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§0 introduction. In £1j the authors have studied
the conditions over a model Y : A - A (or more
generally Y : 8§ »+ A ) that guarantee that the

£ SRS " © Q& 4\ ( % TR | > + ne AN
functors R, : A S =+ (the natural extension of

Y
Y which commutes with inductive limits) commutes

with finite products. In order to study this si-
tuation in the case A = AO‘S we need to analyse
the set theorical models Y : A + & and, in par

cular, we need to have a theorem corresponding 1in
co-simplicial sets to that wich in simplicial sets
guarantees the Eilenberg-Zilber decomposition le-

mmda

To the notion of non-degenerate point in sim-
plicial sets corresponds that of interior points
in co-simplicial sets. The Eilenberg-Zilber decom
position lemma guarantees that for each simpliciai
set X , and each yg:Xn there exists one and on-
ly one pair (0, x) where 0 in an epimorphism of A
and x 1s a non degenerate point of X , such
that X(o)(x) = y . However, for a point ye€ Y"
(Y a co-simplicial set) the statement correspond-
ing by duality, namely: "there exists one and only
ocne pair (9, x), with 3 a monomorphism of A, and
x and interior point of Y, such that Y(3)(x) = y",

1s not always true.

We have found that this lack of duality has

something to do with the following fact: in a sim-
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plicial set X every point x €X, belongs to a
simplicial point of X (that is to say, a simpli
cial subset with only one point is each dimension).
This is not so for the co-simplicial case ; there
are co-simplicial sets which do not even admit a
co—simplicial point. One of the objetive of this
paper is to show that in order that in a co-sim-
plicial set Y the unicity of the Eilenber-Zilber
decomposition be valid, it is necessary and suffi
cient théx Y does not admit co-simplicial points.
To accoﬁp;ish this, we are forced to establish
the dual of the well known theorem which states
that if two epimorphisms of A have the same sec-
tions, then they are equal. This is the point

on which ﬁhe unicity of the decomposition of Eilen
berg—Zilbép is based for simplicial sets. And it
is also to;this point that the big difference
between simplicial and co-simplicial sets arises,
if one uses "mono" instead of "epi" and "retrac-
tion" instead of "section" the statement immedia-
tely above is not valid in A. The dual version
we have proved 1is the following "retractions cri-
terion" : if two monomorphisms 3, ' [n] » [m]
of A have. the same retractions and are different

then n = 0.

The relation between the non existence of co-
simplicial points in Y and the retractions cri-
terion is summarized by the equivalence of the

two next statement. (i) Y does not have co-simpli
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cial points. (ii) If for two monomorphisms 8,32 of
] ) X
A, and for some x , Y(3)(x) = Y(3 )(x), and
¥

Ret (3) + Rer(a') then necessarily o0 = 0 , where

Ret(3) is the set of retractions of 3.

We give in this paper another property on a
model Y (which happens to be trivial in the stand
ard cases), necessary to study Milnor’s relation,
and which permits a characterization of the func-
tor Ry : AiS +S8 ( cf. [1]). This property has
to do with the stability of interior points under
co-degeneracies, we are concerned with whether or
not in a co-simplicial set Y one has for each
interior point y of Y and each epimorphism ©
of A that Y(o)(y) is itself an interior point.
The answer is negative. But, as we shall see the
stability and non existence of co-simplicial po-
ints are independent properties. In [1] we will
complement these two properties in a model Y in

order to make RY commute with finite products.

§1 Sections and Retractions in the Category A. Re-

call that if f and s are morhpisms of A such
that fos = identity, then f is a retraction of s

and s is a section of f. We will denote Sec(f)
(resp. Ret(s) ) the set of sections of f (resp.

retractions of s). We also recall two facts,
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1.1 Proposition. (i) Every monomorphism of A ad-

mits a retraction. (ii) Every epimorphism of A

admits a section.

