Revi~ta Colombiana de *Matematiea~* $Vol. XII (1978)$, *págs 61-82*

REMARKS ABOUT THE EILENBERG-ZILBER

TYPE DECOMPOSITION IN COSIMPLICIAL SETS

by **by**

~': C. RlIIZ SALGUERO and Roberto RUIZ S.

Contents

- §O Introduction
- §1 Sections and retractions in the category Δ .
- §2 Adjoints of morphisms in the category Δ .
- §3 Conditions for unicity of the Eilenberg-Zilber type decomposition in co-simplicial sets.
- §4 Stability of interior points for co-degeneracies.

.*Author partially supported by the Universidad Pe dagógica Nacional, Bogotá.

 $§0$ introduction. In $[1]$ the authors have studied the conditions over a model Y : $\Delta + A$ (or more functors R_{γ} : Δ° \mathcal{S}^{\star} \neq \mathcal{A} (the natural extension of generally Y $: \delta \rightarrow A$) that guarantee that the Y which commutes with inductive limits) commutes with finite products. In order to study this situation in the case $A = \Delta^\circ S'$ we need to analys the set theorical models Y : $\Delta \rightarrow S$ and, in parti cular, we need to have a theorem corresponding in co-simplicial sets to that wich in simplicial sets guarantees the Eilenberg-Zilber decomposition le mma_o

To the notion of non-degenerate point in simplicial sets corresponds that of interior points in co-simplicial sets. The Eilenberg-Zilber decom position lemma guarantees that for each simplicial set X, and each $y \in X_n$ there exists one and only one pair (σ₃ x) where σ in an epimorphism of Δ and x is a non degenerate point of X \cup such that $X(\sigma)(x)$ = y . However, for a point $y \in Y^{\mathbf{n}}$ (y a co-simplicial set) the statement corresponding by duality, namely: "there exists one and only one pair (a, x) , with a a monomorphism of Δ , and x and interior point of Y , such that $Y(\partial)(x) = y''$, is not always true, also consisted to vilidate at

We have found that this lack of duality has something to do with the following fact: in a sim-

.Bfcgod : IsholosM solabasb

plicial set. X every point $\mathbf{x} \in \mathbb{X}_o$ belongs to a simplicial point of X (that is to say, a simpli cial subset with only one point is each dimension). This is not so for the co-simplicial case ; there are co-simplicial sets which do not even admit a ! co-simplicial point. One of the objetive of this paper is to show that in order that in a co-simplicial set Y the unicity of the Eilenber-Zilber decomposition be valid, it is necessary and suff<u>i</u> cient that Y does not admit co-simplicial points. To accomplish this, we are forced to establish the dual of the well known theorem which states that if two epimorphisms of Δ have the same sections, then they are equal. This is the point on which the unicity of the decomposition of Eilen berg-Zilber is based for simplicial sets. And it is also to' this point that the big difference between simplicial and co-simplicial sets arises, if one uses "mono" instead of "epi" and "retraction" instead of "section" the statement immediately above is not valid in Δ . The dual version we have proved is the following "retractions criterion" : if two monomorphisms $a, a' : [n] \rightarrow [m]$ of Δ have the same retractions and are different then n = o.

The relation between the non existence of cosimplicial points in Y and the retractions criterion is summarized by the equivalence of the two next statement. (i) Y does not have co-simpli

(1) op 1 a cash illy th

cial points. (ii) if for two monomorphisms a^{a} , of I Δ , and for some x, $Y(\partial)(x) = Y(\partial)(x)$, I , Ret (∂) + Ret(∂) th**en necessarily ∂= ∂ , wher**e $Ret(\vartheta)$ is the set of retractions of ϑ .

We give in this paper another property on model Y (which happens to be trivial in the stand ard cases), necessary to study Milnor's relation, and which permits a characterization of the functor $R_Y : \triangle^{\circ} S \rightarrow S$ (cf. [1]). This property has to do with the stability of interior points under co-degeneracies, we are concerned with whether or not in a co-simplicial set Y one has for each interior point y of ^Y and each epimorphism 0' of Δ that $Y(\sigma)(y)$ is itself an interior point. The answer is negative. But, as we shall see the stability and non existence of co-simplicial po \pm ints are independent properties. In [1] we will complement these two properties in a model Y in order to make R_y commute with finite products.

 $§1$ Sections and Retractions in the Category Δ . Recall that if f and g are morhpisms of Δ such that fos = identity, then f is a retraction of s and s is a section of f. We will denote Sec(f) (resp. Ret(s)) the set of sections of f (resp. retractions of s). We also recall two facts.

