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§O l n t r o du c t ion , ~n [lJ the authors have studied
the cond! ions over a model Y : 6 - A (o~ more

func~ors Ry
8 +A ) that guarantee that the

o~ ~ ~ A (the natural extension of
generaLly Y

Y wh"ch commutes with inductive limits) commute
WiTh ~inite producTso In order to study this 91-

, "," C" dtuation 'n the case A = u ~ we nee to analyse
the set theorical models Y
cular, we need to have a theorem corresponding in
co-simpli ial setE to that wieh in simplicial sets
guarantees the Eileriberg~Zilber decomposition le~
mmao

To the notion of non-d~generate point in sim-
plicial sets corresponds that of interior points
in co-simplicial setso The Eilenberg~Zilber deeo~
position lemma guarantees that for each simplicial
set x , and each Y~ X there 'exists one and on~

<0. n
(a~ x) where a in an epimorphism of'~ly one pair

and x is a non degenerate point of X i ~uch
n

X(a)(x) = y 0 However, for a point yCYthat
(y a co-simplicial set) the statement correspond-
ing by duality, namely: IIthere exists one and only
one pair (a~x)~ with a a monomorphism of Ai and
x and interior point ofY s such that y( a )(x) :: s";
is not always true.

We have found that this lack of duality has
something to do with the following fact~ in a sim-
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plicial set. X every point x £XO belongs to a
simplicial point of X (that is to say, a simpl!
cial subset with only one point is each dimension).
This is not so for the co-simplicial case ; there
are co-simplicial sets which do not even admit a

!

co-simpl~cial point. One of the objetive of-this
paper is ;to show that in order that in a co=sim-
p l Lc Ia l Set Y the u n lc It v of the Eilenber-Zilber
de comp o s It Lon be valid. it is necessary and su f f I, .
dent th~H Y does not admit co-simplicial points.
To accomp~ish this, we are forced to establish
the dual of the well known theorem which states
that if two epimorphisms of ~ have the same sec-
tions, then they are equal. This is the point
on which t,he unicity of the decomposition of Eilen
berg-Zilber is based for simplicial setso And it
is also to' this point that the big difference
between simplicial and co-simplicial sets arises,
if one uses "mono" instead of "epi" and "retrac-
tion" instead of "section" the statement immedia-
tely above is not valid in ~o The dual version
we have proved is the following "retractions cri-
terion" if two monomorph isms. a. a i En] -+ [m]
of ~ have the sam~ retractions and are different
then n = o.

The relation between the non existence of co-
simplicial points in Y and the retractions cri-
terion is summarized by the equivalence of the
two next statement. (i) Y does not have co-simp!
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cia! points. (ii) if for two monomorphlsms a~a of
I

~9 and for some x, y(a)(x) = yca )(x),and
I ,

Ret (a) + Ret{a ) then necessarily a = d 9 where
Ret(a) is the set of retractions of 3.

We give in this paper another property on a
model Y (which happens to be trivial in the stand
ard cases), necessary to study Milnor's relation,

~nd which permits a characterization ~f the func-
o

tor Ry : ~.s- -+.so ( cf 0 [1]). This property has
to do with the stability of interior points under
co-degeneracies, we are concerned with whether or
not in a co-simplicial set Y one has for each
interior point y of Y and each epimorphism 0'

of ~ that y(O')(y) is itself an interior pointo
The answer is negative. But, as we shall see the
stability and non existence of co-simplicial po~
ints are independent properties. In [1] we will
comple~ent these two properties in a model Y in
order to make Ry commute with finite products.

§1 Sections and Retractions In the Category ~, Re-
call that if f and s are morhpisms of ~ such
that f o s = identity, then f is a retract Ion of s
and s is a section of f. We will denote Sec(f)
(resp. Ret(s) ) the set of sections of f (resp.
retractions of s). We also recall two factso
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101 Proposition. (i) Every monomorphism of ~ ad-
mits a retractiono (ii) Every epimorphism of ~
admits a section.

