of nuclearity would be interesting. Thus here we consider nuclear *-algebras, i.e. a locally convex $*$ -algebra $\mathcal U$ that is also a nuclear space. This still includes the physically interesting case of the field algebra $\lceil 3 \rceil$.

For nuclear *-algebras it is not possible to define quasi-equivalent representations in the same way as in the C^* -algebra theory $[4]$ (e.g. in the field algebra (3) all projections are trivial). But Kadison [5] has given an equivalent definition using the following concepts: Let Π be a representation of α in the sense of $[1]$. ω_{ϕ} is a vector state of Π if $\omega_{\Phi}(\boldsymbol{x}) = (\Phi, \Pi(\boldsymbol{x})\Phi)$ where $\Phi \in \mathcal{D}(\Pi)$, $||\phi|| = 1$. The set of all vector-states of $\overline{\mathbb{I}}$ is deno ted by $E(\mathbb{I})$ and the closure of the convex hull of

 $E(\Pi)$ by $F(\Pi)$ (closure in the weak topology). A re- $_{\rm p}$ resentation $_{\rm I\!I}$ is <u>quasi-equivalent</u> to a represen tation \mathbb{I}_2 if $\mathbf{F}(\mathbb{I}_1) = \mathbf{F}(\mathbb{I}_2)$.

§ 2. Quasi-covariant representations.

In $\begin{bmatrix}1\end{bmatrix}$ we also introduced the concept of covariant representation. We say that a representation IT is quasi-covariant if it is quasi-equivalent to IT~, where (IT~, *V~)* is some covariant representation of (α, q) .

We remember that our working hypothesis is that $g \rightarrow gx$ is continuous for each $x \in \mathcal{U}$. The question of the continuity of $g \rightarrow g\omega$ is more delicate, partly because of possible ambiguities in the topology of α . There is a large class of topologies for \mathcal{U} for which $(\mathcal{U}, \mathcal{U}')$ is a dual pair. Among these are the weak topology and the strong topology $[2]$. In analogy with the C^* -algebra case $[6,7]$, one might be tempted to elect the strong topology. However, for the field algebra $\begin{bmatrix} 3 \end{bmatrix}$, the fact that the ware productsof tempered distributions and that we are in general treating a nuclear *-algebra which possesses very different properties than those of a C^{*}-algebra suggests that we should consider instead the weak topology. Thus we let $E^{^{\textbf{C}}}$ be the set of all states such that $g \rightarrow g\omega$ is continuous with respect to the weak topology on $\mathfrak A$.

53

2.1 Theorem. Let (Π, V) be a covariant representation of (α, q) . Then $E(\Pi) \subset E^C$

Proof. Let $\Phi \in \mathfrak{D}(\Pi)$, $\|\Phi\| = 1$. Then $g\omega_{\Phi}(\chi) =$ $(\Phi$, $\Pi(g \times) \Phi)$. Thus $|g\omega_{\Phi} (x)| - \omega_{\Phi} (x)| = |(\Phi,$ $\Pi(gx-x)\Phi$ | . Since $g \rightarrow gx$ is continuous, $gx \rightarrow x$ when $g \rightarrow e$. Thus $(\Phi, \Pi(gx - x)\Phi) \rightarrow 0$ when $g \rightarrow e$. QED.

2.2 Theorem. E^c has the following properties:

- a. E^cis convex.
- b. E^cis weakly closed.
- ϵ , ϵ . $\epsilon^{\texttt{c}}$ is invariant with respect to $\boldsymbol{\mathscr{G}}$, i.e. $g E^c = E^c$ for all $g \in \mathcal{G}$.

 (\mathbb{Q}, \mathbb{R}) fo

<u>Proof</u>. a. Let ω_1, ω_2 $\varepsilon_1 E^c$ and $0 \le \lambda \le 1$, Then $|g(\lambda\omega_1 + (1-\lambda)\omega_2)(x)| = (\lambda\omega_1 + (1-\lambda)\omega_2)(x)|$ $= |\lambda (g\omega_1 - \omega_1)(x)| + (1 - \lambda)(g\omega_2 - \omega_2)(x)|$

 $\leq \lambda$ | $\left[\begin{array}{cc} g_{\omega_1} - \omega_1 \end{array} \right] (x)$ | $+ (1 - \lambda)$ | $\left[g_{\omega_2} - \omega_2 \right] (x)$ |.

b. Suppose $\omega_{\beta} \rightarrow \omega$ and $g_{\alpha} \rightarrow e$. We have $|(g_{\alpha}\omega-\omega)(x)|\leqslant|g_{\alpha}(\omega-\omega_{\beta})(x)|+|(g_{\alpha}\omega_{\beta}-\omega_{\beta})(x)|+$ \rightarrow $(\omega_{\mathsf{g}}^{\mathsf{u}}\circ \omega)$ (x) and

Fix x for the moment. Since $g \rightarrow g \omega(x)$ is conti nuous, we can find β_o such that $\beta > \beta_o$ implies $|\omega_{\alpha}(\omega) - x| < \epsilon/6.$ Now $\psi: g \to g (\omega - \omega_{\beta})(x) = (\omega - \omega_{\beta})(g x)$ is a conti-54

nous function. Consider

 $I(\beta) = c(\beta) - \varepsilon/6$, $c(\beta) + \varepsilon/6$ where $c(\beta) = (\omega - \omega_{\beta})(x) = \psi(e), \psi^1 I(\beta) = V(\beta)$ is then a neighborhood of e in Q . There exists $\alpha(\beta)$ such that $\alpha \ge \alpha(\beta)$ implies $g_{\alpha} \in V(\beta)$ since $g_{\alpha} \rightarrow e$. If $\beta \ge \beta_0$, then $|c(\beta)| \le \epsilon/6$, so for $\alpha \ge \alpha(\beta_0), |\psi(g_\alpha)-\psi(e)| \le \varepsilon/6, \text{ i.e.}$