 1.1 Proposition. (i) Every monomorphism of Δ admits a retraction. (ii) Every epimorphism of Δ admits a section.

1.2 Proposition. (Section Criterion) If f and $f^{'}$ are epimorphism of Δ and $Sec(f)$ = $Sec(f^{'})$ i then f = f

This last statement is a consequence of the following: given an epimorphism f: $[n]$ + $[m]$ and a point $x \in [n]$, then there exists a section s of f such that $x \in Im(s)$. Later on, using the concept of adjoint function of an arrow Δ , we will give another proof of 1.2 .

As we anticipated in the introduction the dual of 1.2 does not hold. In fact, the monomorphisms θ , θ ¹ : [0] $+$ [1] admit a unique retra tion σ° : [1] + [0] without being equal. More generally, any two (mono) morphisms $\lceil 0 \rceil$ + $\lceil n \rceil$ admits as unique retraction the map $[n]$ + $[0]$. However, these are the only pathological cases in Δ . More precisely :

1.3 P<u>ropositio</u> $[n] \rightarrow [m]$ be two monomorphisms for which Ret(∂) n
' = $Ret(a')$. If $a \neq a'$, then necessarily n = 0. I (Retraction Criterion) Let ∂ , ∂ :

A y operab ant ni kmainerom la sinicial

Proof. 1. We first show that if $n \neq 0$, then $\vartheta(n) = \vartheta'(n)$, Suppose that $\vartheta(n) > \vartheta'(n)$. Since .
,

 $n \neq 0$, then $n - 1 \in [n]$ we define a function σ : $[m]$ + $[n]$ in the following way: for $x \geq \theta(n)$ let $\sigma(x) = n$. On the points of $\lceil \partial(n) - 1 \rceil$ we have only require σ to be any retraction of $\partial f: [n-1]$ + $\rightarrow \lceil \partial(n)-1 \rceil$ (which exists by 1.1). In particular, it follows that $\sigma(\partial(n)-1) = n - 1$. Such a. σ can not be a retraction of δ ['], because $\partial(n)-1\geq$ **>** *d* (n) and so σ(*d*(n)-1) **>** σ $> \sigma$ (*n*) and so $O(\sigma(n) = 1) > O$ *d* (*n*). It
that σ δ (*n*) \leq *n*-1, σ and thus σ δ (*n*) \neq *n*. ~ ∂ (n). It follow

2. Dually, it can be proved that if $n \neq 0$, and the monomorphi same retractions, then ∂ (0) = ∂ (0). .
I d,∂ : [n] → [m] admit the

3⁰ Suppose that the monomorphisms *d,d* $[n]$ + $[m]$ admit the same retractions and n \neq 0. We know that $\partial'(n) = \partial(n)$. The restrictions ∂ a' : $[n-1]$ + $[m]$ also admit the same retractions. a " If n-l = o. then by (2.) above: *d~(n~l)::: d* ren-1) and $\partial = \partial - \partial$. If $n-1 \neq 0$ then by $(1 \cdot)$: $\partial \bigl(n-1\bigr)$ = a^{\dagger} (n-1). By recurrence one completes the proof. t: evess Incigalosism vine ed: exa seed: , wevewel

§2 Adjoints of morphisms in the category Δ . Let $f : [n] \rightarrow [m]$ be a morphism of Δ . Since it is an increasing function it is also a functor between the categories associated with the orders of $[n]$ and $[m]$. Consequently, it makes sense to ask if it admits a right (resp. left) adjoint. If so, the adjoint is an increasing function g : $[m]$ + $[n]$.

66

such that for each $x \in [n]$, and each $y \in [m]$ we have : $f(x) \leq y \Leftrightarrow x \leq g(y)$. The last condition is equivalent to the following two : (a) for each $x \in [n]$, $x \le gf(x)$; (b) for each $y \in [m]$, $fg(y) \leq y$. These two conditions represent the morphisms of adjointness. If f admits a right adjoint g, then f commutes with sup and g commutes with inf. In our case the last proper ty is trivially satisfied because $[n]$ and $[m]$ are finite totally ordered sets, thus the condition becomes the increasingness of the functions. Anoth e r necessary condition for the existence of a right (resp. left) adjoint of f is that f(O)=O (resp. $f(n)$ = m). In fact, applying (b) for $y = 0$ we have $\mathsf{gf}(\mathsf{0})\,\leqslant\,\mathsf{0}$, thus $\mathsf{f}^{-1}(\mathsf{0})\,\neq\,\emptyset$ and $\mathsf{f}(\mathsf{0})\texttt{=} \mathsf{0}$.