102 Proposition. (Section Criterion) If f and
Y If are epimorphism of ~ and Sec{f) = Sec(f )

i

then f = f

This last statement is a consequence of the
f o Ll ow Ln g e given an epimorphism f: En] -+ [m]
and a point x E: [n], then there exists a s ect i on
s of f such that xE:Im(s). Later on, using
the concept of adjoint function of an arrow ~,
we will give another proof of 102,

As we anticipated in the introduction the
dual of 1.2 does not hold. In fact, the monomor-
phisms aO, a1 [01 -+ [1] admit a unique retra£

o
tion o [1] -+ [OJ without being equal. More
generally, any two (mono) morphisms [oJ -+ [n] ad-
mits as unique retraction the map En] -+ [0] '"
However, these are the only pathological cases in
~o More precisely

103 Proposition.
[n] -+ [m],
= Ret{a ).

I

(Retraction Criterion) Let a,a :
Ret{a)=be two monomorphisms for which

Ya "I aIf , then necessarily n = O.

Proof. 1. We first show that if n"l 0 , then
Y

a(n) = a (n ),
,

Suppose that a(n) > a (n). Since
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n "I- a , then n - 1 E: en] We define a function
(J [m] ~ [n} in the following way~ for x ~ cHn)
let a{ x ) ~ no On the points of [cHn) - 1] we
only require o to be any r-e t r-a c t Lo n of at: ·rn-1J-P

(which exists by 1.1). In particu-
lar~ it follows that cr(a(n)-l)

ucr can not be a retraction of d,
~ d (n) and so o(d(n)-1) ~ (1

~ ,that (J d (n) ~ n~l, and thus (J

", n - 10 Such a.

~ because a(n)-1~
~3 Cn). It follows
g

d (ri ) #- n •

2. Dually, it can
and the mDnom~rphism
same retractions, then

be proved that if
I

d,d
d (0)

en] -to em]
I= a (0).

n '# 0 ,
admit the

30 Suppose that
[nJ -+ [m] admit the

",Q(n)We know that a

the monomorphisms d,d
same retractions and n ¢ O.
= d(n). The restrictions at,

a't [n-1J + [m] also admit the same retractions.
~

If n-l = o. then by (2.) above: d~(n~l)::: d ren-1)
and a = a If n-l # 0 then by (1.) : at(n-l)=,
= d ten-i). By recurrence one completes xhe proof.

§2 ~djoints of morphfsms in the category ~c Let
f : en] -+ [m] be a morphism of~. Since it is an
increasing function it is also a functor between
the categories associated wi~h the orders of [n]
and em]. Consequently, it makes sense to ask if
it admits a right (resp. left) adjoint. If so,
the adjoint is an increasing function g [m] -+ En]
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such that for each x E: [n], and each y € [m] we
have g f Ix ) ~ y -+=:> x .~ g(y). The last condition
is equivalent to the following two : (a) for each
x c [n], x ~ gf(x); (b) for each y E: [m]
fg(y) ~ y. These two conditions represent the
morphisms of adjointnesso If f admits a right
adjoint g, then f commutes with sup and g
commutes with inf. In our case the last prope~
ty is trivially satisfied because en] and [m] are
finite totally ordered sets, thus the condition
becom~the increasingness of the functions. Anoth
e I' necessary condition for the existence of a

right (resp. left)
(resp. fen) = m).
we have gf(O) ~ 0

adjoint of f is that f(O)=O
In fact, applying (b) for y = 0
,thus f-1(0) ¢ ~ and f(O)=O.

2.1 Proposition. In order for f: En] -+ [m] to
admit a right (resp. left) adjoint it is necessa-
ry and sufficient that f(O) = 0 (resp. fen) = m).
That is to say OE:Im(f) (resp. mE:Im(f».

