Revista Colombiana de Matemáticas Vol. XII (1978), págs 61-82

REMARKS ABOUT THE EILENBERG-ZILBER

TYPE DECOMPOSITION IN COSIMPLICIAL SETS

by

C. RUIZ SALGUERO and Roberto RUIZ S.

Contents

- §0 Introduction
- §1 Sections and retractions in the category Δ .
- §2 Adjoints of morphisms in the category Δ .
- \$3 Conditions for unicity of the Eilenberg-Zilber type decomposition in co-simplicial sets.
- §4 Stability of interior points for co-degeneracies.

*Author partially supported by the Universidad Pe dagógica Nacional, Bogotá. SO <u>introduction</u>. In [1] the authors have studied the conditions over a model $Y : \Delta + A$ (or more generally $Y : \delta + A$) that guarantee that the functors $R_Y : \Delta^\circ S + A$ (the natural extension of Y which commutes with inductive limits) commutes with finite products. In order to study this situation in the case $A = \Delta^\circ S$ we need to analyse the set theorical models $Y : \Delta + S$ and, in particular, we need to have a theorem corresponding in co-simplicial sets to that wich in simplicial sets guarantees the Eilenberg-Zilber decomposition lemma.

To the notion of non-degenerate point in simplicial sets corresponds that of interior points in co-simplicial sets. The Eilenberg-Zilber decom position lemma guarantees that for each simplicial set X, and each $y \in X_n$ there exists one and only one pair (σ , x) where σ in an epimorphism of Δ and x is a non degenerate point of X, such that $X(\sigma)(x) = y$. However, for a point $y \in Y^n$ (Y a co-simplicial set) the statement corresponding by duality, namely: "there exists one and only one pair (∂ , x), with ∂ a monomorphism of Δ , and x and interior point of Y, such that $Y(\partial)(x) = y^{"}$, is not always true.

We have found that this lack of duality has something to do with the following fact: in a sim-

Ardeles Nacional: Borots

plicial set X every point $x \in X_0$ belongs to a simplicial point of X (that is to say, a simpli cial subset with only one point is each dimension). This is not so for the co-simplicial case ; there are co-simplicial sets which do not even admit a co-simplicial point. One of the objetive of this paper is to show that in order that in a co-simplicial set Y the unicity of the Eilenber-Zilber decomposition be valid, it is necessary and suffi cient that Y does not admit co-simplicial points. To accomplish this, we are forced to establish the dual of the well known theorem which states that if two epimorphisms of Δ have the same sections, then they are equal. This is the point on which the unicity of the decomposition of Eilen berg-Zilber is based for simplicial sets. And it is also to this point that the big difference between simplicial and co-simplicial sets arises, if one uses "mono" instead of "epi" and "retraction" instead of "section" the statement immediately above is not valid in Δ . The dual version we have proved is the following "retractions criterion": if two monomorphisms $\partial_{n} \partial_{n}^{\dagger}$: $[n] \rightarrow [m]$ of Δ have the same retractions and are different then n = 0.

The relation between the non existence of cosimplicial points in Y and the retractions criterion is summarized by the equivalence of the two next statement. (i) Y does not have co-simpli

My Willing demotes Seic (15)

cial points. (ii) If for two monomorphisms $\partial_{1}\partial_{2}^{\dagger}$ of Δ_{2} and for some x , Y(∂_{2})(x) = Y(∂_{2}^{\dagger})(x), and Ret (∂_{2}) + Ret(∂_{2}^{\dagger}) then necessarily ∂_{2} = ∂_{2}^{\dagger} , where Ret(∂_{2}) is the set of retractions of ∂_{2} .

We give in this paper another property on model Y (which happens to be trivial in the stand ard cases), necessary to study Milnor's relation, and which permits a characterization of the functor $R_v : \Delta^{\circ} S \rightarrow S$ (cf. [1]). This property has to do with the stability of interior points under co-degeneracies, we are concerned with whether or not in a co-simplicial set Y one has for each interior point y of Y and each epimorphism σ of Δ that $Y(\sigma)(y)$ is itself an interior point. The answer is negative. But, as we shall see the stability and non existence of co-simplicial points are independent properties. In [1] we will complement these two properties in a model Y 1 n order to make R, commute with finite products.

