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ON SOME GENERAL DISTRIBUTIONS IN TERMS

OF GENERALIZED FUNCTIONS

by

G.S. LINGAPPAIAH

Summary .

In this paper, a general distribution derived
from a generalized Bessel function, together with
a generalized Beta distribution are discussed. An
alternate method for obtaining the distribution
of the sum of n independent random variables for
the first distribution is obtained. Three of the
parameters in this distribution are estimated by
different methods under certain conditions. Dis-
tribution of maxima and minima are also conside-
red, For the generalized Beta distribution, esti

mates are put in closed form in terms of the gene
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ralized hypergeometric function FA .

§1 Introduction., Recently, generalized distribu-

tions are receiving much attention and they are

in many instances effectively used to describe
practical situations. There are two aspects of
interest as found in the recent literature. First
the techniques of deriving these distributions
and second their actual application to practical
problems. Regarding the former aspect, one could
find examples in [1] and [3]. Inm [3] for instan-
ce, the non-central F distributions, as well as
a generalized exponential family of distributions,
are obtained by starting with a non-central chi-
square distribution and its conjugate form for

the prior. General procedures to exploit the con
jugate priors as well as quasi-priors are discuss
ed in [8]. In [1]9 a generalized distribution
is used with its conjugate prior to arrive at an-
other general distribution, which occupies the ma-
jor part of this paper. Regarding the latter as-
pect, that is, the actual applications of the ge-
neralized distributions, reference is made to [2]9
Other applications are illustrated in [i] and [5]9
the corresponding generalizations in [u] » In
this paper, the estimation problem is considered

with reference to these general distributions.

§2 Distribution of the Sum. In [1], we find that the

random output of a device in a radar system is
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expressed as a generalized distribution which is
derived from a generalized Bessel distribution by

considering a conjugate prior. This derived dis-

tribution (with 6 = 1) is
2
(1) £(x) = e T /M n a)¥f ] ]
i=0 §=0
(r2) (at)it] o"O% LPtI-1 T(Q+i+7)
il 4% T(o+i) I(P+3)
2

where t = 1/(1+2xa), ay, Ay, x > 0, » 2> 0. It

may be put in several forms:

(1a) f(x) = Wg(x;a9P)W2(Q; @, Pg r2at,atx)

(1b) £(x) = W ] glx;a,P+i) € (Q); ,F,(
§0 Rl
0+§, Q, r20t)/§:

- 2 A
where W = e © e (2A at)Q and g(xs3;a, P) 1is the
Gamma density. Form (1b) is more interesting as
it represents the sum of the products of Gamma den

sities with the confluent hypergeometric functions.

Using (1a), we have the joint density of n-inde

pendent variables:

n nP.-n n (Q)aj+b; e M

(2) wa™TT(P) J; I, W .
i=1 Q) (P)y .

s 1
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X (r® at) (atx.)
i i
a,! b.?:
1 i
Where 21 and 22 run over a;..-ag and bio

1
"bn s, respectively, and the a's and b s run

from O to . Making the transformation:
(2a) ug =Xy

u, = x; t+ x,

U, Xyteootx, =y

and integrating over the region 0 < uy < u,
< u the function g(u1’°°"un) » the transfor

mation of (2), we have:

y Un

3 &5 d 56 V.

(3) g é g(u1 ‘un)dui“ du_
. -ay 3 1 .nP+b-1 b
= e I T(P+bi) ] y a /T(nP+b) ,
i=1
where b = ) b,. From (2) and (3), we have
n 2 a3
(u) £(y) = W" g(y:a, nP)Z | S-E—L?—
O FEoRg

n ? nPj; aty,*°'9at3’] ’

.@2 [ Q+a1,‘.,Q+a
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where o is the generalized hyper-geometric func

tion, [11] p.145. It is trivial to show that

[}

f f(y)dy = 1 using [10] p.222. Formula (4) 1is
0

exactly the distribution of the sum of n-indepen-

dent variables of the form (1). Again using [10]9

the characteristic function of (u4) is

_nQ
n nP . -nP at
(4a) W oo (o-iz) (1 S )

2 at
. exp { nr ot/ (1 - u-iz) ]

which is the expression (36) of [1] or the charac

teristic function of the generalized confluent hy-
per-geometric distribution (39) of [1] . It 1is
true (39) of [1] is more compact than (4), but the
advantage of (4) is that it circumvents a heavy
contour integration, discussed at length in [1] .
Further, it can be used to express the estimates
in terms of general functions. If need be, (4)
can be put in a simpler form than (39) of [1] :

o 2 j
t .
(5) £(y)=H" glysa,np) | {EESE p (no+j,nPiaty).