1.2 Proposition. (Section Criterion) If f and
T
£ are epimorphism of A and Sec(f) = Sec(f')

v

then f = f

This last statement is a consequence of the
following: given an epimorphism f : [n] > [m]
and a point x € [n], then there exists a section
s of f such that x€Im(s). Later on, using
the concept of adjoint function of an arrow A,

we will give another proof of 1.2,

As we anticipated in the introduction the
dual of 1.2 does not hold. In fact, the monomor-
phisms 30, Ahing [0] + [1] admit a unique retrac
tion Oo g [1] * [0] without being equal. More
generally, any two (mono) morphisms [O] -+ {n] ad-
mits as unique retraction the map [n] + [o] .
However, these are the only pathological cases 1in

A. More precisely

1
1.3 Proposition. (Retraction Criterion) Let 3,3 :

[n] > [m] be two monomorphisms for which Ret(9d)=
v
= Ret('c)')° If 9 # 3 , then necessarily n = 0.

Proof. 1. We first show that if n # 0 , then
1 1
9(n) = 9 (n). Suppose that 3(n) > 3 (n). Since

65



n#¥0 , then n - 1€ ﬁﬂ . We define a function

g : [mj = fn} in the following way: for x 2 9(n)
let o{x) = n. On the points of {E(D) - i] we
only require O to be any retraction of Brz'[n—I]*
+ {B(n)aij (which exists by 1.1). In particu-
lar, it follows that 0(3(n)-1) = n - 1. Such a

0 can not be a retraction of 9 , because 3(n)-12
> év(n) and so 0(3(n)-1) > © Sp(n). It follows

that o Bv(n) £ n-1 and thus © Sg(n) #.0 .

2. Dually, it can be proved that if n # 0 ,
and the monomorphism 8,8' : [n] + [m] admit the

1
same retractions, then 93(0) = 3 (0).

3. Suppose that the monomorphisms 8,3' :
[n] -+ [m] admit the same retractions and n # 0.
We know that @ (n) = 3(n). The restrictions 2,
8'F : [n-i] + [m] also admit the same retractions.
If n-1 = 0 then by (2.) above: 3[(n-1) = 8eKn—1)
and 3 = 3 . If n-1 # 0 then by (1.) : 3l(n-1)=

L
= 3 Mn-1). By recurrence one completes the proof,

§2 Adjoints of morphisms in the category A. Let

. - [n] -+ [m] be a morphism of A. Since it is an
increasing function it is also a functor between
the categories associated with the orders of [n]
and [m]. Consequently, it makes sense to ask if
it admits a right (resp. left) adjoint. If so,
the adjoint is an increasing function g : [m]*’[n]
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such that for each xe:[nJ, and each yE:[m] we
have : f(x) € y> x £ g(y). The last condition
is equivalent to the following two : (a) for each
x €[n], x < gf(x) ; (b) for each ye [m] ,
fg(y) £ y. These two conditions represent the
morphisms of adjointness. If f admits a right
adjoint g , then f commutes with sup and g
commutes with inf . In our case the last proper
ty is trivially satisfied because [n] and [m] are
finite totally ordered sets, thus the condition
becomes the increasingness of the functions. Anoth
er necessary condition for the existence of a
right (resp. left) adjoint of f is that f(0)=0
(resp. f(n) = m). In fact, applying (b) for y=
we have gf(0) £ 0 , thus f'i(o) # ¢ and £(0)=0.

2.1 Proposition. In order for f : [n] =+ [m] to

admit a right (resp. left) adjoint it is necessa-
ry and sufficient that f(0) = 0 (resp. f(n) = m).
That is to say 0€Im(f) (resp. m&Im(f) ).

