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A DUALITY BETWEEN HILBERT HODULES AND

PIELDS OF HILBERT SPACES

por

Alonso TAKAHASHI

Abstract. The category of Hilbert mod~
les with abelian C*-algebra of scalars and
the category of fields of Hilbert spaces
over compact Hausdorff spaces are discussed
and a duality between them is exhibited.

§O. Introduction. In [3] we considered Hilbert
modules over a C*-algebra A <[3], 2.15), and
fields of Hilbert modules ([3], 3.04), obtaining
a representation of Hilbert modules as continuous
sections on a field 1T: E -+ X over the maximal
ideal space X of the center of A ([3]) 3.12);
when the C*-algebra A is commutative the asso-
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ciated field n is a field of Hilbert spaces ([3],
3.13). This representations will be used here to
get an e uivalence between Hilbert modules on the
one hand and fields of Hilber spaces on the other.
These results appeared first in the author's doc

oral dissertation (Tulane University, 1971).

§1. Decomposable operators. The pull-back
field. In order to s ate the adequate definitions
of morphism between fields over different base
spaces we need some information about linear maps
between modules of continuous sections on field of
normed spaces.

A field W: E + X of Dormed spaces ([3], 3.01)
will sometimes be denoted by (E,n, X). A subset
I'1 0 f sec t ion S 0 f 1T is 6utI iff 0 ran y e E: E the re
e xi s s a section at: r1 such that a[n(e)] ::e.
We always s ppose tha rb(n) is full.

We also assume th t for each bc c I' (n ) the
function No given by Na(x):: Ila(x)ll, E:: X, is

n Cb x. Observe that his is the case when TI

is a field of Hilbe t spaces,
b 7T) we have <alp t:. Cb(X)

is also in Cb(X).

for each pair a,T E:

and so N :: <ala>~
(J

1001. ~emma" Suppo~e that E,W,X) ~h a 6~etd
06 nOlLmed ~pac.e-6 and tet aoE: rb(w) and Xo c x ,
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(i) 16 0o(xo) ¢ 0
~ha~ (1) 0 ~ a ~

Ii o 0 ( x 0 ) II •

~ helL e ex-i.6~.6
1, a{x):: 1

an a C Cb(X) s ueh:
a.nd (2) Ilaoo~ ='

(ii) 16 00 (xo) :: 0 ~hen, 60IL eac.h <5 > 0 ~heILe

ex.i..6~.6 an a -in Cb{X) .6a~.i..66tj.i.ng c.ond.i.~.i.on '(1) abo
ve , and' (3) Ilaoo II .~ s ,

ProoL Take a f x ) ::(max {1, 1I00(xo)II-1
-1 x~X

~oo(x)~}) , in the first case and
a(x) :: 1-o-1min {~oo(x)~,o}, in the second.

XC X
Bo un deoness is clear and continuity follows from
the continuity of x i+ Il0o(x>ll " The other condi-
tions are easily checked. -

10020 Definition. Assume that (E,TI,X) and
(El

s TIl, X) are two fields of normed spaces (over
the Same base space X)o A linear map T: rb(TI) ~
rb(TI') is said to be dec.ompo.6able (over X) if there
exists a family {T{x)}x~x such that:

(1) For each xcX,T(x) is
rator of E = 'TI-1(x) intox

a bounded linear ope-
E' :: (TI')-l(x).

x

(2) sup /IT(x)1 < + OX) 0

x(X
(3) (TO)(x) ::T(x)o(x) bfor any 0 C r (TI), X c, X.

In this case we write T:: {T(X)}XLX' Note
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that (3) implies part of (1), namely the boundedness
of the operators T(x), x e; X. The next proposi-
tion gives equivalent conditions for T to be de-
composable.

1.03. Proposition. Fo~ any tinea~ map
T: rb(TI) ~ rb(TI~) the 6otiowing a~~e~tion~ a~e
equivalent:

(i) T i4 bounded and Cb(x)-linea~ (ioe. T(acr) ::
a ( T o ) 60~ all a c C b ( X ), a E: r b (TI)) 0

(ii) T i~ bounded and 6o~ any Xo c X and any
croLrb(TI), ..£6 cro(xo) = 0 then (Tcro)(xo) :: o.