§1 Sections and Retractions in the Category Δ , Recall that if f and s are morhpisms of Δ such that fos = identity, then f is a retraction of s and s is a section of f. We will denote Sec(f) (resp. Ret(s)) the set of sections of f (resp. retractions of s). We also recall two facts, 1.1 <u>Proposition</u>. (i) Every monomorphism of Δ admits a retraction. (ii) Every epimorphism of Δ admits a section.

1.2 <u>Proposition</u>. (Section Criterion) If f and f are epimorphism of Δ and Sec(f) = Sec(f') then f = f'

This last statement is a consequence of the following: given an epimorphism $f : [n] \rightarrow [m]$ and a point $x \in [n]$, then there exists a section s of f such that $x \in Im(s)$. Later on, using the concept of adjoint function of an arrow Δ , we will give another proof of 1.2.

As we anticipated in the introduction the dual of 1.2 does not hold. In fact, the monomorphisms ∂° , ∂^{1} : $[0] \neq [1]$ admit a unique retraction σ° : $[1] \neq [0]$ without being equal. More generally, any two (mono) morphisms $[0] \neq [n]$ admits as unique retraction the map $[n] \neq [0]$. However, these are the only pathological cases in Δ . More precisely :

1.3 <u>Proposition</u>. (Retraction Criterion) Let ∂, ∂' : $[n] \rightarrow [m]$ be two monomorphisms for which Ret(∂)= = Ret(∂'). If $\partial \neq \partial'$, then necessarily n = 0.

12 Adio Ars of Morafilens in the Teread W d

<u>Proof</u>. 1. We first show that if $n \neq 0$, then $\partial(n) = \partial'(n)$. Suppose that $\partial(n) > \partial'(n)$. Since $n \neq 0$, then $n - 1 \in [n]$. We define a function $\sigma : [m] \rightarrow [n]$ in the following way: for $x \ge \partial(n)$ let $\sigma(x) = n$. On the points of $[\partial(n) - 1]$ we only require σ to be any retraction of $\partial \uparrow$: $[n-1] \rightarrow$ $\rightarrow [\partial(n)-1]$ (which exists by 1.1). In particular, it follows that $\sigma(\partial(n)-1) = n - 1$. Such a σ can not be a retraction of ∂° , because $\partial(n)-1 \ge$ $\ge \partial^{\circ}(n)$ and so $\sigma(\partial(n)-1) \ge \sigma \partial^{\circ}(n)$. It follows that $\sigma \partial^{\circ}(n) \le n-1$ and thus $\sigma \partial^{\circ}(n) \ne n$.

2. Dually, it can be proved that if $n \neq 0$, and the monomorphism $\partial_{2}\partial_{1}$: $[n] \rightarrow [m]$ admit the same retractions, then $\partial_{1}(0) = \partial_{1}(0)$.

3. Suppose that the monomorphisms $\partial_{n}\partial_{n}$: $[n] \neq [m]$ admit the same retractions and $n \neq 0$. We know that $\partial'(n) = \partial(n)$. The restrictions ∂_{n}^{\dagger} , $\partial' \uparrow$: $[n-1] \neq [m]$ also admit the same retractions. If n-1 = 0 then by (2.) above: $\partial_{n}^{\dagger}(n-1) = \partial'_{n}^{\dagger}(n-1)$ and $\partial = \partial'$. If $n-1 \neq 0$ then by (1.) : $\partial_{n}^{\dagger}(n-1) =$ $= \partial'_{n}^{\dagger}(n-1)$. By recurrence one completes the proof.

§2 <u>Adjoints of morphisms in the category Δ </u>. Let f: $[n] \rightarrow [m]$ be a morphism of Δ . Since it is an increasing function it is also a functor between the categories associated with the orders of [n]and [m]. Consequently, it makes sense to ask if it admits a right (resp. left) adjoint. If so, the adjoint is an increasing function g : $[m] \rightarrow [n]$

66

such that for each $x \in [n]$, and each $y \in [m]$ we have : $f(x) \leq y \iff x \leq g(y)$. The last condition is equivalent to the following two : (a) for each $x \in [n]$, $x \leq gf(x)$; (b) for each $y \in [m]$, $fg(y) \leq y$. These two conditions represent the morphisms of adjointness. If f admits a right adjoint g, then f commutes with sup and g commutes with inf. In our case the last prope<u>r</u> ty is trivially satisfied because [n] and [m] are finite totally ordered sets, thus the condition becomes the increasingness of the functions. Anoth er necessary condition for the existence of a right (resp. left) adjoint of f is that f(0)=0(resp. f(n) = m). In fact, applying (b) for y=0we have $gf(0) \leq 0$, thus $f^{-1}(0) \neq \emptyset$ and f(0)=0.