Proof: It only remains to show that the condition

is sufficient. For each ye [m] 1let A(y) =

= {xéi{n] | £(x) € y} . A(y) 1is non empty, since
0 €A (y) ., Let g(y) = Max A(y). It follows

that g : [m] + [n] is in fact a right adjoint

of f. Dually, if f(n) = m one defines the

left adjoint h by h(y) = Min B(y) where

B(y) = {xe[n] | £(x) > y} .
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Notice that the condition £f(0) = 0 is equi-

valent to the one in the MacLane decomposition of

i Sl I : i
£:£:=0° .. 3 't .0, i >0 . Dually
f(n) = m 1is equivalent to m > is

If £ 3 [n]:~ [m] is an epimorphism, then it

admits a right adjoint, say g , and a left ad-
joint, say h. Both of them are sections of f ,

for they are characterized by
-1 . -1
g(y) = Max £ “(y): % h(y) = Min £ “(y) -

For example, fg(y) = f Max f"i(y) = Max f f'i(y)=

= Max {y} =y

If we are working with general increasing func
tions between ordered sets, it is also true that
if f : X - Y 1is an epimorphismand it admits a
right adjoint g , then it is given by g(y) =

= Sup f—i(y) and g is again a section of f .

Next we use the order of A([n], [m]) to cha-
racterize adjointness of epi and monomorphisms
of A We define f < g |if f(x) € g(x) for
each x¢&€ hﬂ . Evidently, if A is a non ampty
subset of A([n],[m]) then the sup and the inf
of A exist in A([n],[m]). Moreover, if
f :[n] * [m] is an apimorphism then the set
Sec(f)c A([m],[n]) admits a maximun and f is

a monomorphism, and Ret(f) admits a minimun.
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Indeed, let g = Sup(Sec(f) ) thus for each x€[m]
g{x) = Sup v(x) = Max v(x) (ve&see(f) ). Then

fg(x) = f(Max v(x) } = Max f v(x) = Max {x} = x

2.2 Proposition. (a) If £ : [n] =+ [m] 1is an

epimorphism then the right adjoint of f 1s Max

Gec (£f)) .

(b) 1f 3 : [n] + [m] 4is a monomorphism ad-
mitting left adjoint, say f, then f 1s a re-

traction of 9 and f = Min (Ret (3) ).

Proof. (a) Let g be the right adjoint of f

and u = Max(Sec(f)).Since g 1is a section of f,
g £ u. Furthermore, by adjointness, x < gf(x),
thus x £ uf(x). Since fu(y) =y , for each vy,

u satisfies properties (a) and (b) of adjointness
of f., Since in [n] and [m] the isomorphisms are

equalities, u = g.

(b) For each x€ [m], £(x) = Inf{yla(y)>x}.Then
' ¥
£3(y) = Inf{y |3(y ) > 3(y)} . Since 3 is a mono
morphism this inf is precisely y. That proves
the first statement of part (b). The second one

is proven by a similar procedure to that in part

(a).

2,3 Alternative proofs of the retraction and sec-

tion criteria. For the retraction criterion : Let
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8,8' : [n] + [m] be monomorphisms satisfying
Ret(9) = Ret(3'). We have already seen that if
n # 0, then 3(n) = 3 (n), Let &, § : [n] »
+ [3(n)] denote the functions obtained from 3
and 3' by codomain restriction. Then § and §'
admit left adjoints and Ret(§) = Ret(Gv). Since

Min Ret(8) = Min Ret(§ ), then by 2.2 the
left adjoint of § coincides with that of s

1]

Thus § = &' and also 9 = 3

For the section criterion, contrary to the re
traction criterion, the proof is direct, for if
two epimorphisms o, o' have the same set of sec
tions then both admit right adjoint and ad(o) =

= Max Sec(o) = Max Sec(o') = ad(o'). So 0 = o'

§3 Conditions for the unicity of the Eilenberg-

Zilber type decomposition in co-simplicial sets.