(iii) T i6 decompo4able ove~ Xo

Mo~eove~, ..itthe4e cond..it..ion~hold and
T = {T(x)}X(X then ijT~ :: sup ijT(x)~

xx X

r
ProoL (i) ~ (ii)o Assume cro(xo) :: 0 and t a k e

E > 0 arbitrary 0 Let 0 > 0 be such that
II TcrII $ E w hen eve r Io II < s , By 1. 01 0 (i L) we can
pick a E: Cb(X) with 0 ~ a ~ 1, a(xo):: 1 and
ijacro~ < o. Then ~T(acro)~ ~ E~ and this implies
~T(aao)(xo)~ ~ E. But T(acro)(xo):: [a(Tcro)](xo)=

a(xo)(Tcro)(xo) :: (Tcro)(xo), thus ~(Tcro)(xo)~ $ E
and since E > 0 was arbitrary, (Tcro)(xo) :: o.

(ii) =>(iii).

T(xo): E -+ E'
XO x.,

For each xoCX define
-1as follows. Given eCE :: TI (xo)Xo
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let aCrb(TT) be such that o(xo) =: e and p t

T(xo)e :: (Ta)(xo). Let us check that T(xo) is

well defined, Suppose e:: o(xo) :: T(Xo)~ a~
b

T C ( TT) , i oe • ( 0 - T) (x 0) :: O. Then, by h y pot he -

sis , ( T ( a - T ) ) ( x 0) :: 0 and so (T a ) ( x 0 ):: ( T) ( xo) • C ear

ly T (xo ) is linear. Now, for e and 0 as above

take a in Cb(X) as in 1001 (i) if o(xo) ¥ 0
and a:: 0 if a(x~):: 0; let T:: aOE rb(TT).

The n T ( x 0) :: e and II T II :: il 0 ( x 0 ) II :: II ell; t hu s we

h a v e : /I T ( x 0 ) e II :: ~ T ( x 0 ) or( X 0 ) II = ~ r Ix 0 ) II ~
sup I(TT)·(X)~ :: ~TT~ , ~T~ IT~ = ~T~ ~e~o Since
x e X .
eE:.Ex is a b i t r a r-y, we get IIT(xo)!1 ~ IIT~ < + 00,

o
for a 11 xo~ X • Th use a c h T ( x 0 ) i s b 0un de d • F i.-

nally, for o e; rb(TT) arbitrary, (xo)a(xo)::

(Ta)(xo)'

(iii) =) (i).
bfor any a c r (TT) we have:

II Ta II :: sup I! (T a )( x ) II :: sup II T ( x ) a ( x ) I.
xEX X€X

s sup II T ( x ) II • II a ( x ) II « (s up II T ( x ) II ) II a II
x(X X€X

Hence II T ~~ sup II T ( x ) II < + 00, I ,e • T is bounded.
xE:X b b

Now take a C (X)jOC r (rr ) and xCX, then:

(T(aa»(x) :: T(x)(aa)(x) :: T(x)(a(x)O(x»

:: a{x)(T(x)a(x» :: a(x)(TO)(x)

:: (a(Tcr)}(x).

Thus T(ao) = a(Ta), i.e. T is Cb(X)-linear a

97



1.0~. Corollary. 16 T i~ decompo~able ove~ x,
T = (T(x)} x' ~hen ~T~ = sup IT(x)~.

xC X~X

1.05. Let (E,TItX) and (E', TIl, X) be two
fields of normal spaces over X and let {T(X)}X(X
be a family of maps satisfying conditions (1) and
(2) of 1.02. Then we can use the relation (3) of
(1.02) to define TO: X ....Et• Then ToE: Eb(TI) for
each oE:rh(TI) and we obtain a map T:rb(TI) ....Eb(n),
{1 ~ To. We will also write T = {T(x)} (X in this

b. . b xcase. If To E: r (n I) for each (1 E:. r (n) then T
is a bounded Cb(X)-linear map of rb(TI) into
rb(n'). In particular ~T~ = sup IT(x)~.

XEX

We will see that this situation holds under a
rather weaker condition. Indeed, suppose that in

ddition to (1) and (2) of 1.02 the following con-
dition is verified:

A) The~e exl~~~ a 6ull ~ub~e~ r1 c rb(TI) ~uch
that To E:. r'TI) 6olt. all {1 E: r1•

Define a map Q = f2T: E -.. E' given by Qe ::: T (n (e) )IE! ,

for each e E: E. Observe that TI'0 Q ::: TI and n is
linear on each fiber.