2.1 Proposition. In order for $f: [n] + [m]$ to admit a right (resp. left) adjoint it is necessary and sufficient that $f(0) = 0$ (resp. $f(n) = m$). That is to say $0 \in Im(f)$ (resp. $m \in Im(f)$).

Proof: It only remains to show that the condition is sufficient. For each $y \in [m]$ let $A(y) =$ $= \{x \in [n] \mid f(x) \leq y\}$. A(y) is non empty, since \circ c A (y), Let $g(y)$ = Max A(y). It follows that $g : [m] + [n]$ is in fact a right adjoint of $f.$ Dually, if $f(n) = m$ one defines the left $\texttt{adjoint}$ h by $h(y)$ = Min B(y) where $B(y) = \{x \in [n] \mid f(x) \geq y\}$.

Notice that the condition $f(0) = 0$ is equivalent to the one in the MacLane decomposition of valent to the one in the MacLane decomposition
 $f : f = \partial$ $\begin{array}{c} 1 \cdot \partial & \partial \\ 1 \cdot \partial & \partial \end{array}$ $\begin{array}{c} f \\ \partial & \partial \end{array}$ $f(n) = m$ is equivalent to $m > i_s$

If $f : [n] \rightarrow [m]$ is an epimorphism, then it admits a right adjoint, say g, and a left adjoint, say h. Both of them are sections of f, for they are characterized by the will show at wit

 $g(y) = Max f^{-1}(y)$, $h(y) = Min f^{-1}(y)$.

For example, $fg(y)$ = f Max $f^{-1}(y)$ = Max $f^{-1}(y)$ $=$ Max $\{y\}$ at y and vices . spel all almost (n) and (n) and (n)

If we are working with general increasing func tions between ordered sets, it is also true that if $f : X \rightarrow Y$ is an epimorphism and it admits a right adjoint g , then it is given by $g(y)$ = = Sup $f^{-1}(y)$ and g is again a section of f

Next we use the order of $\Delta(\lceil n \rceil, \lceil m \rceil)$ to characterize adjointness of epi and monomorphisms of Δ . We define $f \le g$ if $f(x) \le g(x)$ for each $x \in [n]$ Evidently, if A is a non ampty subset of $\Delta([n], [m])$ then the sup and the inf of A exist in $\Delta([n], [m])$. Moreover, if if $f : [n] \rightarrow [m]$ is an apimorphism then the set Sec(f)C Δ ($[m]$, $[n]$) admits a maximun and f a monomorphism, and Ret(f) admits a minimun.

Indeed, let $g = Sup(Sec(f))$ thus for each $x \in [m]$ $g(x) = Sup \; v(x) = Max \; v(x)$ ($v \in Seq(f)$). Then $fg(x) = f(Max v(x)) = Max F v(x) = Max {x}$

2.2 Proposition. (a) If $f: [n] \rightarrow [m]$ is an epimorphism then the right adjoint of f is Max Sec (f)) $\left($, and that $\left($ (a) and the state of the state \cdot

(b) If $\partial : [n] \rightarrow [m]$ is a monomorphism admitting left adjoint, say f, then f is a retraction of ∂ and f = Min $(Ret(3))$, $($

ti you finanth at Hoong and Thormonths

Proof. (a) Let g be the right adjoint of f and $u = Max(Sec(f))$. Since g is a section of f. $g \leq u$. Furthermore, by adjointness, $x \leq gf(x)$, thus $x \leq uf(x)$. Since $fu(y) = y$, for each y, U satisfies properties (a) and (b) of adjointness of f . Since in $[n]$ and $[m]$ the isomorphisms are equalities, u = g.
3. A decembring when you will not all soll and interest if

(b) For each $x \in [m]$, $f(x) = \inf\{y \mid \partial(y) > x\}$. Then $f \dfrac{\partial(y)}{g} = \text{Inf}\{y^{'} \mid \partial(y^{'}) \geqslant \partial(y)\}$. Since ∂ is a mono morphism thisinf is precisely y. That proves the first statement of part (b) . The second one is proven by a similar procedure to that in part (a) .

2.3 Alternative proofs of the retraction and section criteria. For the retraction criterion: Let

 $(y)(6)$; $y(x)$, $y(x)$

 $a_i a'$: $[n]$ + $[m]$ be monomorphisms satisfying $Ret(\partial) = Ret(\partial')$. We have already seen that if $n \neq 0$, then $\partial(n) = \partial^{n}(n)$. Let $\delta_{n} \delta^{n}$: $[n]$ + + [a(n)] denote the functions obtained from *^d* and ∂ ['] by codomain restriction. Then δ and δ i admit left adjoints and Ret(o) = Ret(o). Since ,

Min Ret(δ) = Min Ret(δ'), then by 2.2 the i left adjoint of δ coincides with that of δ $\,$. Thus $\delta = \delta'$ and also $\partial = \delta'$.