1=0

0f course, (4), (5) and (39) of [1] > 2ll three«gi

ve the same characteristic function :

t

(5a) (2a)nQan(P+Q)(a_iz)nQ-nP T;nQexp[-nr2iz/2XT]
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where T = 2Aa2 - iz(1+2Xa).
To obtain (5), write (4) as
B 2 a3
(5b) 5% Jg g vl [(r /20) “/ag! ]
i=1
N(b,;Q+a,;1-t) |(ay)® [(aP) 171
© i’ i’ y b 9

2
where V = e nr®/2X

g(ys;a, nP), b = Zbi , and
N(b; a; 1-t) is the negative binomial distribu-
tion on b with the parameters a and (1-t). U-

sing the convolution with fixed Q+a:.L and 1-t,

we get
n as:
(5¢c) Wn.g(y;a; nP) Z il [ (rzat) 1/al.! ]
i=1
Cy @*ads  cary)S
g=o (BP)g s:
n nrlat D 2
(54d) Wo-e .glys;a;nP) 21 it [P(r at,ai)]
i=1
E (Q+a)g (aty)®
s=o (nP)S s! ’
where a = Zai and P(A:x) is the Poisson den-

sity function. Again using convolution, and

writing j for a, we have
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oo (=]

g(ysa,nP) J ]
s=o j=o

2
(5634 T{bAat)PQ a700 /22

(nr20t)T  (Q+j)g (aty)s
is (nP)g s!

which is (5).

This alternate method though a bit lengthy has
many advantages. In addition to the advantages
mentioned under (%4a), here, negative Binomial and
Poisson densities are intertwined in general func
tions. Finally, there are two forms (4) and (5)

as the need may be.

& r2 = 0, (4) and (5) reduce, respectively,
to
(6)  £(y) = glysa,nP)(2xat)”%, [0,...0snP;aty,maty]
and
(6a) f(y) = g(y;a,nP)(Qkat)nQ 1F1 [nQ;nP;aty].

s 2
Naturally, (6), (6a), and (39) of [1] with r” = 0
give the same characteristic function (36) of [1]

with r2 = 0.

§3 Distribution of the Maximum and the Minimum.

The distribution function corresponding to (1b) is
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(7) F(x) = W ) G(x303P+7) 174 (Q+j;Q;r2at)

where G(x;a;P+j) is the distribution function

of tne Gamma variable. Since G(0) = 0 then
F(0) = 0. Also
v )] 2
(7a) F(») = W } ——gf—l 1F4 (Q+isQ3rTat)
i=0 ’
= i g exp (rzat/l—t) 1,
(1-t)

by using page 283 of [9],

So, the probability integral can easily be
evaluated in terms of the Gamma probability im--
tegral and the confluet hyper geometric functions,
the tables of wich are avaible in [7]. F(x), if
necessary, can be expressed in terms of the func

tion 1F1( ) of (7a), since

(7b)  F(u) = W ] ( Tireec? uk/k!) 1Fqd 3
j \k=P+7

4] <y
t (Q)j/J-

©0
- % r
(7¢) = W g(u:P+1) J u s /(P+1)
r=0
where u =  ox » S, = f Cj , and

104



n il L PR R

and C1 = (Q)j LR Y

If v denotes u(n), the maximum among n-obser

vations, then

o

(8)  H(v) = F*(v) = W [g(v;P+1)]® T alt,n)v’ ,
t=0

where a(t,n) 1is the coefficient of vt in the ex

.

and satisfies the recurrence relation:

pansion of

n
r
v Sr/(P+1)r }

ne-1 8

0

(8a) a(tyn) = soa(t,n-1)+sia(t—1,n—1)/(P+1)

+ s2a(t-2,n—1)/(P+1)2+‘o.+sta(0,n-1)/(P+1)t.

The minimun can be handle similarly. Incidental

Ygosedift Q=P ='1. and r2 = 0 in (1), we have
w °
(8b) £(x) = e **(2xat)a § (atx)’/q!
320
= 2at e-ax(iat) ,

which is an exponential distribution with the pa-

rameter (1-t).
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§4 (i) Estimation of r for known a,\A from one

observation y. From (5), we have

(nrzat)]lFl(nQ+j;nP:aty)/j!