1.06. Lemma. The map nT i~ continuou~.

Proof. Fix eo Eo: E and let
is full there is a 00 (: r 1

Xo = TI(eo)' Since
with 0o(xo) = eo·
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Put a~::: Tao; by hypothesis a~crb(rrt). Now take
e C E with x::: rr(e) 0 Then rr'(nTa) = x and more
overt if M > sup ~T(x)l, we have:

xc X

IlnTe - <1b(x) ~=IIT(x)e-T(x)Oo(x)ll=ijT(x)(e-<1o(x» II

< M II e - a0 ( x ) II ,

showing that for arbitrary E > 0, if e is in the
M-1E-tube around a then nTe is in the E-tube
around <100 We conclude that nT is continuous.-

Now we will prove that the situation described
at the beginning of this section holds in this
case also.

Proofo Since we know that
have to prove that Ta: X + E'
this follows form the relation
a and QT are continuo s. •

bTa c E (rrt we only
is contin OUSo Bu
To :::n 00 becauseT

1 0 08 0 Rem ark 0 r f T: rb ( 1T) -;. rb ( rrt) is abo und
ed Cb(X)-linear operator then it is decom osabl

T :::{T(x)}xcX ' so that (1), (2) and (3) of 1002

holdo Also (*) is satisfied with r1 = rb(rr). Thus
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the map ~T; E" E' s e 1+ ('ra)(1r(e» where
a c rb(n) is such that <1[n(e»] ::e , is oontLn uous ,
Furthermore, n~~T ::n, and it is trivial to check
that 0T is linear on each fiber, i.e. if
e~e'~ Ex, xCXIl and A~CIl then 0T(Ae+e') =
A.OTe + °Te'.

When X is compact we can prove the following
converse: Suppose that 0: E .. E' is such that
n60 = n and it is also continuous on E and li-
near on each fiber. For each acrb(n) ::r(n) let
Tna ::noo: X .. EI• Then Tna is continuous and
n'oTn = n'0(000) = (~Ion)ocr = « 0 a = lX9 so that
TnO c fb(1T') = f(n') and we have defined a map
Tn:f(n) .. r(n'). Given a c Cb(X) = C(X) and
O,T f(n) we have

[no(aO+T)](X) = n(a(x)o(x)+T(X» = a(x)no(x)

+ nT (x ) = (a.no o+no T )(X ),.

for all x €. X, proving that Tn is C(X)-linear.

We claim that Tn is continuous. It will be
enough to Show that it is continuous at a = a
the zero-section of n. Note TO:: 0 ::the zero-
section of nt , thus it is continuous. Now fix
e: > a and take x e:: X; since n is continuous at
O(x) C E, there exists a neighborhood vex) of
x in X and a o(x) > a

e C. 'To ( x ) ( 0 ) n Ev ( x ) (~,:) the n

(*) The notation is that of
100
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neE:~(Ot)o

[3] .

if
Since X



is compact there exist x1"'.'XnE:. X, n finite,
with X = V1U' •• UV, where V. = V(x.) letn 1 1

O. = O(X.) and 0 = min{ol"'.'O}' Now suppose
~ 1 n

OC f(n) is such that 1101 < O. Given xC X, say
x c V., since 1I0(x) II < 0 $ 0i we have o(x)E:Ufc.(0)

1 1

n EVis 0 that n a ( x ) £ ~ ( 0 ' ), i. e. II (TnO) (x ) II<e .

Then II TnO II,= sup II (Tno)(x)II~e:. We have provedx(,X
that 11011< 0 implies, II Tncrl\~ e , thus Tn is
continuous.

It is easy to check that the processes just
described are inverse of each other, I.e. if W = nS
then S = TllJ ' and conversely.

Note that if the field under consideration are
fields of Hilbert spaces then these assertions are
equivalent:

(i) For all o,Tcr(n),<oIT> = <ToITT>,

(ii) Each T(x) is a unitary operator of Ex
into E'x •

(iii) The map nT is
if rr(e) = n(f) then

unitary on each fiber,
<elf> = <nelnf> •

i .e •

1.09. Lemma. Suppo~e (E.,n.,x), i = 1,2,3
1 1

a~e 6ieldA with X compact HauAdo~66:

(a) 16 n.:E ..... E. l'1 1 1+ i = 1,2 with n. ion. = n.,1+ 1 1
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i:: 2 a4e eon~~nuou~ and l~nea4 on eaeh 6~be4,
Q :: Q 2oQ1 ha.6.!J,im~la4 pltO pe4:t~e.6, and T Q :: Tn 2 0 T Q 1 e

(b) 16 T.:f{'ITo) -+- r{TIo+1) t
1. 1. 1.

ed c (X) -lblealt map.6 ~hen

nT ::nT20QTl .