For the section criterion, contrary to the re traction criterion, the proof is direct, for if , two epimorphisms σ , σ' have the same set of sec tions then both admit right adjoint and $ad(\sigma)$ = = Max Sec(σ) = Max Sec(σ') = ad(σ'). So $\sigma = \sigma'$.

s train case as in the fey at sourc'ill

Ad (a) the Feb reach all the

§3 Conditions for the unicity of the Eilenberg-Zilber type decomposition in co-simplicial sets • 3.1 Definition. Let Y : $\Delta + S$, be a co-simpli cial set and let $y \in Y^{n} = Y(\lceil n \rceil)$. We say that y is interior, or y is an interior point of Y, if the following condition holds that there exist $p \ge 0$, a monomorphism $\partial : [p] \rightarrow [n]$ such that $Y(\partial)(y) = y$, then $p = n$ and and $y' \in Y^p$, a = 1_[n] ". In other words y is an interic point of Y if either $y \in Y^0$, or $y \in Y^n$ with

n > 0 and y does not belong to the image of the co-faces $Y(\vartheta^{\overset{\circ}{1}})$ i= $0, \ldots, n$. etalog san sandt dalda ol

It is clear that for a point $y \in Y^n$ there are two possibilities: either there exist a monomorphism ϑ : $[m] \rightarrow [n]$ which is not an isomorphism such that $y \in Im(Y(3))$, or every monomorphism ∂ for which $y \in Im(Y(3))$ is an isomorphism hence the identity. In the latter case, y is an inte rior point.

Now, if y is not an interior point, it can be written in the form $y = Y(3)(y')$ with 3 a mo nomorphism, and so dim y' < dim $y = n$. If y is not an interior point then $y' = Y(\partial') (y'')$; therefore, $y = Y(\partial \partial') (y'')$. This process can always be continued until an interior point z and a monomorphism δ are found such that $y = Y(\delta)(z)$.

3.2 Lemma-Definition. For each $y \in Y^{n}$ (Y a cosimplicial set) there always exist a monomorphism 6 in Δ and an interior point z of Y such that $y = Y(\delta)(z)$. In such a case, the pair $\langle \delta, z \rangle$ is called an Eilenberg-Zilber type decomposition of y (E-Z decomposition). Recomposed analysis poish

We emphasize that, contrary to what happens in simplicial sets, in general the E-Z co-simpli cial decomposition is not unique. In fact, if $\texttt{Y}^{\texttt{n}}$ has only one point for each n , then the point

3. Sew sealigroulge as al u bus maide tomonom a al 0

71

 $\mathbf{x_1} \in \mathbf{Y}^1$ is written in to different ways $\mathbf{x_1} =$ σ $(1, 1, 0)$ $(1, 1, 1)$ $= Y(3)(x_0) = Y(3^+)(x_0)$. Moreover, the only cosimplicial sets Y in which there are points with more than one E-Z decomposition are (as we shall see) those in which there exists a point
x_o in Y^o such that Y(∂°)(x_o) = Y(∂¹)(x_o) , in Y° such that $Y(\partial^{\circ})(x_{o}) = Y(\partial^{1})(x_{o})$ x_{0} $[0]$ + $[1]$). Actually, the E-Z $\left(\begin{smallmatrix} 3 \end{smallmatrix} \right)$, $\left[\begin{smallmatrix} 3 \end{smallmatrix} \right]$ decompositions of a point have common characteristics which reveal the properties needed by a model Y in order to have the "unique E-Z decomposition" property. We think of these properties as a kind of partial uniqueness. and devo te our next proposition to them. ada ni satiran ad

, 3.3 Proposition. Let $9, 9$ be monomorphism of Δ and y, y' interior points of Y. If Y(3)(y)= $= Y(3') (y',),$ then (i) $y = y'_{700}$ and (ii) Ret(3) = $=$ Ret $(3')$. a monomorphism 6 are found such thet