 $|g_{\alpha}(\omega-\omega_{\beta})(x)| \leq \varepsilon/6 + |\omega-\omega_{\beta}|g(x)| \leq \varepsilon/3.$

Fix $\beta \ge \beta_0$. There eixists α_1 such that $\alpha \ge \alpha_1$ implies $|(g_{\alpha}\omega_{\beta}, \omega_{\beta}) (x)| \leq \epsilon/3$. Thus for $\alpha \geq \alpha_1$ and $\alpha \geqslant \alpha(\beta)$ we have $|(g_{\alpha} \omega - \omega)(x)| \leqslant \varepsilon$.

c. To show h w ϵ E^c, if w ϵ E^c, let $g_{\alpha} \rightarrow e$. Then $h^{-1} g_{\alpha} h \rightarrow e$. Hence $h^{-1} g_{\alpha} h \omega \rightarrow \omega$. $h \rightarrow h \omega(x)$ continuous implies $h(h^1g_\alpha h) \omega(x) = g_\alpha^h h \omega(x) \rightarrow h \omega(x)$. QED. $[a, (x + x_0), n, t)$, $(x + x_0)$, (x) , $(x) = -\frac{1}{2}x$

§ 3. Necessary conditions for a quasi-covariant representation.

We have obtained the following necessary condi tions for a quasi-covariant representation:

3.1 Theorem. Let II be a quasi-covariant representation. Then the following conditions are satisfied:

 $a.$ $F(\Pi)$ is invariant. \mathbf{b} $\mathbf{F}(\Pi) \subset \mathbf{E}^{\mathbf{C}}$.

Proof: Let II be a quasi-covariant representation. Then there exists a covariant representation (Π_1, ν_1) of (a, q) to which II is quasi-equivalent. For

$$
g\omega_{\Phi}(x) = \omega_{\Phi}(gx) = (\Phi, \Pi_{1}(gx)\Phi)
$$

=
$$
(\Psi^{*} \mid g) \Phi, \Pi_{1}(x) \Psi^{*} \mid g) \Phi
$$

=
$$
\omega_{\Psi^{*}}(g) \Phi (x)
$$

This means that $E(\Pi_1)$ is invariant. Thus the convex hull of $E(\Pi_1)$ is invariant. Since $E(\Pi_1)CE^C$, it follows that the closure of the convex hull is invariant. Thus $qF(\mathbb{I}_1) = F(\mathbb{I}_1)$. But $F(\mathbb{I}) = F(\mathbb{I}_1)$, so part a follows. As a with the night works of p

Now let $\omega \epsilon E(\Pi_1)$. Then there exists $\Phi \epsilon \mathcal{D}(\Pi_1)$, $\|\Phi\|_{\mathcal{C}} = 1$ (swith) $\omega = \omega_{\Phi}$. (i) B Hence singer a proposition

 $|g\omega(x) - \omega(x)| = |\omega(gx-x)| = |(\Phi, \Pi_1(gx-x)) - \Phi|$ Since $gx \rightarrow x$ is continuos, $gx \rightarrow x$ when $g \rightarrow e$. Thus $(\Phi, \Pi_1(gx-x)\Phi) \rightarrow 0$ when $g \rightarrow e$. Hence $\omega \in E^C$. Thus $E(\Pi_1) \subseteq E^C$. E^C convex and closed im plies that $F(\Pi) = F(\Pi_1) \subset E^c$. QED.

tions for a cuasicovariant represen It is not known whether these conditions are also sufficient as they are in the C*-algebra case [7] are and anotathnos parweller and nont anotast

nathsvar 21 (U)1, \$ const-

 56

REFERENCES.

Revasita Colombiana de Criel eb oraoge ne obidioen

- [1] S.M. Moore, Rev. Col. Mat. X, 99-120 (1967).
- [2] A. Pietsch, Nuclear Locally Convex Spaces, Springer, Berlin, 1972.
- (3] H.J. Borchers, Algebraic aspects of Wightman field theory, in Statistical Mechanics and Field Theory, R.N. Sen, C. Weil, eds., Israel Universities Press, 1972.
- $[4]$ S. Sakai, C*-algebras and W*-algebras, Springer, Berlin, 1971.
- [5] R.V. Radison, Trans. A.M.S. 103, 34-52 (1962).
- [6J H.J. Borchers, Commun. math. phys. 14, 305-314 (1969).
- (7] H.J. Borchers, Uber C*-Algebren mit lokalkompakten Symmetriegruppen, Gottingen preprint (1973) .

Vepa~~amen~o de *Fi~ica* Universidad de *los* Andes *Apa~tado* Ae~eo 4976⁹ *BOgO~d* 1, *VE, Colombia, S.Ao*

57

Recibido en agosto de 1977).

. CHOWERTHA

[1] $S.M.$ Moore, $Per. Col.$ Mat. X, 99-120 (1957). STOI .alized , repairg8 [3] H.J. Borchars, Alghbaic asoscts of Wichtman field cheory, in Statistical Mechanics and Israel Universities Press, 1972. 8. Sakai, C*-alcabas and W*-algebras, Sprinder, berlin, 1971. R.V. Kadison, Traba, A.M.S. 103, 34-52 しょぐたつかい 101 H.J. Botchers, Commun. math. phys. 14, 305-314 $|a|$ [3] H.J. Borohers, Uber C'-Alcebren, Nit link Iprom L $(ETEL)$