i :: 1,2, alte bo un d
~.6 .6 ueh. andT ::T 0T2 1

Proof. (a) C 1 ear 1 y 'IT30 n :: 'IT1 and n is con tin u 0 u S

and linear on fibers. Moreover t for each 0 E: I'('IT1)

and each x E:. X ~

::no(x) :: (TnO)(X)o

(b) Similar to (a) a

1.10. Given a field 'IT: E ? X of normal spaces
and continuous function f:Y ~ X we will construct,
in a natural way~ a new field with base'space Y.
We sta by defining a subsp ce Ef of the topolo
gical space Y x E, Ef:: {(y,e):f(y):: (e)}.
No t e v that Ef::: U ({Y}Ef(Y»~ this u n Lo n being-

Yf.y
disjoin •

Let Pl
onto Y and
Ef .. Y and

and 'P2 be the projections of Y x E
E respectivelyo Define 'ITf :: Pl1Ef:

f'IT:: P2/Ef: Ef + Eo The diagram
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E ~ flT

lTl fx .. y

is a pull-back in the category of topological spa-
ces. Th~ function lTf is a continuous open surje£
tion and so (Ef

s lTf,y) is a fiber structure; for
each y E:. Y the stalk Ef above y is {y }xEf(y)'

f y
The map Ef(y) ~ Ey' e ~ (y,e), is a homeomor-
phism and we consider on Ef the unique structure

y
of normed spaces making this map into an isomor-
phi sm; in par tic u Ia1", we haveil (y , e )I = II elf 0I"

all (y,e) in Efc If IT is a field of Hilbert
spaces we define

< (y , e) I (y , e I ) > = <e Ie' >

for any «y,e),(y,e'»C Efv Ef. Note that if Y = X
and f = 1 then (Ef, lTf,X) and (E,lT,X) are nax
turally "isomorphic".

Now let 0 be a continuous section of IT; since
lTo(lToo) = (lToO)of = lxof = foly, the pull-pack pr~
perty provides a unique c~ntinuous map of: Y ~ E

h h f fl' f· .suc tat: n OlT - y' l.e. 0 1S a contlnuous
section of lTf, and flToof = oaf. These equations
can be rewritten as Pl[of(y)] = y and P2[of(y)]=
o [f(y)], for all y €:' Y, yielding on explicit expres
sion for of, namely of(y) = (y,0[f(y)1), for all

Y E: Y'.
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We 0b s e r vet hat II C1f ( Y) II ;:: II C1[ f( y)] II for all

y c Y and soil 0 f II ~ II o ] for e a c h C1E:. r< tr ) • Iff

i.s sur j e c t i vet hen " C1f II :: II C1II o The n C1f c r b ( n f )

whenever OE: rb(n) and the set rf:: {C1f:C1~ rb(n)}

is a subset of rb(nf).

1.11. Lemma. The ~ub~e~ rf ~~ a 6ull ~et 06
lboundedl cont~nuou~ ~ec~~on~ 06 nf

•

Proof. Take (y,e)cEf. Since

is full there is a o c rb(7f) with

But nee) = fey) and so C1[f(y)]= e.
fa (y) = (y, a [y (y )]) :: (y, e ) •

be E: E and r (n )

a[n(e)] :: e.

Thus

f f1.12. Corollary. The 6~be~ ~t~uctu~e (E ,n ,y)
~~ a 6~eld 06 topol09~cal ~pace~.

Proof. The lemma shows that condition (1) of

[1J (p~ge 2) is satisfied. -

1.130 Lemma. The 6~efd rrf ~J actually a 6~eld
06 no~med Jpace~.

Proof. We will only check condi~ion (2) of [1]

(p04). Take 0.0:: (Yo, eo)E:Ef• An arbitrary neigh

borhood of 0.0 Is of the form V:: (V 1 x V2) n Ef

where V1 is an open neighborhood of Yo in Y and

V2 = "~(a)n EW (aE:r(n) with o[7f(eo)] :: eo and

W open inX with n(eo)E: W) is a basic neigh-
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borhood of eo in Eo Since f(yo)::: n(eo)~ W
there exists a neihborhood v~ of Yo with
f(V~)~ Wo Without loss of generality we may sup-

f fpose Vi:;: V1 0 Let us prove that (~(a) nEVi)
£ V. Tal e a:: (Yge) in the intersection on

the left; in particular c c Ef and thus n(e)=f(yL
Since exE: E~ 1 then y ::;: nf (a) c V 1 which implies
nee) es , f(y)~ W~ and so e E::EW. On the other hand
a cor (a f ) sot hat II e -a [n (e >] II :: II e -a [ f (Y )J II ::