 $Proof. Let σ : [n] \rightarrow [m] (resp, σ' : [n] \rightarrow [m'])$ </u> be a retraction of \mathfrak{g} : $[\mathfrak{m}] \rightarrow [\mathfrak{n}]$ (resp \mathfrak{g}' : $[\mathfrak{m}']$ \pm [n]), whose existence was already proven. Mapping the identity $Y(3)(y) = Y(3')(y')$ by $Y(\sigma)$, we get that y:= Y(o^{3'})(y') since o3 σ 3 = 1 $\lbrack \mathbf{m} \rbrack$. Using the MacLane decomposition $\sigma\vartheta$ = δ **o**µ where δ is a monomorphism and μ is an epimorphism, we get $y = Y(\delta)$ ($Y(\mu)(y')$). Since y is interior and δ is a monomorphism, δ is an identity and consequently $\mathbb{F}_{\mu}^{p}=\sigma\mathfrak{d}'$: $[\mathbf{m}']$ + $[\mathbf{m}]$ is an has only one point for each n i then the point

epimorphism. Thus m^{*} m → m ↓ With the same kino of procedure one shows that $m \geq m$, Hence
many and the contract of the contra $m = m'$. Since the only epimorphism $[m] \rightarrow [m]$ is the identity one gets $\sigma \delta' = 1 \lceil_m \rceil$ and $\sigma' \delta =$ $= 1_{\lceil m \rceil}$. Thus we have proven that (i) $y = Y(\sigma)$ $(y') = Y(id)(y') = y'$ and (ii) Ret(∂) = Ret(∂ ^{*}).

Remark: The proof just presented corresponds in the cosimplicial case to the one presented by Gabriel and Zisman in [2] for simplicial sets, on which ours was inspired.

 3.4 Corollary, If $Y(3)(y) = Y(3¹)(y²)$ ϑ : [m] \rightarrow [n] and ϑ' : [m'] \rightarrow [n] are monomor $Y(3)(y) = Y(3')(y')$, where phisms of Δ , and y, y are interior points of phisms of Δ , and y , y are interior point
 Y , then : (i) m = mⁱ, (ii) y = yⁱ, (iii) if $m \neq 0$ then $\partial = \partial'$.

The proof of this corollary is an inmediate consequence of the retraction criterion (1.3) . No tice also that when m = 0 we cannot conclude that $\partial = \partial'$, but (iii) can be put in a more sug gestive way:(iii') if $\partial \neq \partial'$ then ∂ , ∂' : $[0]+\frac{1}{2}$ $+$ [n].

305 Definition. (1) A co-simplicial set Y is said to be of the Eilenberg-Zilber type (E-Z type) if every $y \in Y$ has a unique E-Z decomposition.

(2) A co-simplicial set Y admits a co-sim-

a co-simplicial point if there exists a co-simpli cial subset of Y with exactly one point in each dimension,

3.6 Lemma. In order for $y \in Y^{\circ}$ to be an element of a co-simplicial point of Y it is necessary and sufficient that $Y(\partial^{\mathsf{o}})(y)$ = $Y(\partial^{\mathsf{1}})(y)$ (∂^{o} , ∂^{1} : $[0] + [1]$.

Proof. That the condition is necessary is clear. The sufficiency follows by induction on n. If a , a' : $[a]$ + $[n]$ are two arrows of Δ , then $Y(\partial)(y) = Y(\partial')(y)$ (which would imply that y belongs to a co-simplicial point of Y). In fact, for n ⁼ 1 it is the hypothesis. Assume it holds for $k < n$ and let ∂ , $\partial^{3} = [0] + [n]$. For ∂ (and δ') there are two possibilities $\partial(0) = n$, or $\partial(0) \neq n$. In other words $\partial = \partial^{n-1}$ o δ or $\partial = \partial^n$ o δ for some $\delta : [0] \rightarrow [n]$ (also $\partial' =$ a^{n-1} o δ or $a' = a^n$ o δ where $\delta' : [0] \rightarrow [n-1]$. From the four possibilities there are two which follow directly by induction hypothesis. As the other two are treated similarly, we present only one case, say $\Upsilon(\mathfrak{d}^{\mathbf{n}}\delta)(\mathbf{y}) = \Upsilon(\mathfrak{d}^{\mathbf{n}-1}\delta^{^{\prime}})(\mathbf{y})$. Let $\mu = \partial^{n-1}$...³ ∂^{1} : $[0] + [n-1]$. By the induction hypothesis $Y(\mu)(y) = Y(\delta)(y) = Y(\delta')(y)$. Then $Y(\delta^{n}) Y(\delta)(y) = Y(\delta^{n}) Y(\mu)(y) = Y(\delta^{n} \delta^{n-1} \ldots \delta^{1}).$ Similarly $Y(\vartheta^{n-1}) Y(\vartheta') (y) = Y(\vartheta^{n-1}) Y(y)(y) =$

= $Y(3^{n-1}a^{n-1} \ldots a^{1})(y) = Y(3^{n}a^{n-1} \ldots a^{1})(y)$ because $a^{n-1}a^{n-1} = a^n a^{n-1}$. This ends the proof