2.1 <u>Proposition</u>. In order for $f : [n] \rightarrow [m]$ to admit a right (resp. left) adjoint it is necessary and sufficient that f(0) = 0 (resp. f(n) = m). That is to say $0 \in Im(f)$ (resp. $m \in Im(f)$).

<u>Proof</u>: It only remains to show that the condition is sufficient. For each $y \in [m]$ let A(y) == $\{x \in [n] \mid f(x) \leq y\}$. A(y) is non empty, since $0 \in A(y)$, Let g(y) = Max A(y). It follows that $g : [m] \neq [n]$ is in fact a right adjoint of f. Dually, if f(n) = m one defines the left adjoint h by h(y) = Min B(y) where $B(y) = \{x \in [n] \mid f(x) \geq y\}$.

67

Notice that the condition f(0) = 0 is equivalent to the one in the MacLane decomposition of $f: f = \partial^{1}s \dots \partial^{1}\sigma^{j}t \dots \sigma^{j}$, $i_{1} > 0$. Dually f(n) = m is equivalent to $m > i_{s}$.

If $f: [n] \rightarrow [m]$ is an epimorphism, then it admits a right adjoint, say g, and a left adjoint, say h. Both of them are sections of f, for they are characterized by

 $g(y) = Max f^{-1}(y)$, $h(y) = Min f^{-1}(y)$.

For example, $fg(y) = f \operatorname{Max} f^{-1}(y) = \operatorname{Max} f f^{-1}(y) =$ = Max {y} = y

If we are working with general increasing functions between ordered sets, it is also true that if $f: X \rightarrow Y$ is an epimorphism and it admits a right adjoint g, then it is given by g(y) == Sup $f^{-1}(y)$ and g is again a section of f.

Next we use the order of $\Delta([n], [m])$ to characterize adjointness of epi and monomorphisms of Δ . We define f < g if $f(x) \leq g(x)$ for each $x \in [n]$. Evidently, if A is a non ampty subset of $\Delta([n], [m])$ then the sup and the inf of A exist in $\Delta([n], [m])$. Moreover, if $f : [n] \rightarrow [m]$ is an apimorphism then the set $Sec(f) \subset \Delta([m], [n])$ admits a maximun and f is a monomorphism, and Ret(f) admits a minimun. Indeed, let g = Sup(Sec(f)) thus for each $x \in [m]$ g(x) = Sup v(x) = Max v(x) ($v \in Sec(f)$). Then $fg(x) = f(Max v(x)) = Max f v(x) = Max \{x\} = x$.

2.2 <u>Proposition</u>. (a) If $f : [n] \rightarrow [m]$ is an epimorphism then the right adjoint of f is Max (Sec (f)).

(b) If $\partial : [n] \rightarrow [m]$ is a monomorphism admitting left adjoint, say f, then f is a retraction of ∂ and f = Min (Ret (∂)).

<u>Proof</u>. (a) Let g be the right adjoint of f and u = Max(Sec(f)).Since g is a section of f, $g \leq u$. Furthermore, by adjointness, $x \leq gf(x)$, thus $x \leq uf(x)$. Since fu(y) = y, for each y, u satisfies properties (a) and (b) of adjointness of f. Since in [n] and [m] the isomorphisms are equalities, u = g.

(b) For each $x \in [m]$, $f(x) = Inf\{y|\partial(y)>x\}$. Then $f\partial(y) = Inf\{y'|\partial(y') > \partial(y)\}$. Since ∂ is a monomorphism this inf is precisely y. That proves the first statement of part (b). The second one is proven by a similar procedure to that in part (a).