E f f f
II(y,e)-(y~a[f(y)])~= Ila-a (y)!l =~a-a [n (a)]I1< e

tha t is e L"[ (0) 0 Th us e E: or. (0) n EW and we
E E f

have ex = (Yje)~Vlx V2 (and also acE ), so that
a c V 0

Finally we note that af~ r(nf) and of[nf(a~)]=
a f (Yo) ::(Yo, c [f (Yo)] ):::(Yo, a ['IT ( eo) 1) - ( Yo, eo) :::a. This com
pletes the verification of the condition mentioned
at the beginningo •

10140 Propositiono I6 Y i¢ compac~ then ~he
elo~ed Cb(Y)-4ubmodule 06 rb(nf) gene ated by rf

eoincide~ wi~h rb(nf)o

Proofo Since rf is full we can use an argument
entirely analogous to the used in [3], 3.12 .•

• 15, Definitiono The field (Ef,nf,y) 0 nor-
med spaces cons ructed above is called the pull-
back 6ield de~e~mined by ~he pai4 'IT, f.
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10160 Propositiono 16 (E,n,X) i~ a 6ield 06
Hilbe~t ~pace~ and f: Y + X L~ a contLnaoa~ map
then the pall-back 6ield dete~mine by nand f L~
al~o a 6ield 06 HLlbe~t ~pace~o

on
Proof. Let I (resp. J) be the inner product
EVE (resp. Ef v Ef) and let P: Ef v Ef"E v V

be the continuous map obtained by restriction and
1T ncor'est ric tion of f x f • Then J = Lo P , thus

it is continuous. -

Let H (resp. H' ) be a module over a ring
A (resp. A' ) and let IP A .. At be a ring homomor
phism. A map T: H .. H' is said to be ip-linea~
if for each a in A and a, T in H:

(i) T(O+T) = Ta + TT, and

(ii) T(aO) = ~(a)(Ta).

When A:: A' and <p:: 1A we say " A-linealt" ins-
tead of "lA-linear"o

. Now let (E,n,X) be a field of normed spaces,
f ff: X' .. X be a continuous map and (E ,n ,Xi) the

pull-back field determined by nand fo The func
t ion tp: Cb (X) '"'".c b (X f) g i v en by <.p ( a) :: a 0 f for
each a E: Cb (X) is a C'';-algebra homomorphism 0 Let
us consider the map
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defined by fja
that fj[rb(rr>]

for each bo c r (rr). Note

1.17. Proposition. (11 The map 6 i~ ~-linea~.
Tn pa~tieula~ it i~ linea~.

(2) 116all~ [o ] 60~ all o c rb(rrL Thu~ A i~ bounded
and II All .$. 1.

(3) T6 rr i~ a 6leld 06 Hllbe~t ~paee~ then <AaIA1'>

,,~«ah» , 60ILall a,1'E: rb(rrL

Proof. Verification of (1) and (3) is purely
computational; (2) was observed before. ~

In the same context as above, suppose that
(E', n',X') is another given field of normed spaces

b f bover X' and let S: r (n) r (nt) be a bounded
Cb(X')-linear map, then the map

is such that:

(a) T is ~-linear and bounded.

(b) If the fields involved are fields of Hilbert
b fspaces and if <S~ISn:> ~ <~In> for all ~,l1E:r (n ),

bthen <T<11 T1'> >= l.f«a I T» for all o ,« E:r (jr ) ,

Conversely, take a bounded ~-linear map s:rb(n)
+rb(no). We claim there exists a bounded Cb X')-
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linear map s:rb(nf) -+ rD(1T') such that T :: So~.

In order to prove this we need some preliminary

facts.

1.180 Lemma. Fo n. each a E: rb(n) and each x E: X

o (x ) :: 0 im pi .e.¢ TO( f -1 ( x » :: {o } e

Proof. Fix c > 0 and pick 00 E: rb(n), Xo E: X

and yoCY with 0o(xo):= 0 and f(yo):: xo; the

lemma claims that TOo(Yo):: o. Take 0 > 0 such

t hat II TO 1\ ~ E: when eve r II o II ~ 0 and c h 0 0 s e

a c Cb(X) with 0 ~ a ~ 1, a(xo) = 1 and

II a 0 0 II ~ 0 ( c f. proof 1. 0 3 ); t h us II T [a 0 0 ] I ~E:.