Proof: It only remains to show that the condition
is' sufficient. For each y E:rm] let A(y) =
= {x E:[n] I f Ix ) .$ y} A(y) is non empty, since

o cA (y}'" Let g(y) = Max A(y). It follows
that g [m] -+ [n] is in fact a right adjoint
of f. Dually, if fen} = m one defines the
Lef t .ad j o Lnt h by hey) =.Min B(y) where
B (y) = {x ~ [n] -, f (x ) ~ y} •

67



Notice that the condition f(O):= 0 is equi-
valent to the one in the MacLane decomposition of

is i1 jt j
f : f =Cl ._0' Cl (J - 0" 0 0' 1 i1:> O. Dually
f Cn ) := m is equivalent to m > i s

Iff : [n] + [mJ is an epimorphism9 then it

admits a right adjoint, say g , and a left ad-
joint. say h , Both of them are sections of f,
for they are characterized by

-1g(y) := Max f (y) h(y) -1= Min f (y) 0

For example, fg(y):= f Max f-1(y) = Max f f-1(y)=

= Max {y}

If we are working with general increasing fun~
tions between ordered sets~ it is also true that
if f : X ~ y is an epimorphism and it admits a,
right adjoint g then it is given by g(y) :=,
= Sup £-1 (v ) and g is again a section of f

Next we use the order of ~([nJ, [m]) to cha-
racterize adjointness of epi and monomorphisms
of~.. We define f <: g if f Ix ) ~ g Ix ) for
each x E:' [n] Evidently, if A is a non ampty
subset of ~([n] ,[m]) then the sup and the inf
of}. exist in ~ ( En] , em] ) Q Moreover, if

f : [nJ + [m] is an apimorphism then the set
Sec(f)C ~([m], [n]) admits a maximun and f is
a monomorphism, and Ret(f) admits a minimun.
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Indeed, let g = Sup(Sec(f)
g(x) ~ Sup vex) = Max vex)
fg(x) = f(Max vex) ) = Max

) thus for each x€[m]
(v~SeG f»o Then

f vex) ~ Max {x} = Xc

202 Proposltlo!!.o (a) If f: [n] -+ [m] is an
epimorphism then the righ+ adjoint of f is Max
(Sec (f» 0

(b) If a : en]. [m]. is a monomorphism ad-
mitting left adjoint~ say f, then f is a re-
traction of a and f = Min (Ret Cd) )0

Proof. (a) Let g be the right adjoint of. f
and u = Max(Sec(f)LSince g is a section of f ,

g ~ Ue Furthermore, by adjointness, x ~ gf(x),
thus x ~ uf(x). Since fu(y) = y , for each y,
U satisfies properties (a) and (b) of adjointness
of f. Since in [n] and Em] the isomorphisms are
equalities, u = g.

(b) For ea ch x E: [m1, f (x ) = In f {y Id (y » x ],Th cn
I i

f d(y) = In f {Y I d (Y ) ~ d (y )} 0 Sin c'e dis a m 0 n0

morphism thisinf is precisely y. That proves
the first,s-tat eme n t of part (b). The second one
is proven by a similar procedure to that in part
(a ).

2.3 Altern~tive proofs of the retraction and sec-
tion criteria. For the retraction criterion: Let
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a,a en] + [mJ be monomorphisms satisfying
Ret(a) = Ret(a')o We have already seen that if
n :I 0, then a(n) = ai(n). Let o~ <5 [n]-+
+ [a(n)] denote the functions obtained from d

, it 'and a by codomain restriction. Then <5 and u
i

admit left adjoints and Ret(o) = Ret(o ). Since,
Min Ret(o) = Min Ret(o), then by 2.2 the

ileft adjoint of 0 coincides with that of 0 •
Thus 0 = 0' and also a = a'.

For the section criterion, contrary to the r~
traction criterion, the proof is direct, for if,
two epimorphisms a, a have the same set of sec
tions then both admit right adjoint and ad(a) =

, ' ,= Max Sec(a) = Max Sec(a ) = ad(a ). So a = a

§3 Conditions for the unicity of the Eilenberg-
Zilber type decomposition in co-simplicial sets •

3. 1 Definition. Let Y f!, .....cS' be a co-simpli
cial set and let y€:.yn = y ( en] ). We say that y
is Interior, or y is an interior point of Y ,
if the following condition holds "if

p ~ 0, a monomorphism a [p] .....[n],
such that y(a)(y) = y ,then p = n

there exist
and y 'c yP ,

and

a = l[n] "
point of Y

In other words y
o

if either s e: Y

is an interior
n, or y~y with
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n > 0 and y does not belong to the image of the
co-faces Y(ai) i = O~O"9n •

It is clear that for a point nyE:.Y there are
two possibilities: either there exist a monomor-
phism a: [m] .....[n] which is not an isomorphism
such that y~ Im(Y (a», or every monomorphism a
for which y cIm(y(a» is an isomorphism hence
the identity. In the latter case, y is an inte
rior point.