2.3 Alternative proofs of the retraction and section criteria. For the retraction criterion : Let $\partial_{,}\partial'$: $[n] \neq [m]$ be monomorphisms satisfying Ret(∂) = Ret(∂'). We have already seen that if $n \neq 0$, then $\partial(n) = \partial'(n)$. Let $\delta_{,}\delta'$: $[n] \neq$ $\Rightarrow [\partial(n)]$ denote the functions obtained from ∂ and ∂' by codomain restriction. Then δ and δ' admit left adjoints and Ret(δ) = Ret(δ'). Since

Min Ret(δ) = Min Ret(δ'), then by 2.2 the left adjoint of δ coincides with that of δ' . Thus δ = δ' and also ∂ = ∂' .

For the section criterion, contrary to the retraction criterion, the proof is direct, for if two epimorphisms σ , σ' have the same set of sections then both admit right adjoint and $ad(\sigma) =$ = Max Sec(σ) = Max Sec(σ') = $ad(\sigma')$. So $\sigma = \sigma'$.

of F. Stile in fall and fall the former from the

§3 <u>Conditions for the unicity of the Eilenberg</u>-<u>Zilber type decomposition in co-simplicial sets</u>. 3.1 <u>Definition</u>. Let $Y : \Delta \neq S$ be a co-simplicial set and let $y \in Y^n = Y([n])$. We say that y is interior, or y is an interior point of Y, if the following condition holds "if there exist $p \ge 0$, a monomorphism $\partial : [p] \rightarrow [n]$, and $y' \in Y^p$, such that $Y(\partial)(y') = y$, then p = n and $\partial = 1[n]$ ". In other words y is an interior point of Y if either $y \in Y^n$, or $y \in Y^n$ with n > 0 and y does not belong to the image of the co-faces $Y(\partial^{i})$ i = 0,...,n.

It is clear that for a point $y \in Y^n$ there are two possibilities: either there exist a monomorphism ∂ : $[m] \rightarrow [n]$ which is not an isomorphism such that $y \in Im(Y(\partial))$, or every monomorphism ∂ for which $y \in Im(Y(\partial))$ is an isomorphism hence the identity. In the latter case, y is an int<u>e</u> rior point.

Now, if y is not an interior point, it can be written in the form $y = Y(\partial)(y')$ with ∂ a monomorphism, and so dim y' < dim y = n. If y' is not an interior point then y' = Y(∂')(y"); therefore, y = Y($\partial\partial'$)(y"). This process can always be continued until an interior point z and a monomorphism δ are found such that y = Y(δ)(z).

3.2 Lemma-Definition. For each $y \in Y^n$ (Y a cosimplicial set) there always exist a monomorphism δ in Δ and an interior point z of Y such that $y = Y(\delta)(z)$. In such a case, the pair $\langle \delta, z \rangle$ is called an Eilenberg-Zilber type decomposition of y (E-Z decomposition).

We emphasize that, contrary to what happens in simplicial sets, in general the E-Z co-simplicial decomposition is not unique. In fact, if y^n has only one point for each n, then the point

71

 $x_1 \in Y^1$ is written in to different ways $x_1 =$ = $Y(\partial^{\circ})(x_0) = Y(\partial^1)(x_0)$. Moreover, the only cosimplicial sets Y in which there are points with more than one E-Z decomposition are (as we shall see) those in which there exists a point in Y° such that $Y(\partial^{\circ})(x_{o}) = Y(\partial^{1})(x_{o})$ x $[0] \rightarrow [1]$). Actually, the ()°,)¹ E-Z decompositions of a point have common characteristics which reveal the properties needed by a model Y in order to have the "unique E-Z decomposition" property. We think of these properties as a kind of partial uniqueness and devo te our next proposition to them.

3.3 <u>Proposition</u>. Let ∂ , ∂' be monomorphism of Δ and y, y' interior points of Y. If Y(∂)(y)= = Y(∂')(y'), then (i) y = y' and (ii) Ret(∂) = = Ret(∂').