But since ~(a)(yo) = a(f(yo» = a(xo) = 1, then
IIToo(Yo)ll:: Ilf(a)(Yo)TOo(Yo>l:: IIT[aoo](Yo)II·~

II T [aoo] ~ < e , Since e: > 0 wa.s arbitrary,

TOo(Yo) :: O. I

1.19. Corollarx.. to« each
impiie.~ T :: O ••

If ( x' ):: 0

For fixed x ' E. X' we can define a map

S (x ' ) : Ef -+ E' as follows: Given ex :: (x',e)€:
x' x'

Ef b with O[f(x')] (notepick o c r (jr ) :: e
x'

that nee) = f Cx ") and then write sex' )ex :: To (x "),

In order to check that ~(x') is well defined

put x = f (x ' ) and assum-e °l(x) = °2(x) = e.
If a = °1-a2 then a(x) = 0 and then Ta(x') = 0

by Lemma 1.18. Thus Ta
1

(x') :: ro 2 ( x ' ) 0
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Note. That for fixed
TO(x'), for all x'E: X'.

b . fOCr (n), S(x')O (x')-

1.20. Lemma. (1) Fo.1Leac.h x'€:.X', Sex') i-6 a
bou.nded tinealt op en.aro»: 06 E

f
, into E', ex x

(2) IIS(x'>II ~ IITII,60.1Latt X'E: X'.

Proof. An easy computation shows that sex') is
linear, so it is enough to prove (2). Keeping the
notation as above, suppose e ='a(x) ¥ O. By 1.01
(i) we can pick aE:Cb(X) with 0 ~ a·~ 1, a(x)=O
and II aa II = II a ( x )II (::: II e II = "a ~) . Sin c e (aa ) ( x ) =

a Ix ) o Cx ) = e

thus IIs(x')all ~
fa c. E , • Hence
x

we have S(x')a = T(aa)(x') and
II T [aa] II ~ II T II ~ aa ~ = II T IIII a II for any

II S (x' ) II ~ II T I , for all x' E: X' .•

This Lemma is the first step toward
cation of the process discussed 1.05 to
{S(x')} ,.X'. Now, if we take r 1 = rf

b . x E:
c c r (n)} then f1 is full (Lemma 1.11) and more-

b f bover, if for each f, E:r (n) we define Sf,€:E (n')

the appli-
the family

f::' {o :

by letting Sf,(x') = S(x')f,(x') for all x'E: X'
then, by the Note before 1.20 we have saf = Ta E:

rb(n') for all af in f1, i.e. condition C*) of
1.05 holds for S:; {S(x')}X'EX' .

According to 1.05 and Lemma 1.07 we conclude
that the function S:f, Sf, is a bounded Cb(X')_
linear map of rb(nf) into rb(n') with lsI - s p

x 'E:. S

09



I!S(x')II. Since TO':= SO'f:: S[IlO'J , for all
b

0' E: r ("IT), we obtain T:;: SoIl and this proves
our claim.

1.21. Remark. Assuming Xl compact, if S':
rb(nf ~ rb(TII) is anot e bo nded G(X') linear
map wi h T:= 5'06 then Sand 5' coincide on
L\[rb(l)J := r and then Proposition 1.14 implies
they are equal, in this case we will denote 5 by

~f'" Thus we have a commutative diagram:

br (TI)
T____ ~~ r(l I

~;:
f(nf

)

If moreover <TO'ITT> = 'P«cr!T.» for all O,T
in rb (n ) then '1"f satisfies <TfE:ITfn> ;: <~In>
for all ft;;,n~f(1T i.

For X and X' compact we have canonical bi-
jections between:

(a) All bounded ~-linear maps T: f(n) ~ r(n').

(b) All bounded C(X' )-linear maps S:f(nf) ~ f(n').

(c) All continuos maps n : Ef
~ E' which are li-

fnear on each fiber and such that n'on = n .

