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ON SOME GENERAL DISTRIBUTIONS IN TERMS

OF GENERALIZED FUNCTIONS

by

G.S. lINGAPPAIAH

Summary.

In this paper, a general distribution derived
from a generalized Bessel function, together with
a generalized Beta distribution are discussed. An
alternate method for obtaining the distribution
of the sum of n independent random variables for
the first distribution is obtained. Three of the
parameters in this distribution are estimated by
different methods under certain conditionso Dis-
tribution uf maxima and mlnima are also conside-
redo For the generalized Beta distribution, esti
mates are put in closed form in terms of the gen~
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ralized hypergeometric function FA

§1 Introduction. Recently, generalized distribu-
tions are receiving much attention and they are
in many instances effectively used to describe
practical situations. There are two aspects of
interest as found in the recent literature. First
the techniques of deriving these distributions 9

and second their actual application to practical
problems. Regarding the former aspect9 one could
find examples in [1] and [3J. In [3J for instan-
ce, the non-central F distributions, as well as
a generalized exponential family of distributions,
are obtained by starting with a non-central chi-
square distribution and its conjugate form for
the prior. General procedures to exploit the con
jugate priors as well as quasi-priors are discuss
ed in [8] . In [1J 9 a generalized distribution
is used with its conjugate prior to arrive at an-

othergeneral distribution, which occupies the ma-
jor part of this paper. Regarding the latter as-
pect. that is, the actual applications of the ge-
neralized distributions, reference is made to [2J~
Other applications are illustrated in [1] and [5] I

the corresponding generalizations in [4] In
this paper, the estimation problem is considered
with reference to these general distributions.

§2 Distribution of the Sum. In [1], we find that the
random output of a device in a radar system is
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expressed as a generalized distribution which is
derived from a generalized Bessel distribution by
considering a conjugate prior. This derived dis-
tribution (with e = i) is

(1) f{x) ~ e=r2/2A{2A at)Q aP L L
i=O j=O

(r2)i (at)i+j e~ax xP+j-1 r{Q+i+j)
i~ j% r(Q+i) r(p+j)

where t 1/(1+2Aa)~ A~ > 0,
2

~ o . It= a., x r
may be put in several forms:

(la) f(x) Wg(x;o.,P)'i'2(Q; Q, p. 2 o.t,atx)::: r~

00

(lb) f(x) = w L g(x;o.,P+j) tj (Q) . 1F1(
j=o ]

Q+j, Q, r2o.t)/j!

where W -r2/2 (2/\ o.t)Q and g{x;et, P) is the- e
Gamma density. Form (1b) is more interesting as
it represents the sum of the products of Gamma den
sities with the confluent hypergeometric functionso

Using (1a~.we have the joint d~nsity of n-inde
pendent variables~

-ax'
(Q)ai+bi e 1

(Q)a. (P)b .
. 1 1
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Where Ll and L2 run over at'ooan and bl,c

, ,
• 0 b , respe c t ively ~ and the a s and b s run

n
from 0 to 00 Making the transformation:

( 2 a)

and integrating over the region o < ul < u2 Q co

the trans for< un the function g(u1, ',0 0 ,un) ,
mation of (2), we have:

y un
(3) f 00' J g(uloe,oun)du1uoodun

o 0

= 'e-ay [ i~1 r(p+bi) ] ynP+b-l ab/r(nP+b) )

where b = L boo From (2) and (3)~ we have
1

fey) n nP)' [nrr (r2 t),a
i J= W g Iy r n , L

1 ° 1 a 001= 1

.iP2 [ Q+a1,"ooQ+an
100

nP; atY,.o.,aty],



where <1>2

tion, [11]
00

f f(y)dy =
a
exactly the distribution

is the generalized hyper~geometric func
p.14S. It is trivial to show that

1 using [10J po222o Formula (4) is

of the sum of n-indepen-
dent variables of the form (1). Again using [10] ~

the characteristic function of (4) is

(4a) n nP -nP ( _ -:--Ct.t
o

) -nQw a (a-iz) 1 a-1Z

which is the expression (36) of [1J or the chara£
teristic function of the ge~eralized confluent hy-
per-geometric distributio"n (39) of" [1J It is'
true (39) of [1J is more compact than (4), but the
advantage of (4) is that it 'circumvents a heavy
contour integration~ discussed at length in [1J
Further, it can be used to express the estimates
in terms oE ge~eral functions. If need be~ (4)

can be put in a simpier form ~han (39) of [1J

( S)

IX)

f(y)=Wn g(y;a,nP) I
j=O

Of co u r.se, (4), (S) and (3 9) 0f [1], all thr ee g i:.
ve the same characteristic function

(Sa)
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where T = 2Aa2 - iz{1+2Aa).