Now, if Y is not an interior point, it can
be written in the form y = y(a)(y') with a a mo, ,
nomorphism, and so dim y < dim y = n. If y
is not an interior point the n y' = Y(a')(y")
therefore, y = Y(aa')(y"). This process can al-
ways be continued until an interior point z and
a monomorphism 8 are found such that y = Y(8)(z).

3.2 Lemma-DefInItIon. For each nyc.Y (y a co-
simplicial set) there always exist a monomorphism
~ in 6 and an interior point z ofY such that
y = Y(8)(z). In such a case, the pair <8,z> is
called an Ellenberg-Zllber type decomposItion of
y (E-Z decomposition).

We emphasize that, contrary to what happens
in simplicial sets, in general the E-Z co-simpli
cial decom~osition is not unique. In fact, if yn

has only one point for each n , then the point
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Xi E: Y 1 is written in to different ways
o 1= yea )(xo) = yea )(xo). Moreover, the

simplicial sets Y in which there are
with more than one E-Z decomposition

x =1

only co-
points

are (as
we shall see) those in which there exists a
Xo in yO such that y(aO)(xo) = Y(31)(xo)

(ao
, a1: ,(0] + [1]). Actually, the E-Z

point
,

de-
compositions of a point have common characteris-
tics which reveal the properties needed by a mo-
del Y in order to have the "unique E-Z de-
composition" property. We think of these pro-
perties as a kind of partial uniqueness. and devo
te our next proposition to them.

,3.3 Proposition. Let a~ a be monomorphism of
~ and y, y interior points of Y. If Y(3)(y)=
= y(a')(y') .,then (i) y = y' and (ii) Ret(3) =,
- Ret{3 ).

Proof. Let a: [n] + [m] (resp a' [n]+ [rot])
be a retraction of a Em] + [n] (resp 3' : .[m']
~ [n]), whose existence was already pr.oven. Ma-, ,= Y.(3 )(y ) by Y (a ) ,

since a3

pping the identity Y(3)(y)
we get that y: Y{a3')(y')
Using the MacLane decomposition

,
a3

= 1[id] .
= 60p where

6 is a monomorphism and p is an epimorphism, we
get y':: Y(6') (y(p){y') ). Since y is inte-
rior and 6 is a ~~nomorphism, 6 is an identity
and consequently fp= aa' :1 Em'] + fm] is an
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epimorphismo Thus ,
rn ~ m • With the same kind

of procedure one shows that,m :: m
m ~ m Hence

Since the only epimorphism,
is the identity one gets aa ::: 1[m]

Thus we have proven that (i)

[m] + [m]
and a'a =

y = Y(a6'):: 1[m] 0

(y') = Y(id){y') :::s ' and (ii) Ret(a) = Ret(a'),

Remark: The proof just presented corresponds in
the cosimplicial case to the one presented by Ga-
briel and Zisman in [2J for simplicial sets, on
which ours was inspiredo

304 Co r o l I a r v , If

a ~ [m] .. [n] and

, ,y(a)(y) = yea )(y )~
em'] + en]

where
are monomor-

phisms of 11, and y, y are interior points of
y then (i) , (ii) ,

(ii 1) if: m ::: m , y ::: y ,,
m "I 0 then a = a ' "

The proof of this corollary is an inmediate
consequence of the retraction criterion (1.3)~ No
tice also that when m = 0 we cannot conclude
that a = a' , but (iii) can be put in a more sug_

gestive way~(iii') if a:f. a' then a~ a' [0]+
+ [n]

305 Definition. (1) A co-simplicial set Y is
said to be of the Eilenberg-Zilber type (E-Z type)
if every v «: Y has a unique E-Z decomposition.