3.7 Lemma. In order that Y admit a co-simplicial point it is necessary and sufficient that there exists two different arrows θ , θ' : $\begin{bmatrix} 0 \\ + \end{bmatrix}$ and $y \in Y^{\circ}$ such that $Y(\vartheta)(y) = Y(\vartheta')$

Proof. The condition is evidently necessary. Con versely we will prove by induction on k the proposition P(k) : " if there exist different arrows a, a[']: [0] \rightarrow [k] and $y \in Y^{\circ}$ such that $Y(3)(y)$ $= \gamma(\partial^{\theta})(y)$, then the co-simplicial set Y admit a co-simplicial point". P(1) is the previous le $mma.$ Suppose $P(k)$ for $k < n.$ Let's prove $P(n)$ Using the same technique as in 3.6, $\partial = \partial^n \circ \delta$ or ϑ = ϑ ⁿ⁻¹ \circ δ for some δ : $[\vartheta]$ \rightarrow $[n-1]$. Similarly $a' = a^n \circ \delta'$ or $a' = a^{n-1} \circ \delta$, $\delta' : [0] \rightarrow [n-1].$ In either case we apply $Y(\sigma^{n-1})$ to the identity Y(\mathfrak{d})(y) = Y(\mathfrak{d} ')(y) , from which we get the existe ce of δ , δ : $[0]$ + $[n-1]$ such that $Y(\delta)(y)$ = $= Y(\delta') (y)$. If , $\delta \neq \delta$, we apply the induction hypothesis to find a co-simplicial point, but if $\delta = \delta'$ we cannot use the induction hypothesis. In that case, one has $\partial = \partial^n \circ \delta$, $\partial' =$ a^{n-1} δ (resp. $a = a^{n-1} \delta$, $a' = a^{n} \delta$) since ∂ \neq ∂ . The MacLane decomposition of ∂ must be $\vartheta' = \vartheta^{n-1} \vartheta^{n-1}$... ϑ° . We apply $Y(\sigma^{n-2})$,

cofase which exists because $n \geq 2$, to the equality $Y(\partial)(y) = Y(\partial'')(y)$ obtaining $Y(\partial^{n-1} \partial^{n-2})$ $(a, a^{\circ})(y) = Y(a^{n-2} a^{n-3} \dots a^{\circ})(y)$. But a^{n-1} a^{n-3} ... a° \neq a^{n-2} a^{n-3} ... a° (MacLane decomposition), and now we may apply the induction hypothesis. C Co sworns fashellib own aislas

 $y \in Y^{\circ}$ show that $Y(y)$ $(y) = Y(x)$.

3"8 Theorem. For a co-simplicial set y the following statements are equivalent: (1) Y does not ad mit co-simplicial points. (2) Y is an E-Z type co-simplicial set. (3) For any pair of morphisms $a_1, a' : [p] \rightarrow [n]$ such that $Ret(a) = Ret(a')$, if there exist $x \in Y^P$ for which $Y(\partial)(x) = Y(\partial')(x)$ then a - a - a means of part polymon for large for each

Proof. (2) \Rightarrow (1) is evident. (1) \Rightarrow (3) since otherwise there would exist ∂ , ∂ : $[p]$ + $[n]$ with Ret(3) = Ret(3[']) $\partial \neq 3'$ and $x \in Y^P$ such that $Y(\partial)(x) = Y(\partial^{1})(x)$. By the retraction criterion (1.3), p = O. By the previous lemma, Y admits cosimplicial points. Finally, $(3) \Rightarrow (2)$: suppose that z has two E-Z decompositions, say $z = Y(3)(x) = Y(3^{1})(x^{1})$. Then by (3.3) $x = x^{1}$, .
, $Ret(3) = Ret(3)$ and, by hypothesis, $3 = 3$ consequently <x, nypot
' $3 > = < x$, $3 > 8$

§4 Stability of interior points under co-degeneracies. In a cosimplicial set, if $y \in Y^n$ is an

shots' ('86"6' = "d'(') so") "i (') losser) "izerf-" (

interior and $\sigma : [n] \rightarrow [m]$ is an epimorphism then $Y(\sigma)(y)$ is not neccesarily interior. In other words, it may happen that $Y(\sigma)(x) = Y(\partial)(x')$ with σ an epimorphism, ∂ a monomorphism and ${\bf x}$, ${\bf x}$ in terior points, but the arrows being non trivial. It is our purpose to exhibit co~simplicial sets with this feature and to observe that the property of being of E~Z type is not enough to make it disappear.