To obtain (5), write (4) as

Ii I2
n [2 a· J(5b ) V II (r /20.) 1./ai!

i=l

. [N{b.;Q+a.;l-t)]{ay)b [(np)bJ-1,
1.. 1.

where -nr2/2AV = e g{y;a,nP)>> b = Eb. , and
1.

negative binomial distribu-
parameters a and (l-t). U-

N{b; a; l-t) is the
tion on b with the
sing the convolution
we get

with fixed Q+a.
1.

and 1-t,

(5c) n .
W .g{y;a; nP) 2 a·

(r at) 1./a.!
. 1.

.I{Q+a)s
8'=0 {nP)s

(5d)

co (Q+a's
(nP) s

,Is=o

where a = Ea. and P{A:X) is the Foisson den-
J.

sity function. Again using convolution, arid;
writing j for a, we have

102



-nr2/2'A. 00 00

(5e) (2Acxt)nQ g(y;a,nP) L Le
s=o j=o2 c (Q+j)s (aty)S(nr CXt)]

j! (nP)s s !

which is (5 ) •

This alternate method though a bit lengthy has
many advantages. In addition to the advantages
mentioned under (4a), here9 negative Binomial and
Poisson densities are intertwined in general func
tions. Finally, there are two forms (4) and (5)
as the need may be.

If 2
r = 0, (4) and (5) reduce, respectively,

to

(6) fey) = g(y;a,np)(2'A.cxt)nQ<f>2[Q'...Q;np;aty, ....aty]

and

(6a) fey) = g(y;a,nP)(2'A.at)nQ 1F1 [nQ;nP;aty].

Naturally, (6), (6a), and (39) of [1J
give the same characteristic function

2with r = o.

with 2
r = 0

(36) of [1J

§3 Distribution of the Maximum and the Minimum.

The distribution function corresponding to (1b) is
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00

(7) F(x) = W L G(x;a;Ptj) 1Fl (Q+j;Q;r2at)
j=O

• (Q). til]!
J

where G(x;a;P+j) is the distribution function
of the Gamma variable. Since G( 0) =".0 then
F(O) = O. Also

00 tj(Q)j 2F (Q+j;Q;r at)j! 1 1( 7 a) F(oo) = H L
j= 0

w 2exp (r at/1-t) = 1,=

by using page 283, of [9J,

So~ the probability integral can easily be
evaluated in terms of the Gamma probability in-
tegral and the confluet hype~ geometric functions~
the tables of wich are avaible in [7J. F(x)~ if
nece~sary, can be expressed in terms of tne func
tion 1F1( ) of (7a)~ since

(7b) F(u) = W L (I e-U Uk/k!) 1F1( )
j k=P+j

'tj(Q)./j!
J

00

( 7 c) = Trl'g(u:P+1) L
r=O

r
u s I(P+1)r r ,

where u = ax s =r I
j=O

c.
J

, and
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If v denotes
vations~ then

U(n)' the maximum among n~obser

( 8 )
n

H(V) = F (v )

00

= Wn[g(V;p+1)]n r
t= 0

ta(t,n)v ,

where is the coefficient of vt in the ex
pansion of

vr s /(P+1) In
r r

and satisfies the recurrence relation~

(Ba) a(t,n) = soa(t,n-1)+s1a(t-1,n-1)/(P+1)

The minimun can be handle similarly. Incidental
Ly , if Q = P = 1 and r2 = 0 in (1), we have

00

(Bb) f(x) = e-ax(2Aat)a L (atx)j/j!
j=O

= 2Aat -ax(1-t)
e

which is an exponential distribution with the pa~
rameter (1-t)<
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§4 (I) Estimation of r for known ex~A from one
observation y. From (5)~ we have