The correspondence between (b) and (c) is

1 0



obtained applying the discussion in 1005 to the
fields (Ef~7Tf~Xi) and (Ei~ 7T',X'L

§2c The category ~ fields ~ ~~ spaceso
The pull-back fiel allows us to relate two fields
on different base spaces; we use this approach to
define morphism between fields. Although our con-
siderations partially carryon to fields of normed
spaces~ we restrict ourselves to fields of Hilbert
spaces with compact Hausdorff base spaceo First
we need some additional properties of pull-back
fieldso

20010 Given a field (E,7T,X) and two continuous
maps f' : Xli+ X' and f:X' + X~ we can cons ruct
first f f X ~\ erminedthe pull-back (E ~7T 'I ' de by 7T,f
and then the pull-back «Ef)f' ~ (nf)fV X" ) de-
termined by f f'7T ,

E
fTT _ Ef~~=

nJ
f

in
X ( x'",

1 f f'(TT )

Xli

20010 lemmao The la~ge ~ec~angle in ~he above
diag~am i~ a pull-backo Hen~e we can identi6Y the
6ield «Ef)f" (7/)f' , Xli) with (Eg,ng,Xlf

),

whe~e g ~ of' ; the map identi6ying (Ef)f' with

1 1



fof' gE = E be-ing(x",(x' ,e» 1+ ("x",e).

Proof. The first assertion is a general fact
about pull-backs. The rest follows. •

2.02. Lemma. In the ~ame ~etting a~ above, the
6ollowing d-iag~am commute~:

f('If) __ :::_---..r [ (n f) f ' ]

~

Thu~ we can w4ite

Proof. Given o€:f(n) and x"E:X" then

n f n
[(l)f,06 )o](x") =

= (.xII , ( I); 0 ) [r ' (x" )] )= ( x" ,(f' (x II ) , 0 [fof' (x" )J ) ) )

H- (x",o[g(x")]) 'If= (I) o)(x").
g •

i = 1,2, over X
( f f ')let E.,n.,X be

.1 .1

the corresponding pull-back and let Q: E1 + E2 be
continuous, linear on each fiber and such that

Given two fields (E.,'If.,X),
.1 .1

and a continuous-map f:X' + X,

'lf2Q = n1. By the

a unique map Q#:
pull-back property there exists
f fE1 + E2 m a xing the following dia-
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gram commutative

IT 2
E2 ~

f Ef2

II ~
/

n if/

TT1 /
I I f ~

\/'2
..., ...
/"'1

f '\X ~ X'

Explicitly: n*(x',e1) = (x',ne1) for each
(x' ,e1) C E~. Clearly n* is linear on each fiber.

Given a bounded C(X)-linear map S:f(TI1)+f(TT2),
an application of 1.21 yields a unique bounded
C(X' )-linear map, call it S#, making the folloH-
ing diagram commutative:

2.03. Lemma. The map S# i6 given by

and thu6 0s# ~ n:

Proof. All we need 7T 1is to show that T #06n f
S 113



:= (x' ,nsa[f(x')J) ::: (x' ,(sa) [f(x')])

2004. Lemma. Le~ (E.,TI.,X), i::: 1,2,3, be~. a
6ield~ and le~ ni:Ei + Ei+1, i:: 1,2, be con~~n
UOU4 map4, linea~ on each 6ibe~ and ~uch ~hat

71', ion .. :: TIe, i;: 1'J2e Then,~+ ]. ].

Proof. Simple computation. •

20050 Definition. Let :F be the class 0

fie ds IT = (E,rr,x) of Hilbert spaces with

a1

,
compact Hausdo ff. A mo~phL&m 06 (E,TI,X)
(E',rr I ,X') r is pair (f,Q) of continuos maps

.fO

x: and n ;E.L + E' such that 71' Ion ::: 71'

x
l' .rd»

f:X'
a d·n is linear on each fiber. n this case we

wrJ.te

Suppose ( ',£'2'): (E',rr',X') + (E",7r", X") is an-

o he morphism. The map n uniquely determines the

map n#: (Ef)f
v

+ (E') I , and identifying

11



«Ef)f' ,(1T
f)f' ,X") with (Eg,1Tg,X"), g:: fof'

(Lemma 2001) we can consider n#~ Eg ....(E' )f'
If we write 'i'::n'on#: Eg ....E" we obtain the mor
phism (g,'i'): (E,1T,X) .... (E",TI",X"). Let us define
(f' ,n' )o(f,n) :: (g,'i').

That this composition of morphism is associa-
tive can be proved using Lemma 2.04. It follows
that r with the morphisms and composition just de-
fined is a category.

2.06. lemma 0 Let (f, n) ~ (E, 1T .x) ....(E', 'IT I , X I )

be a mOllphi.6m and f': X" ....X a c.ontinu.ou.6 nunC.-
tion. Then the nollowing diagllam c.ommute6:

Proof. Take ~ c r(TIf) and x " c X" arbitrary.
Then

[6.; : (Tn ~ )] (x " ) = ( x " , Tn ~ [f t ( x " )] ) = ( x II , n ~ [f ' (x II ) ] )

f f
= n#(XII,~[f' (Xli)] )=n#[(6.~.,~)(Xll)]=[Tn#(6.lTftE;)J (x").
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2.09. Lemma. A~~ume tha~ f~n): (E,n~X).