<u>Proof</u>. Let $\sigma : [n] \neq [m]$ (resp $\sigma' : [n] \neq [m']$) be a retraction of $\vartheta : [m] \neq [n]$ (resp $\vartheta' : [m']$ $\Rightarrow [n]$), whose existence was already proven. Mapping the identity $\Upsilon(\vartheta)(y) = \Upsilon(\vartheta')(y')$ by $\Upsilon(\sigma)$, we get that $y = \Upsilon(\sigma\vartheta')(y')$ since $\sigma\vartheta = 1[m]$. Using the MacLane decomposition $\sigma\vartheta' = \delta\circ\mu$ where δ is a monomorphism and μ is an epimorphism, we get $y = \Upsilon(\delta) (\Upsilon(\mu)(y'))$. Since y is interior and δ is a monomorphism, δ is an identity and consequently $\vartheta\mu = \sigma\vartheta' : [m'] \neq [m]$ is an epimorphism. Thus $m' \ge m$. With the same kind of procedure one shows that $m \ge m'$. Hence, m = m'. Since the only epimorphism $[m] \rightarrow [m]$ is the identity one gets $\sigma \partial' = 1[m]$ and $\sigma' \partial =$ = 1[m]. Thus we have proven that (i) $y = Y(\sigma \delta')$ (y') = Y(id)(y') = y' and (ii) $Ret(\partial) = Ret(\partial')$.

<u>Remark:</u> The proof just presented corresponds in the cosimplicial case to the one presented by Gabriel and Zisman in [2] for simplicial sets, on which ours was inspired.

3.4 <u>Corollary</u>. If $Y(\partial)(y) = Y(\partial')(y')$, where $\partial : [m] \rightarrow [n]$ and $\partial' : [m'] \rightarrow [n]$ are monomorphisms of Δ , and y, y' are interior points of Y, then : (i) m = m', (ii) y = y', (iii) if $m \neq 0$ then $\partial = \partial'$.

The proof of this corollary is an inmediate consequence of the retraction criterion (1.3). No tice also that when m = 0 we cannot conclude that $\partial = \partial'$, but (iii) can be put in a more sug gestive way:(iii') if $\partial \neq \partial'$ then ∂ , ∂' : $[0] \rightarrow \rightarrow [n]$.

3.5 Definition. (1) A co-simplicial set Y is said to be of the Eilenberg-Zilber type (E-Z type) if every $y \in Y$ has a unique E-Z decomposition.

(2) A co-simplicial set Y admits a co-sim-

a co-simplicial point if there exists a co-simpl<u>i</u> cial subset of Y with exactly one point in each dimension.

3.6 Lemma. In order for $y \in Y^{\circ}$ to be an element of a co-simplicial point of Y it is necessary and sufficient that $Y(\partial^{\circ})(y) = Y(\partial^{1})(y)$ $(\partial^{\circ}, \partial^{1}:$ $[0] \rightarrow [1]$).

Proof. That the condition is necessary is clear. The sufficiency follows by induction on n . If $\partial, \partial' : [0] \rightarrow [n]$ are two arrows of Δ , then $Y(\partial)(y) = Y(\partial')(y)$ (which would imply that y belongs to a co-simplicial point of Y). In fact, for n = 1 it is the hypothesis. Assume it holds for k < n and let $\partial_1, \partial_1 = [0] \neq [n]$. For ∂_1 (and ∂') there are two possibilities $\partial(0) = n$, or $\partial(0) \neq n$. In other words $\partial = \partial^{n-1} \circ \delta$ or $\partial = \partial^n \circ \delta$ for some $\delta : [0] \rightarrow [n]$ (also $\partial' =$ $\partial^{n-1} \circ \delta$ or $\partial' = \partial^n \circ \delta$ where $\delta' : [0] \neq [n-1]$). From the four possibilities there are two which follow directly by induction hypothesis. As the other two are treated similarly, we present only one case, say $Y(\partial^n \delta)(y) = Y(\partial^{n-1} \delta')(y)$. Let $\mu = \partial^{n-1} \cdot \cdot \cdot \cdot \partial^1 : [0] \rightarrow [n-1]$. By the induction hypothesis $Y(\mu)(y) = Y(\delta)(y) = Y(\delta')(y)$. Then $Y(\partial^{n}) Y(\delta)(y) = Y(\partial^{n}) Y(\mu)(y) = Y(\partial^{n}\partial^{n-1}...\partial^{1}).$ Similarly $Y(\partial^{n-1}) Y(\delta')(y) = Y(\partial^{n-1}) Y(\mu)(y) =$

= $Y(\partial^{n-1}\partial^{n-1} \dots \partial^1)(y) = Y(\partial^n \partial^{n-1} \dots \partial^1)(y)$ because $\partial^{n-1}\partial^{n-1} = \partial^n \partial^{n-1}$. This ends the proof.