3.1 Definition. Let Y : A+ S8 be a co-simpli

cial set and let yeY" = Y([n]). We say that y
is interior, or y is an interior point of Y ,
if the following condition holds "if there exist
P > 0, a monomorphism.-93 : [p] > [n] , and y'CYp,
such that Y(a)(y') =y , then p =n and

9 = 1[n] ", In other words y is an interior

(o]
point of Y if either yecY , or ye:Yn with
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n >0 and y does not belong to the image of the

co-faces Y(381) i = 000 o sn s

It is clear that for a point yE:Yn there are
two possibilities: either there exist a monomor-
phism 9 : [m] > [n] which is not an isomorphism
such that ye€ Im(Y (3)), or every monomorphism 3
for which y €Im(Y(3)) is an isomorphism hence
the identity. 1In the latter case, y is an inte

rior point.

Now, if y 1is not an interior point, it can
be written in the form y = Y(3)(y') with 3 a mo
nomorphism, and so dim y' < dimy =n . If y'
is not an interior point then y' = Y(B')(y") 5
therefore, y = Y(33')(y"). This proceés can al-
ways be continued until an interior point =z and

a monomorphism 8§ are found such that y = Y(8§)(z).

3.2 Lemma-Definition. For each ye:Yn (Y a co-

simplicial set) there always exist a monomorphism
§ in A and an interior point 2z of Y such that
y = Y(8)(z). In such a case, the pair <§,z> is

called an Eilenberg-Zilber type decomposition of

y (E-Z decomposition).

We emphasize that, contrary to what happens
in simplicial sets, in general the E-Z co-simpli
cial decomposition is not unique. In fact, if

has only one point for each n , then the point
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x1€ Y1 is written in to different ways Xy

= Y(ao)(xo) = Y(ai)(xo). Moreover, the only co-
simplicial sets Y in which there are points
with more than one E-Z decomposition are (as
we shall see) those in which there exists a point
x, in Y° such that Y(3°)(xg) = Y(31)(xo) ,
(2°, al . [o] - [1]). Actually, the E-2 de-
compositions of a point have common characteris-
tics which reveal the properties needed by a mo-
del Y in order to have the "unique E-Z de-
composition" property. We think of these pro-
perties as a kind of partial uniqueness and devo

te our next proposition to them.

3.3 Proposition. Let 9, 3' be monomorphism of

A and vy, y' interior points of Y. If Y(3)(y)=
Y(3')(y') , then (i) y = y' and (ii) Ret(d) =
Ret(d').

Proof. Let o : [n] =+ [m] (resp o' : [n]*’[m'])
be a retraction of 3 : [m] - [n] (resp‘ ' : [m']
BG [n]), whose existence was already proven. Ma-
pping the identity Y(3)(y) = Y(3')(y') by Y(0),
we get that y = Y(Ua')(y') since 09 = 1[&] .
Using the MacLane decomposition 03' = Sou where
6 is a monomorphism and p is an epimorphism, we
get y = Y(8) (Y(u)(y') ). Since y is inte-
rior and § is a n9nomorphism, 6 is an identity

and consequently “u = 03’ : [m'] + [m] is an

72



epimorphism, Thus m 2 m . With the same kind

of procedure one shows that m > m . Hence N
m = m . Since the only epimorphism [m] + [m]
is the identity one gets 09’ = 1[m] and 0'% =

= 1[m]° Thus we have proven that (i) vy = Y(o8')

(y') = Y(id)(y') =y and (ii) Ret(9d)

"

Ret (9"),

Remark: The proof just presented corresponds in
the cosimplicial case to the one presented by Ga-
briel and Zisman in [2] for simplicial sets, on

which ours was inspired.

3.4 Corollary. If Y(3)(y) = Y(3')(y'), where
3 : [m] » [n] and 3’ [m'] + [n] are monomor-
phisms of A, and y, y' are interior points of
Y , then : (i) m = m', (ii) y = y', (iii) if

|

m#£0 then 9 = 9

The proof of this corollary is an inmediate

consequence of the retraction criterion (1.3). No

tice also that when m = 0 we cannot conclude
that 9 = 8' , but (iii) can be put in a more sug_
gestive way:(iii') if 9 # 3 then 3, 9' : [0]+

> [n]

3.5 Definition. (1) A co-simplicial set Y 1is

said to be of the Eilenberg-Zilber type (E-Z type)

if every ye€Y has a unique E-Z decomposition.