(2) A co-simplicial set Y admits a co-sim-
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a co-simp! Iclal point if there exists a co-simpli
cial subset of Y with exactly one point in each
dimension,

3.6 Lemma. In order for y E:: s" to be an element
of a co-simplicial point of Y it is neces~ary
and sufficient that y{aO)(y) = Y(a1)(y) (ao, a1:
[OJ ~ [1J ).

Proof. That the condition is necessary is clear.
The sufficiency follow~ by induction on n e If
a , d i : [oJ .... r ] are two arrows of !1~ thenLn
y(a){y) ::: v r a ' )(y) (Which would imply that y be-
longs to a co-simplicial point of Y). In fact,
for n = 1 it is the hypothesis. Assume it holds
for k < n and let a, a i ::: [oJ 0+ [n] c For d

(and a ') there are two possibilities a(0) -. n
or a ( 0) "l- n. In other words Cl :: an-1

0 0 or
a = an ° 0 for some 0 : [0] .... en] (also a :::

an-10 0 or " I ::: ano 0 where o q : [0] -t- Cn-1] ).0

From the four possibilities there are two which
follow directly by induction hypothesis. As the
other two are treated similarly, we present only
one case, say y(ano)(y)::: y(an-lol)(y). Let
u = an-L. o. -a1

g [OJ ~ [n-i] • By the induction
hypothesis Y(1.l)(Y)= y(o)(y) = y(o')(y). Then
yean) y(o)(y) = yean) y(1.l)(y)= y(anan-1 •.•ai),
Similarly yean-i) y(o')(y) :::yean-i) y(1.l)(y)=
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"" y(an-1(jn-1 .0. (1)(y) = Y(anan-i.oo(l1)(y) be-
cause an-1an-i = anan-1• This ends the proofo

3.7 Lemma. In order that Y admit a co-simplicial
point it is necessary and sufficient that there
exists two different arrows a, a~ [0] + [n] and
y£Yo such that Y(d)(y) = Y(d')(y).

Proof. The condition is evidently necessary. Con
versely we will prove by induction on k the pro-

P(k) : " if there exist different arrowsposition
a, a W [01 -+- [k]

i= y(a )(y), then the co-simplicial set
and oy~Y such that y(a)(y)=

y admits
a co-simplicial point".
mma. Suppose P(k) for

P(l) is the previous 'l~
k < n. Let's prove pen).

as in 3.6, a = an 0 0 orUsing the same technique
a = an-l0 0 for some 0 : [01 +[n~1J
a' = ano 0' or a ' = an-lo <5 ,0' : [0] -+ [n-l].

In either case we apply yean-i) to the identity

Similarly,

y(a)(y) = y(a')(y)
ce of <5, <5' [OJ
= Y(o')(y). If

, from which we get the existen
-+ [n~lJ such that Y(o)(y) =

,o 1 0 , we apply the induc-
tion hypothesis to find a co-simplicial point,
but if 0 = OW we cannot use the induction hypo-

n ,has a = a 00, a =
a' = anoo) since

thesiso
an-l 0

In that case, one
n-l(resp. a = a 00,

a # at The MacLane decomposition of a must
be a' =: an~lan-l •.• aO

• We apply Y(an-2) ,
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cofase which exists because n ~ 2 ~ to the equa-
lity y(a)(y) ~ Y(d')(y) obtaining Y(dn~1 an-3o

o . n-2 n-3 0
o. d )(Y) = yea d OOQ d )(y)o But
an~1 an-3 .0' aO 1 an-2 an-3

.00 dO (MacLane de-

composition), and now we may apply the induction
hypothesis.

3"8 Theorem. For a co-simplicial set y the follo-
wing statements are equivalent~ (1) y does not ad
mit co-simplicial points. (2) y is an E-Z type
co-simplicial set. (3) For any pair of morphisms
a ,e ' : [p] -+ [n] such that .Ret(a) = Ret(a'), if
there exist x ~yp for which y(a)(x) = y(a')(x)
then a = a' .