3.7 Lemma. In order that Y admit a co-simplicial point it is necessary and sufficient that there exists two different arrows ∂ , ∂' : $[0] \rightarrow [n]$ and $y \in Y^{\circ}$ such that $Y(\partial)(y) = Y(\partial')(y)$.

Proof. The condition is evidently necessary. Con versely we will prove by induction on k the proposition P(k) : " if there exist different arrows $\partial, \partial' : [0] \rightarrow [k]$ and $y \in Y^{\circ}$ such that $Y(\partial)(y) =$ = $Y(\partial')(y)$, then the co-simplicial set Y admits a co-simplicial point". P(1) is the previous le mma. Suppose P(k) for k < n. Let's prove P(n). Using the same technique as in 3.6, $\partial = \partial^n \circ \delta$ or $\partial = \partial^{n-1} \circ \delta$ for some $\delta : [0] \rightarrow [n-1]$. Similarly, $\partial' = \partial^n \circ \delta'$ or $\partial' = \partial^{n-1} \circ \delta$, $\delta' : [0] \rightarrow [n-1]$. In either case we apply $Y(\sigma^{n-1})$ to the identity $Y(\partial)(y) = Y(\partial')(y)$, from which we get the existen ce of δ , δ' : $[0] \rightarrow [n-1]$ such that $Y(\delta)(y) =$ = Y(δ')(y). If $\delta \neq \delta'$, we apply the induction hypothesis to find a co-simplicial point, but if $\delta = \delta'$ we cannot use the induction hypothesis. In that case, one has $\partial = \partial^n \circ \delta$, $\partial' =$ $\partial^{n-1} \delta$ (resp. $\partial = \partial^{n-1} \delta$, $\partial' = \partial^n \delta$) since $\partial \neq \partial$. The MacLane decomposition of ∂ must be $\partial' = \partial^{n-1} \partial^{n-1} \dots \partial^{\circ}$. We apply $Y(\sigma^{n-2})$,

cofase which exists because $n \ge 2$, to the equality $Y(\partial)(y) = Y(\partial')(y)$ obtaining $Y(\partial^{n-1} \partial^{n-3})$ $\partial^{n-1} \partial^{n-2} \partial^{n-2} \partial^{n-3} \dots \partial^{n-3} \partial^{n-3}$

3.8 <u>Theorem</u>. For a co-simplicial set Y the following statements are equivalent: (1) Y does not ad mit co-simplicial points. (2) Y is an E-Z type co-simplicial set. (3) For any pair of morphisms ∂, ∂' : $[p] \rightarrow [n]$ such that $Ret(\partial) = Ret(\partial')$, if there exist $x \in Y^p$ for which $Y(\partial)(x) = Y(\partial')(x)$ then $\partial = \partial'$.

<u>Proof</u>. (2) \Rightarrow (1) is evident. (1) \Rightarrow (3) since otherwise there would exist ∂, ∂' : [p] \Rightarrow [n] with Ret(∂) = Ret(∂') $\partial \neq \partial'$ and $x \in Y^P$ such that Y(∂)(x) = Y(∂')(x). By the retraction criterion (1.3), p = 0. By the previous lemma, Y admits cosimplicial points. Finally, (3) \Rightarrow (2): suppose that z has two E-Z decompositions, say z = Y(∂)(x) = Y(∂')(x'). Then by (3.3) x = x', Ret(∂) = Ret(∂') and, by hypothesis, $\partial = \partial'$. consequently <x, ∂ > = <x', ∂' >.

§4 Stability of interior points under co-degeneracies. In a cosimplicial set, if $y \in Y^n$ is an interior and σ : $[n] \rightarrow [m]$ is an epimorphism then Y(σ)(y) is not neccessarily interior. In other words, it may happen that Y(σ)(x) = Y(∂)(x') with σ an epimorphism, ∂ a monomorphism and x, x' in terior points, but the arrows being non trivial. It is our purpose to exhibit co-simplicial sets with this feature and to observe that the property of being of E-Z type is not enough to make it disappear.