(2) A co-simplicial set Y admits a co-sim=

73



a co-simplicial point if there exists a co-simpli
cial subset of Y with exactly one point in each

dimension-.

3.6 Lemma. In order for ye€Y® to be an element
of a co-simplicial point of Y it is necessary

and sufficient that Y(3°)(y) = Y(3al)(y) (23°, 3l:

[0] » [1] ).

Proof. That the condition is necessary is clear.
The sufficiency follows by induction on n . If
3, 3" [O] + [n] are two arrcws of A, then
Y(3)(y) = Y(3')(y) (which would imply that y be-
longs to a co-simplicial point of Y). In fact,
for n = 1 it is the hypothesis. Assume it holds

for k < n and let 3, 3 = [0] + [n]. For &

(and 3') there are two possibilities 3(0) = n
or 9(0) # n. In other words 9 = Gn-l o § or
9 = 3" o 6§ for some & : [0] + [n] (also 3’ =
310 86 or ' = 3" & where & [0] + [n-1]).

From the four possibilities there are two which
follow directly by induction hypothesis. As the
other two are treated similarly, we present only
one case, say Y(3"8)(y) = Y(an_iﬁ')(y)o Let

u o= Bn_1°.=o‘31 : [0] + [n-1] . By the induction

hypothesis Y(u)(y) = Y(§)(y) Y(8')(y). Then
Y(3™) Y(8)(y) = Y(3™) v(uw)(y) = v(3™" 1, .31y,
Similarly Y(3" 1) v(8')(y) = Y(3™ 1) vy(u)(y) =
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all= - 1 Al =
(0 ke i M &8 10 AR L L T T § (0 T
cause 3“'13“'1 S a“s“"i . This ends the proof.

3.7 Lemma. In order that Y admit a co-simplicial
point it is necessary and sufficient that there
exists two different arrows 9, 9 : [0] + [n] and

y €Y° such that Y(3)(y) = Y(3')(y).

Proof. The condition is evidently necessary. Con
versely we will prove by induction on k the pro-
position P(k) : " if there exist different arrows
o b by [0] - (x] and yeY® such that Y(3)(y)=
= Y(Bv)(y), then the co-simplicial set Y admits
a co-simplicial point". P(1) is the previous le
mma. Suppose P(k) for k < n. Let’s prove P(n).
Using the same technique as in 3.6, 3 = 3% o § or

9 = 3" 10 6 for some & : [0] + [n-1] . similarly,
3 ¥ TS on Rt FR Vo6 Y, 8" ¢ [6] + [A-1].

n-i)

In either case we apply Y(o to the identity

Y(3)(y) = Y(B')(y) , from which we get the existen
ce of §, s [0] + [n-1] such that Y(8)(y) =
= Y@YW ey v ae § # 6 , we apply the induc-

tion hypothesis to find a co-simplicial point,

but if & = 6 we cannot use the induction hypo-
thesis. In that case, one has 9 = Bnoé, 3' =
sPrdig (resp. 3 = Bn-lod, ' = 308 ) since
|
9 # AN TR MacLane decomposition of 2 must
- - -2
be Sal =g LA R, L .0% 0 He sapply (Y EO" ).
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cofase which exists because n 2 2 , to the equa-
» 3 i3 n-1 _n-3
ity Y(@3)(y) = Y(Q')(y) obtaining Y(3 P .

3° )(y) = Y(3™ 2 33, .. 3°)(y). But

anzl an-S 30 4 an—2 3n—3 ‘ 80

(MacLane de-
composition), and now we may apply the induction

hypothesis.

3.8 Theorem. For a co-simplicial set Y the follo-
wing statements are equivalent: (1) Y does not ad
mit co-simplicial points. (2) Y is an E-Z type
co-simplicial set. (3) For any pair of morphisms
3,3 : [p] » [n] such that Ret(d) = Ret(d'), if
there exist xeYP for which Y(3)(x) = Y(3' )(x)
then 9 = 3 .