(9) f(y) = AL e-nr2/2A(nr2ext)jlFl(nQ+j;np:exty)/j!
j

where A = (2Aext)nQ g(y;ex~nP).
_r2/2is f(r) = e r, r > 0

If the prior of r

then

( 10)

~ (e-r2 (1+~ )/2 or) (next )j (r 2 )j 1F 1 ( )I j ~
J 4 (2next)j (l+~)-(j+1) 1F1( )

J

where lFl( ) is as in ( 9 ) 9 from which we get

( 1:~)

I(j+l)aj
1F1(nQ+j;np;exty)

(11) E(rly) = J

L aj lFl(nQ+j;nP;exty)
j,

where a = (2next)/1+~) and ~ = n/A For e x amp Le ,

if n = 2, ex = 2 ~ A = 1, Q = 1 , P = 2 and
xl = 05, x2 = 1.5 so that y = 2, then
" E(r/y) (up in 1Fl)·r = = .7375 to 4 terms

(ii) Estimate of ex with exA = k
and r2 = O. I h I (1)n t ~s case9

( a known constant
can be written as
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(Q) 0

]

j ~ (p) 0

J

(_k )n
Q -etnx n

(12a) L(x!et) = e r~n(p) L IT
l+k i=1

(Q) a 0

P-l a+nP
x et

~ i (~)ai
(P) a 0 ~ 1+ka 0 ~~

where L runs over a1 ••• an, a = L a. and
i ~

If the prior of et is e = f(et)x =
et > 0, then we get using (12a):

(13) = (~::i)rA [nP+ 2 ;Q , •• 0 Q ; P ,•.,P ;t 1 ~ ••• tnJ
F A [nP+ 1 ;Q , •• 0 Q ; P ,..•P ;t 1 .-.tnJ

where ti = Xi!(k+l)(l+nx)) and FA is the general
'ized" hyper-geometric function, [11J p.445. If
P = Q = 1 , then (13) is

(13a) E(alx) = n+l
1+nx

. '

FA [n+ 2 ; 1 , •.• 1 , 1 , 0 •• 1 ; ex 1 ' ••• e Xn ]

FA [n+ 1 ;1 i." 1 ,1 , .-.1 ;ex 1 ..•ex n]

where e = l!(k+l)(l+nx). But
.'
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1

So, (13a) reduces to (n+1)!1+ax) where a = k!(k+1)o
This is exactly the value of E(alx) obtained star
ting from (8b)o This is a good check for (13).

(IIi) Estimate of A for known a(r2
= 0): From (1),

we have

(14) L(X1·· .xn,A)

n P-1
• IT xi 1F1 (Q;patxi)

i=1

-anxe nPa

a-ax log L = 0, gives

(15 ) n-- + 2na =
A

n

L
i=1

x .
J. ;

(15} can be solved for A by trial and error kno-
wing a and small values of n, using the tables of
1F1 in [7] For the example of section 4(i) ,,..
this method gives A = 0.5.

§5 General ised Beta density Estimate of r for
known 6. Again from [1], we have a generalised
Beta density as
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(16)
00 00

l L (r2/4A)i+j
i=o j=O

r(Q+i+j) X(Q/2)+i-l(1_x)(Q/2)+j-l
r[(Q/2)<{bijr[(Q/2)+j] U j!

'¥2[Q,Q/2,Q/2~
2r x
4A

,

where B(P,Q:x) is the complete Beta function.
From (16a), we have

(Q/2)a.(Q/2)b.~ ~

1

where x = x1,···,xn and L1, L2 are as in Sec
tion 2.

From (14), we have, if the prior of r is
2expC-r /2), r > 0 ,
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(17 a) L(rlx) =

where ~ = l+(n!A), FA is the generalized-geom~
tric function mentioned in 4(ii). FA(T) = FACT;
Q+a1,··.Q+an;Q/2, ••• Q/2;t1, ••• tn) with
t. = (1-x.)/2A~ ~ and~ ~

~]
~

From (17a) we have

(18) E (r Ix ) 1. llr(a+2)FA(a+2) C~l e i)=
~ llr(a+l)FA(a+l) (i~l e i)

The evaluation of E(Alx), the estimate of A, fo-
llows along similar lines.

***
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