Take, for example, a simplicial set X which in dimension 2 has two different non degenerate points a and b such that $d_o(a) = d_1(a) = d_2(a)$ = $d_0(b) = d_1(b) = d_2(b)$. That is the case with K(G,2) or more generally with any simplicial group K for wich $\Pi_{2}(K) \neq 0$. Let C be a sufficiently large" set. Let $v : X_o + C$ be a function, and $w = v \circ d_o = v \circ X(\partial^\circ) : X_1 \rightarrow C.$ We define $u : X_2 \rightarrow C$ + C as follows: u(so(x)) = w(x) for any $x \in X_1$. For a and b above, we take u(a) and u(b)to be two different points of C. For the other points of X_2 it does not matter how u is defi ned. We denote by Y the cosimplicial set with $Y^n = S(X_n, C)$, and co-faces induced by faces of X by composition. The point $u \in Y^2$ cannot be factored through d_0 , d_1 , d_2 : $X_2 \rightarrow X_1$ and therefore it is interior. On the other hand, $Y(\sigma^{\circ})(u) =$ = $s_0 \circ u = w = v \circ d_0 = Y(\partial^{\circ})(v)$ and therefore it is not an interior point.

77

We now give some examples of co-simplicial sets with stable interior points.

4.1 <u>Definition</u>. A co-simplicial set is said to satisfy M0.2 (cf [1]) if for every $n \ge 0$, <u>e</u> very interior point $x \in Y^n$ and every epimorphism $\sigma : [n] \rightarrow [p]$, $Y(\sigma)(x)$ is also interior point. <u>Examples</u>:

4.2 Let $p \ge 0$ and $Y() = \Delta([p], -)$: $\Delta \neq S$. A point $x : [p] \neq [n]$ is interior when it is an epimorphism of Δ . It is evident that if σ : [n] + [m] is an isomorphism then $\sigma x = Y(\sigma)(x)$ is also an interior point. This model does not have co-simplicial points. Notice that in terms of the E-Z property this means that in Δ any arrow α : $[p] \neq [n]$ is decomposable in the form $\partial \circ \sigma$ where ∂ is a mono and σ an ephimorphism, and this decomposition is unique. That is to say, the E-Z type decomposition of these models $(p \ge 0)$ is equivalent to the unique Mac-Lane decomposition in Δ .

4.3 The co-simplicial set $\Delta()$: $\Delta \rightarrow S$ defined by $\Delta(n) = \{(t_0, \dots, t_n) \mid 0 \le t_i \le 1, \infty\}$ $\Sigma t_i = 1\}$. If $\alpha : [n] \rightarrow [m]$ then $\Delta(\alpha)(x) = (T_0, \dots, T_m)$, where $x = (t_0, \dots, t_n)$ and $T_i = \Sigma t_j$, the sum running over the set $\{j \mid \alpha(j) = j\}$. When this last set is empty, $T_i = 0$. In this co-simplicial set a point $x = (t_0, ..., t_n)$ is interior if none of the t_i 's is zero. Evidently $\Delta(\alpha)(x)$ is also interior if and only if α is an epimorphism. Notice also that this model does not have cosimplicial points.

4.4 The co-simplicial set $\mathcal{P}_{o}()$: $\Delta \neq \mathcal{S}$ which associates to each [n] the set of non empty parts of $[n] = \{0,1,\ldots,n\}$, and to each $\alpha : [m] \neq [n]$ the map $\mathcal{P}_{o}(\alpha) =$ direct image by α . In this case a point $A \in \mathcal{P}_{o}([n])$ is interior if and only if A = [n] This characteristic is certainly preserved by epimorphisms. Since we have eliminated the empty set from the set of parts, this model does not have co-simplicial points and consequently is an E-Z co-simplicial set. The unicity of the E-Z decomposition becomes simply the fact that a totally finite ordered set can be enumerated in only one way respecting its order and beginning at zero. In this example as in the others, Y° is a point