Proof. (2) = (1) is evident. (1) = (3) since
otherwise there would exist 3,8' : [p] - [n] with
Ret(d) = Ret(d') 9 # 3' and xeYP such that
Y(3)(x) = Y(3')(x). By the retraction criterion
(1.3), p = 0. By the previous lemma, Y admits
cosimplicial points. Finally, (3) = (2): suppo-

se that 2z has two E-Z decompositions, say
]

z = Y(3)(x) = Y(3')(x'). Then by (3.3) x = x ,
1
Ret(d) = Ret(d') and, by hypothesis, 93 = 3
1
consequently <x, 9> = <x', 9 > .
§4 Stability of interior points under co-degene-
racies. In a cosimplicial set, if ye:Yn is an
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interior and 0 : [n] + [m] is an epimorphism then
Y(o)(y) is not neccesarily interior. In other
words, it may happen that Y(oj)(x) = Y(8)(x') with
¢ an epimorphism, o a monomorphism and x . x' in
terior points; but the arrows being non trivial.
It is our purpose to exhibit co-simplicial sets
with this feature and to observe that the proper-
ty of being of E-Z type is not enough to make it

disappear.

Take, for example; a simplicial set X which
in dimension 2 has two different non degenerate
points a and b such that d,(a) = d,(a) = d,(a)
= do(b) = d,;(b) = d,(b). That is the case with
K(G,2) or more generally with any simplicial group
K for wich H2(K) # 0. Let C be a"sufficiently
large" set. Let v : X, + C be a function, and

[o]
w = vod, = voX(3 ) : x1 + C, We define u : X2 -+

+ C as follows: u(so(x)) = w(x) for any x €X,.
For a and b above, we take wu(a) and wu(b)

to be two different points of C. For the other

points of X2 it does not matter how wu is defi

ned. We denote by Y the cosimplicial set with
Y? =,S(Xn, C), and co-faces induced by faces of

X by composition. The point u€:Y2 cannot be

factored through d,, d1, d2 - X2 > X1 and there-
fore it is interior. On the other hand, Y(g°)(u)=
= sgou = w = vody, = Y(3°)(v) and therefore it is

not an interior point.
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We now give some examples of co-simplicial

sets with stable interior points

4.1 pefinition., A co-simplicial set is said to

satisfy M0.2 (cf [1] ) 4if for every n > 0 , e

very interior point x €Y" and every epimorphism
o : [n] - [p] , Y(0)(x) is also interior point.
Examples:
k.2 Let p 3 0 and Y( ) = A([p], =)

A+ 8 . A pbitit x ¢ [p] » [n] is interior
when it is an epimorphism of A. It is evident
that if o [n] + [m] is an isomorphism then
gox = Y(o)(x) is also an interior point. This
model does not have co-simplicial points. Neti-
ce that in terms of the E=Z property this means
that in A any arrow a ¢ [p] * [n] is decomposa-
ble in the form 3 o0 where 9 is a mono and ¢ an
ephimorphism, and this decomposition 1is unique.
That is to say, the E-Z type decomposition of
these models (p %> 0) 1is equivalent to the uni-

"que Mac-Lane decomposition in A.

L 3 The co-simplicial set A( ) : A +» & defi-
ned by A(n) = {(toao,sgtn)l 0€t; €1 ,
Lty o= 1} . 1f o : [n] > [m] then A(a)(x) =
(To,ou.;,Tm) , where x = (to,...,tn) and