Proof. (2) =>(1) is evident. (1) ~(3) since
otherwise there would exist a,a' : [pJ -+ [n] with
Re t f d ) = Ret(a') a"l a' and x~yp such that, ,
y(a)(x) = yea )(x). By the retraction criterion
(1.3), p = O. By the previous lemma, Y admits
cosimplicial points. Finally, (3) ~ (2): suppo-
se that z has two E-Z decompositions, say, , ,
z = y(a)(x) = yea )(x). Then by (3.3) x = x

,
Ret(a) = Ret(a )

,

consequently <x,
and, by hypothesis,, ,
a> = <x, a > •

a = a

§4 Stability of interior points under eo-degene-
nrae ie s . In a cosimplicial set, if y ~ y is an

76



interior and a : [n] + em] is an epimorphism then
Y(a)(y) is not neccesarily interior. In other
words~ it may happen that Y(cr)(x) = y(a)(x') with'
cr an epimorphism9 a a monomorphism and wX ~ x in
terior points~ but the arrows being non trivial.
It is our purpose to exhibit co~simplicial sets
with this feature and to observe that the proper-
ty of being of E~Z type is not enough to make it
disappear.

Take, for examp Le , a .simplicial set X which
in dimension 2 has two different non degenerate
points a and b such that doCa) = d1(a) = d2(a)
= do(b) = d1(b) = d2(b). That is the case with
K(G,2) or more generally with any simplicial group
K for wich rr2(K) ~ O. Let C be a"sufficiently
large" set. Let v Xo + C be a function, and

°w = VOdo = vox(a ) Xl + C. We define u: X2 +

+ C as f oLfow s e u Ls eCx I = w(x) for any x £,X1,
For a and b above, we take u(a) and u(b)
to be two different points of C. For the other
points of X2 it does not matter how u is defi
ned. We denote by Y the cosimplicial set with
yn = $( X , C), and co-faces induced by faces of

n
X by compos ition. The point u ~ Y 2 cannot be
factored through do, d1, d2 : X2 + X1 and there-
fore it is interior. On the other hand, Y(ao)(u)=
= soou = w = vodo = Y(ao)(v) and therefore it is
not an interior point.
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We now give some examples of co-simplicial
se s with stable interior points.

401 Definit!onv A co=simplicial set is said to
s at Ls y MOo2 (cf [1] ) if for every n ~ 0 9 e

nvery interior point x E: Y and every epimorphism
o ~ [nJ ....[p] , Y(a)(x) is also interior po Ln t ,

Examples:
4 c 2 Let p ~ 0 and Y ( ) ~ !'!, ( [pJ > = )

: !J. A point ....En] is interior
!J.. It is evidentwhen i+ is an epimorphism of

hat if c : [nJ c+' em] is an isomorphism then
crox ~ Y(o)(x) is also an interior pointo This
model does not have co=simplicial pointso Notl=
ce that in terms of the E=Z property this means
that in /:;"any arrow ex ~ '[pJ ....[n] is decomposa<=
b Le in the form (l 0 0' where d is a mono and (J an
ephimorphism, and this decomposition is unique~
That is to say, the E~Z type decomposition of

hese models (p ~ 0) is equivalent to the uni=
que Mac-Lane decomposition in !J.o

4 <'3 The co-simplicial set tJ( ) : !J.-+ s defi-
ned by !J.(n)= {(to~o.Ojt )1 0 ~ t ° ~ 1n 1 s

2: t 0 = 1} c If a : [nJ + rm] then tJ{ex)(x) =
1

(TOjoooo,T) , where x =,(to,o •• ~tn) and, m
T 0 = ,2: ' t. , the sum running Qver'the set {jl a(j)=
1 J

= iL When ·this last set is empty T ° = 0" In,
1
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this co-simplicial set a point

is interior if none of the t.'s is zero" Evi-
1

dently ~(a)(x) is also interior if and only if
Q is an epimorphism. Notice also that this model
does not have cosimplicial points.