4.5 More generally, for each integer $p \ge 0$ let $\Delta'[]_p : \Delta \ne S$ be the co-simplicial set given for each n by $\Delta'[n]_p = \{(A_0, \dots, A_p) \mid \emptyset \ne A_0 \\ \subseteq A_1 \cdots \subseteq A_p \subseteq [n]\}$, and for each $\alpha : [n] \ne [m]$ by $\Delta'[\alpha]_p (A_0, \dots, A_p) = (\alpha(A_0), \dots, \alpha(A_p))$. In this case (A_0, \dots, A_p) is interior in dimension n if and only if $\Delta_p = [n]$. This property is again preserved by epimorphisms. Moreover, if α preserves one interior point then α must be an epi morphism. Example 4.5 is simply the p-th dimension of Kan's first sub-division over $\Delta[n]$. The model $\Delta'[]_p$ do not have co-simplicial points and the E-Z decomposition of $x = (A_0, \dots, A_p)$ with $\emptyset \neq A_0 \subseteq \dots \subseteq A_p \subseteq [n]$ can be given in the following simple way. Let $q = \operatorname{card}(A_p) - 1$; there exist one and only one monotone map $\alpha : [q] \neq [n]$ such that $\alpha([q]) = A_p$. We define $B_i = \alpha^{-1}(A_i)$, thus $\Delta'[\alpha]_p$ $(B_0, \dots, B_p) = (A_0, \dots, A_p)$. The properties MO.2 and E-Z of these co-simplicial sets are used in [1] in order to prove that Kan's first sub-division does not commute with finite products.

4.6 <u>Remark</u>. In our examples the property M0.2 and the non existence of co-simplicial points are present together. That is not true in general. In fact, if in example 4.5 we drop the condition " $A_i \neq \emptyset$ " and denote the co-simplicial set by Y_p , then the element of Y_p° of the form $(A_o, ...$ $.., A_p)$ with $A_j = \emptyset$ for every j is the only one which generates a co-simplicial point. However, a point $y = (A_o, ..., A_p)$ is interior if dim(y) = 0 or if dim(y) = n > 0 and $A_p = [n]$. Thus, Y_p has property M0.2. 4.7 <u>Remark</u>. We now face the inverse of situation 4.6. That is to say, we will provide an example of a E-Z co-simplicial set Y which fails to have MO.2. We will take the example at the begining of the present section (§4) which, as we know , fails to have both MO.2 and E-Z properties. We then exhibit a procedure which allows us to eleminate the co-simplicial points. We then make su re that this procedure does not eliminate the MO.2 failure.

If a co-simplicial set A has co-simplicial points then one can get from it a co-simplicial set without co-simplicial points by eliminating all the points which by some co-face co-degeneracy fall into a co-simplicial point. A characterization of the eliminated points can be given as follows : let $x \in Y^p$, then "there exist $\varepsilon : [p] \rightarrow [m]$ such that $Y(\varepsilon)(x)$ belongs to a co-simplicial point if and only if $Y(\eta)(x)$ belongs to a co-sim plicial point, where $\eta : [p] \rightarrow [0]$ ". We recall that Y(n)(x) belongs to a co-simplicial point if and only if $Y(\partial^{\circ}\eta)(x) = Y(\partial^{1}\eta)(x)$. If in our example, at the begining of the section, we do the sur gery just described, it remains to see that if the point v is not a co-simplicial point then it is not eliminated. In fact, if it were eliminated then $\Upsilon(\partial^{\circ}\eta)(u) = \Upsilon(\partial^{1}\eta)(u)$ for $\eta = \sigma^{\circ}\sigma^{\circ}$: $\lceil 2 \rceil \rightarrow \lceil 0 \rceil$. Since by construction $Y(\partial^{\circ})(v) = Y(\sigma^{\circ})(u)$. one gets $Y(\partial^{\circ})(v) = Y(\partial^{1})(v)$.

BIBLIOGRAPHY

[1] C. Ruiz-Salguero and R. Ruiz, Conditions over a "realization" functor in order for it to commute with finite products (to appear).

[2] P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und Ihrer Grenzgebiete, Band 35, Springer-Verlag 1967.

Departamento de Matemáticas Universidad Nacional de Colombia Bogotá, D.E., COLOMBIA.

Departamento de Matemáticas Universidad del Valle. Cali, Valle, COLOMBIA.

(Recibido en octubre de 1978)