T, = I t, , the sum running over the set {if a€q02

= i}, When this last set is empty , T,#=%04° ;In
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this co-simplicial set a point x = (tg,co.,t. )

n

1s interior 1f none of the t;'s 1s Zero Evi-
4

dently A(a)(x) is also interior if and only 1if

o 1s an epimorphism. Notice alsc that this model

does not have cosimplicial points

b 4 The co-simplicial set P, ( ) : A =+ &
which associates to each [n] the set of non
empty parts of [n] = {10, 170% . nPE Tand Tol eath
o : [m] » [n] the map P,(a) = direct image by o.
In this case a point Ac€P, ([n]) is interior
if and only if A = [n] . This characteristic
is certainly preserved by epimorphisms. Since we
have eliminated the empty set from the set of
parts, this model does not have co-simplicial po-
ints and consequently 1s an F-7 co-simplicial
set. The unicity of the E-Z decomposition be-
comes simply the fact that a totally finite or-
dered set can be enumerated in only one way re-
specting its order and beginning at zero. In this

o (o] 5 °
example as in the others, Y is a point

L .5 More generally, for each integer p 2> 0

let A'[ ]P : A > S be the co-simplicial set gi-

ven for each n by A'[n]p = {(Ao,...gAp)l g # A,

chAjees gApc_[n]} , and for each a : [n] - [m]
\J

by A [a]p (Agy.eosAl) = (a(Bg),.cpa(Ar) ). In

this case (Ao,...,Ap) is interior in dimension
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n if and only if Ap = [n]a This property 1s a-
gain preserved by epimorphisms. Moreover, if o
preserves one interior point then O must be an epi
morphism. Example 4.5 is simply the p-th dimen -
sion of Kan’s first sub-division over A[n] . The
model A'[ ]P do not have co-simplicial points
and the E-Z decomposition of x = (Ao,..o,Ap)
with @ FA,c... gAp g[n] can be given in the fo
llowing simple way. Let q = card(A_) - 1 ; there
exist one and only one monotone map a : [q] » [n]
such that a([q]) = Ap' We define B, = a-i(Ai) s

1
thus A [a]p (Bo,...,Bp) = (Ao,...,Ap) . The pro

perties MO0.2 and E-Z of these co-simplicial sets

are used in [1] in order to prove that Kan’s first

sub-division does not commute with finite products.

L.6 Remark. In our examples the property M0.2 and
the non existence of co-simplicial points are pre
sent together. That is not true in general. In
fact, if in example 4.5 we drop the <c¢ondition

" Ai # § " and denote the co-simplicial set by

Yp , then the element of Y; of the form (Ag,..

5614 Ap) with A_j = g for every Jj is the only
one which generates a co-simplicial point. Howev-
er , a point y = (Ao,...,Ap) is interior if
dim(y) = 0 or if dim(y) = n > 0 and A_ = [n] .

P
Thus, Yp has property MO.2 .
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L,7 Remark. We now face the inverse of situation
4.6. That is to say, we will provide an example
of a E-Z co-simplicial set Y which fails to have
MO.2 . We will take the example at the begining
of the present section (§4) which, as we know
fails to have both MO.2 and E-Z properties. We
then exhibit a procedure which allows us to ele-
minate the co-simplicial points. We then make su_
re that this procedure does not eliminate the MO0.2

failure.

If a co-simplicial set A has co-simplicial
points then one can get from it a co-simplicial
set without co-simplicial points by eliminating
all the points which by some co-face co-degeneracy
fall into a co-simplicial point. A characteriza-
tion of the eliminated points can be given as fo-
llows : let xeYP , then "there exist e:[p]~+[m]
such that Y(e)(x) belongs to a co-simplicial
point if and only if Y(n)(x) belongs to a co-sim
plicial point, where n : [p] =+ [OJ L2 We recall
that Y(n)(x) belongs to a co-simplicial point if
and only if Y(3°n)(x) = Y(3ln)(x). If in our exam-
ple, at the begining of the section, we do the sur
gery just described, it remains to see that if the
point v is not a co-simplicial point then it is
not eliminated. In fact, if it were eliminated
then Y(3 n)(u) = Y(Bln)(u) for n =00 : [2]~+[o].
Since by construction Y(3°)(v) = Y(6°)(u) , one
gets Y(3°)(v) = Y(3al)(v).
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