2
(9) f£(y) = A} 7 °F (24
J

(2)\at)nQ g(y;a,nP)., If the prior of r

2
o™t /2

where A

is f(r) = I r >0 , then

2 . o
A R LN IZE
(10) f(rly) =

Z (2nat)j (1+g)'(j*1) 1F1( )
]

where 1F1( ) is as in (9), from which we get

Z(j+1)ajiF1(nQ+j;nP;aty)
(11)  E(r|y) = (—1- UL
1+¢ ] al 1F,(nQ+j;nPsaty)

3

where a = (2nat)/1i+£) and £ n/A . For example;

if n=2, a=2, X=1, Q i, P =2 and
X, = .5, x. =1.,5 so that y = 2, then

v = E(r|y) = .7375 (up to 4 terms in 1F1)°

k ( a known constant

(ii) Estimate of o with a)

2
and r” = 0. In this case, (1) can be written as

(12) f£(x) = xP'i(—l—)Q e ®*r~1(p)of ¥
1+k j=0
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(Q)ﬁ <ax ) j
A (P)j 1+k

nQ — n
(12a) L(x|a) = <—5-) eTMX ey § o1

i+k i=1
P-1i a+nP
(Q)ai x < X3 >al
(p) a,! 1+k
; i
where z runs over ai...an, a = g a; and
X T KypoeosX o If the prior of a is e = f(a) ,

a > 0, then we get using (12a):

nP+1
1+nX

F,[nP+2:;0,...03P,c.cP3tss.at
(13) E(alx) - ( ) A[ st s 1 n]
FA[nP+1;Q,.rQ;P,.“P;ti.utn]

where t, = xi/(k+1)(1+n;)) and F, is the general
ized hyper-geometric function, [11] p.uus5, If
P=Q =1, then (13) is

n+1 FA[n+2;1,...1',1,“.1;6)(1,.-.97(1_1]

(13a) E(a|x) = Tens
ax FA[n+1;1,".1;1,”.1;9x1."6xn]

where 6 = 1/(k+1)(1+nx). But
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1
F (n+231,..131,...1,6x,...0x_ = omet
A i [1«9(nx)]n+2

So, (13a) reduces to (n+1)/1+ax) where a = k/(k+1).

This is exactly the value of E(a|x) obtained star

ting from (8b). This is a good check for (13).

(iii) Estimate of A for known a(r2 = 0). From (1),

we have
(1) L(xg...x_,0) = (22at)?? e™*™* 7" (p) o™F

n

P-1
.121 X 1Fyq (Q,Patxi) :
3 _ .
% log L = 0 , gives
2 n x, .F,(Q+1;P+1;0tx.)

(15) By afign=-28oriapl 22 22 —

A p i=1 1F1(Q;P;atxi)

(15) can be solved for A by trial and error kno-
wingia and small values of n, using the tables of
F, in [7] . For the example of section u4(i) ,

171
this method gives A = 0.5.

§5 Generalised Beta density Estimate of r for

known 6 . Again from [1], we have a generalised

Beta density as
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2 o0 [+ o] 6 .
(16)  £(x) = e T /22 T T (pZjun)itd
iz0 j=0
Tlosis]) x ottty 5y (072)e5e

r{tas2)+i]r(qQ/2)+3] iv 5!

2
(16a) = e T /2A B(Q/2;0/2:x)
2 2
' . ) o rx r-(1-x) ]
L. qz[QQQ/29Q/29 L})\ ] '+ A s

where B(P,Q:x) is the complete Beta function.

From (i6a), we have

2 n
(17) L(x]|r) = e ? /21[ it B(Q/2;Q/2;xiﬂ2121

i=1

(Q) 2 as 2 b s
a;+by <r xi) i <r (1-xi> i i
A s
(Q/2)ai(Q/2)bi 4 4 oA a;ib,!
where X = X 500X, and 21, 22 are as in Sec

tion 2.

From (14), we have, if the prior of r is

exp(-r2/2), pid0a,
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(17a) L(r|x) =

2g/2 2,atb . b,
1y, & Q) g 4p, (r)° n(xi)al[(1~xi)] iy
a

(Q/2)4, (Q/2)p, A A $4b ¢

n
21 F(at1)F, (a+1) [ 21 ei} (1/78)

i

where & = 1+(n/A), F, 1is the generalized-geome
tric function mentioned in u4(ii), FA(T) = FA(T 3
Q+a1,.,..Q+an;Q/2,..°Q/2;t1,...tn ) with
ti = (1-xi)/2AE , and
ao
b, SN 1
0, = [(Q)ai ( — ) 1
i — 0\ g
- (Q/2)ay £ a,! )

From (17a) we have

1, T(a+2)F,(a+2) (c
(18) E(rlx) = 1 A i

4
g

T=T-1 N~
P -

@
A

I,T(a+1)F, (a+1) (

o

The evaluation of E(A|x), the estimate of A, fo-

llows along similar lines.

* % %
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