404 The co-simplicial set Jo{ ) ~ ~ ~ ~

which associates ~o each [n] the set of non
empty parts of [n]::: {031, •."~n} and to each
a : lm] -+ [n] the map fo{a) ::: direct image by a"

In this case a point A c r 0 ([n]) is interior
if and only if A = [n] This characteristic
is certainly preserved by epimorphisms. Since we
have. eliminated the empty set from the set of
parts, this model does not have co-simplicial po-
ints and consequently is an F.-Z co-simplicial
seta The unicity of the E-Z decomposition be-
comes simply the fact that a totally finite or-
dered set can be· enumerated inonli o~e way re-

specting its order and beginning at zero. In this
example as in the oth~rs, yO is a point.

405 More generally, for each integer p ~ 0
let ~'[ 1 : f., -+,3' be the co-simplicial set gi-

p
ven for each n by -:». = {{A03ooogAp)1 0"1 Ao

, and for each a : [n] -+ [m]CA1,ooCA e[n]}
- - p -,
by s [aJ (AOgo •• 9A) =p p

this case (Ao,o.o,A) p

In

is interior in dimension
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n if and only if ~ = en], This property is a~p
gain preserved by epimorphisms. Moreover~ if a
preserves one interior point then a must be an epi
morphism. Example 4.5 is simply the p-th dimen ~
sion of Kan's first sub-division over A[n] The
model A' [1 do not have co-simplicial points

p
and the E-Z decomposition of x = (Aot .•• ,Ap)
with l1J f= Ao ~ ••• ~ Ap ~ En] can be given in the f.£.
llowing simple way. Let q = card(Ap) - 1 ; there
exist one and only one monotone map a [q] + En]
such that a( [q]) = A. We define B. = a-1(A.) ,

p ~ ~

thus A'[a] (Bo, •.• ,B) = (Ao, •.• ,A). The pro
p p p -

perties MO.2 and E-Z of these co-simplicial sets
are used in [1] in order to prove that Kan's first
sub-division does not commute with finite products,

4.6 Remark. In our examples the property MO.2 and,
the non existence of co-simplicial points are pr~
sent together. That is not true in general. In
fact, if in example 4.5 ~e drop the 6o~dition
" A. :f. l1J" and denote the

1
Y t then the element of

p

•• , A) wi th A. = l1J
p J

one which generates a co-simplicial point.

co-simplicial set by
°Y of the form (Ao, ••
p

for every j is the only
Howev-

er·, a point y = (Ao,···,A) is interior
p

dim(y) = 0 or if dim(y) = n > 0 and Ap
Thus, Y has property MO.2 .

P

if
= [n]
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4.7 Remark. We now face the inverse of situation
4.6. That is to say, we will provide an example
of a E-Z co-simplicial set Y which fails to have
MO.2. We will take the example at the begining
of the present section (§4) which, as we know ~
fails to have both MO.2 and E-Z properties. We
then exhibit a procedure which allows us to ele-
minate the co-simplicial points. We then make su
re that this procedure doe~ not eliminate the MO.2
failure.

If a cd-simplicial set A has c6-simplicial
points then one can get from it a co-simplicial
set without co-simplicial points by eliminating
all the points which by some co-face co-degeneracy
fall into a co-simplicial point. A characteriza-
tion of the eliminated points can be given as fo-
llows : let x E: yP 9 then "there exist e : [pl-"[m]
such that Y(e:)(x) belongs to a co-simplicial
point if and only if Y(n)(x) belongs to a co-sim
p L icia 1 poi nt, wher en: [pJ -..[oJ II 0 We r e calI
that Y(n)(x) belongs to a co-simplicial point if
and only IT Y(aon)(x) = y(a1n)(x), If in our exam-
ple~ at the begining of the section~ we do the sur
gery just described, it remains to see that if the
point v is not a co-simplicial point then it is
not eliminated. In fact, if it were eliminated
then Y (aon )(u ) = Y (a 1n ) ( u ) for n = o °o0: [2]-"[OJ
Since by construction Y(ao)(v) = Y(cro)(u) , one
g~ts y(ao)(v) = y(a1)(v).
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