Take, for example, a simplicial set X which in dimension 2 has two different non degenerate points a and b such that $d_o(a) = d_1(a) = d_2(a)$ = $d_0(b)$ = $d_1(b)$ = $d_2(b)$. That is the case with K(G,2) or more generally with any simplicial group K for wich $\texttt{N}_2(\texttt{K}) \neq 0$. Let C be a sufficientl large" set. Let $v : X_0 + C$ be a function, and $w = v \circ d_o = v \circ X(3^\circ) : X_1 + C.$ We define $u: X_2 \rightarrow$ + C as follows: $u(so(x)) = w(x)$ for any $x \in X_1$. For a and b above, we take $u(a)$ and $u(b)$ to be two different points of C. For the other points of X 2 it does not matter how u *is* defi ned. We denote by Y the cosimplicial set with $Yⁿ = S(X_n, c)$, and co-faces induced by faces of X by composition. The point $u \in Y^2$ cannot be factored through d_0 , d_1 , d_2 : $X_2 \rightarrow X_1$ and therefore it is interior. On the other hand, $Y(\sigma^0)(u)$ = $=$ s_0 ou $=$ $w = v \circ d_0 = Y(3^{\circ})(v)$ and therefore it is not an interior point.

77

We now give some examples of co-simplicial sets with stable interior points. The state of the

4.1 Definition. A co-simplicial set is said to satisfy MO.2 (cf $\lceil 1 \rceil$) if for every $n \ge 0$, e very interior point $x \in Y^{\mathbf{n}}$ and every epimorphis σ $\left[n\right]$ + $\left[p\right]$, $Y(\sigma)(x)$ is also interior point. Examples:

as we at your it as

. jakog goksajak as jen

4.2 Let $p \ge 0$ and $Y() = \Delta(\lceil p \rceil)^{n+1}$: $\Delta + S$. A point $x : [p] + [n]$ is interior when it is an epimorphism of Λ . It is evident that if $\sigma: [n] \rightarrow [m]$ is an isomorphism then $\sigma \circ x$ = Y(σ)(x) is also an interior point. This model does not have co-simplicial points. Notice that in terms of the E-Z property this means that in Δ any arrow α : [p] \rightarrow [n] is decomposable in the form ∂ o o where ∂ is a mono and σ and ephimorphism, and this decomposition is unique. That is to say, the E-Z type decomposition of these models $(p \ge 0)$ is equivalent to the unique Mac-Lane decomposition in Δ .

 4.3 The co-simplicial set Δ () : $\Delta \rightarrow S$ def ned by $\Delta(n) = \left\{ (t_{o}, t_{n}) | 0 \leq t_{i} \leq 1 \right\}$ s Σ t_i = 1} f_i α : [n] + [m] then $\Delta(\alpha)(x)$ = $(T_{o}$,..., T_m), where $x_{b} = (t_{o}$,...t_n) and $T_i = \Sigma t_j$, the sum running over the set ${j \mid \alpha(j)}$ $\begin{array}{llll} \texttt{if} & \texttt{if} & \texttt{if} & \texttt{if} \\ \texttt{if} & \texttt{if} & \texttt{if} & \texttt{if} \end{array}$ when this last set is empty , $\texttt{if} & \texttt{if} & \texttt{if} & \texttt{if} \\ \texttt{if} & \texttt{if} & \texttt{if} & \texttt{if} & \texttt{if} \end{array}$

78

this co-simplicial set a point $x = (t_0, \ldots, t_n)$ is interior if none of the $\mathsf{t}_\mathtt{i}$ s is zero. Evidently $\Delta(\alpha)(x)$ is also interior if and only if Q is an epimorphism. Notice also that this model does not have cosimplicial points.

 $4.4 \cdot$ The co-simplicial set $\mathcal{P}_o()$ $\Delta \rightarrow S$. which associates to each $[n]$ the set of nonth empty parts of $[n] = \{0, 1, \ldots, n\}$, and to each α : [m] \rightarrow [n] the map $\mathcal{P}_{\alpha}(\alpha)$ = direct image by α . In this case a point $A \in \mathcal{P}_o$ ([n]) is interior if and only if $A = \lceil n \rceil$. This characteristic is certainly preserved by epimorphisms. Since we have. eliminated the empty set from the set of parts, this model does not have co-simplicial points and consequently is an F.-Z co-simplicial set. The unicity of the E-Z decomposition becomes simply the fact that a totally finite ordered set can be enumerated in only one way respecting its order and beginning at zero. In this example as in the others, Y° is a point.

 4.5 More generally, for each integer $p > 0$ let $\left[\begin{array}{c} \Delta'\\ \Delta' \end{array}\right]_p$: Δ + $\mathcal S$ be the co-simplicial set given for each n by Δ' [n]_p = { $(A_0, ..., A_p)$] $\emptyset \neq A_0$ \subseteq A_1 , \subseteq A_p \subseteq $[n]$, and for each α : $[n]$ + $[m]$ by Δ $\begin{bmatrix} \alpha \end{bmatrix}$ $\begin{bmatrix} A_0, \ldots, A_p \end{bmatrix}$ = $(\alpha(A_0), \ldots, \alpha(A_p))$. In this case (A_o,...,A_p) is interior in dimensic

n if and only if $\Delta_{\mathbf{p}} = \lfloor \mathbf{n} \rfloor$. This property is again preserved by epimorphisms. Moreover, if α preserves one interior point then a must be an epi morphism. Example 4.5 is simply the p-th dimen ~ sion of Kan's first sub-division over $\Lambda[n]$. The model Δ ' $[$ $]_{\rm p}$ do not have co-simplicial points and the $E-Z$ decomposition of $\mathbf{x}=(A_{\mathbf{o}} \, , \ldots \, , A_{\mathbf{p}})$ with $\emptyset \neq A_o \subseteq \cdots \subseteq A_p \subseteq \lfloor n \rfloor$ can be given in the f<u>o</u> llowing simple way. Let $q = card(A_p) - 1$; there exist one and only one monotone map $\alpha : [q] \rightarrow [n]$ such that $\alpha([q]) = A_p$. We define $B_i = \alpha^{-1}(A_i)$, thus Δ $[\alpha]_{\text{p}}$ $(\begin{smallmatrix}B_0,\ldots,B_p\end{smallmatrix})$ = $(\begin{smallmatrix}A_0,\ldots,A_p\end{smallmatrix})$. The pro perties MO.2 and E-Z of these co-simplicial sets are used in [1] in order to prove that Kan's first sub-division does not commute with finite products,

4.6 Remark. In our examples the property MO.2 and the non existence of co-simplicial points are pre sent together. That is not true in general. In fact, if in example 4.5 we drop the condition " A_: *i* Ø " and denote the co-simplicial set by $\mathbf i$ Y_{p} , then the element of Y_{p}^{o} of the form $(A_{o},...$ \ldots , A_p) with $A_j = \emptyset$ for every j is the only one which generates a co-simplicial point. However, a point $y = (A_0, \ldots, A_p)$ is interior if dim(y) = 0 or if dim(y) = n > 0 and $A_p = [n]$ Thus, Y_{p} has property M0.2.

nelsaemib hi sofiesni al" ("

4.7 Remark. We now face the inverse of situation 4.6. That is to say, we will provide an example of a E-Z co-simplicial set Y which fails to have MO.2. We will take the example at the begining of the present section $(§4)$ which, as we know. fails to have both MO.2 and E-Z properties. We then exhibit a procedure which allows us to eleminate the co-simplicial points. We then make su re that this procedure does not eliminate the MO.2 failure. pas yaosan voosomod has enots 1 der Mathematik und Threr Grenzqehlebe.

If a co-simplicial set A has co-simplicial points then one can get from it a co-simplicial set without co-simplicial points by eliminating all the points which by some co-face co-degeneracy fall into a co-simplicial point. A characterization of the eliminated points can be given as follows : let $x \in Y^P$, then "there exist $\varepsilon : [p] \rightarrow [m]$ such that $Y(\epsilon)(x)$ belongs to a co-simplicial point if and only if $Y(\eta)(x)$ belongs to a co-sim plicial point, where $n : [p] \rightarrow [0]$ ". We recall that $Y(n)(x)$ belongs to a co-simplicial point if and only if $Y(3^\circ \eta)(x) = Y(3^1 \eta)(x)$. If in our example, at the begining of the section, we do the sur gery just described, it remains to see that if the point v is not a co-simplicial point then it is not eliminated. In fact, if it were eliminated then $Y(3^\circ \eta)(u) = Y(3^1 \eta)(u)$ for $\eta = \sigma^\circ \sigma^\circ$: [2] + [0]. Since by construction $Y(\theta^{\circ})(v) = Y(\sigma^{\circ})(u)$, one gets $Y(\vartheta^{\circ})(v) = Y(\vartheta^{1})(v)$.

BIBLIOGRAPHY

 $\lceil 1 \rceil$ C. Ruiz-Salquero and R. Ruiz, Conditions over a "realization" functor in order for it to commute with finite products as (to appear). When you a students what

 $[2]$ P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und Ihrer Grenzgebiete, Band 35, Springer-Verlag 1967.

 $Depatamento de Matem\'aticas$ *Unive~~idad Naeional* de *Colombia Bogot~,* V.E., *COLOMBIA.*

Vepa~tamento de *Matemdtiea~ Unive~~idad del Valle. Cali, Valle, COLOMBIA.*

(Recibido en octubre de 1978)