(E',n'. ) and (f,ni): (E',n', x) E",n" X")

a~e monphi6m ant that (g,~) = (f'~n' )o(f~n)D Ve6ine
n nl

T :::;TnoLlf : f(n) ~ r(n'). TI = Tn,o!:.f'

f(n') ~ r(ntl) and U = ',)b,n; 1'(71') -+ r(n"). Then
11' g

U '" T'oTo

Proofo By he definition of T and T' and
Lemma 2006 the following diagram commutes:

fen)
T'------~ I'err" )

f
b,TT b,nnBu 6f, 0 ::: by 2002, and Tn,oTn# = Tn,on#f g

::; T1J! by 1.2.4 (a) and the definition 0 ''V Thus

7T
U - T ob,

1lf g
T i ° T. •

The last lemma has a clear functorial charac-
ter. In order to express it in an apropiate set-
ting it is convenient to inctoduce a ategory R
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whose objects are all Hilbert modules with abelian
;"gC -algebra of scalars. Since we are about to con-

sider Hilbert modules over a not necessarily fixed
0"C"-algebra we will use ~:,enota ion (A~H) for an

A-Hilbert module H. The identity of A will be
denoted lA•

2.08. Definition. A ma~phiam 06 {A~H)cA into
(A' H') E:){ is pair ('P~T) where "P:A ~ A' is a

C*~algebra homomorphism and T: H ~ is a boun-
ded ~-linear map. If (~~T):(A9H) + (A'~H') and
(\f'~ T'):(A',H') + (AU,HY!) are morphism we de-
fine ('PI, T')o('f',T) "" ('fio"P,TloTL

It fu easy to check tha' tr~~e definitions make
~ into a category. Define a function r: 1+ ~ by
sending each (E,Tr,X)C r into r(E,n,X) = (C(X),
fen»~, and each morph f,Q); (E,n,X)
( E' , TI I , X') intot he fl ~ .d S m (I.f> s T ) ~ (C ( X ) , r (tr ) )

-+ (C(X' ),f(Tr'»,
aLC(X) and

where
iTT := TQo~fo

::;aof for each

2009 Proposition. The map r , rc}l

nu.nc..to~.

Proof. Follows from 2007 •

Now define a function A: ~ r which sends
ea .h (A,H)CJ{ into (A,H);:; (E,Tr,X), the field
assoc'ated w· h the A-module Ho Without loss of
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generality we may suppose that H ~ r(TI) and
A = C(X). If ('P,T): (A,H) .. (AW ,HW

) is a mor-
phism in Jl and A(A,H)::: (E,TI,X), A(A~H') :::

(E' ,TI',X'), there is a unique continuous map
f: XW .. X such that ~(a) :::a o f for all a c A.
Moreover, there is a unique C(X')-linear map
S = Tf: r(TIf) .. f(TI') such that T ::: so~f o This

Ef TI
S determines a unique Q '"' QS: .... E' with

fTI'0 Q = TI , which is continuous and linear on
each fiber. Then
a morphism in.f';

(f,Q): (E,TI,X) .. (E' ,TI',X') is
this is by definition the image

of ("P,T) under A.

2.10. Proposition. The map A: J{."1'
nunc-toIL.

Proof. Ta ke (A ,H) (If , T ~ (A',H') ("P', T' ») (A", H" )

in}l and let A(A,H) = (E,TI,X), etc. Assume
A = C(X), H = r(TI), A' = C(X'), P.tc. and let
(tp, ,T' )~('-p,T) = (1JJ,V), Leo 'f'o'f = 1JJ and
T'oT = V. Now put A('P,T) = (f,~), A(if" ,T') =

(f' ,~') and A(1JJ,V) = (g,1JJ); also put 5 = Tf,
S '''=' T f tan d U = Vg , sot hat ~ = Q S" ~ t = Q s '
and 1JJ= QU. By definition we have (f',~t)o(f,~)
= (g,~'o~#) and thus all we have to show is
, = ~'o~#, that is Qu = Qs,oQ~. But U = SlosH,

where s# is defined as in the discussion pre-
ceding Lemma 2.03. Then by 1.09 (b) and 2.03,

#QU = Qs,oQs# = Qs,oQs·
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2.11. Theorem. The ca~ego~le~ Jl andY a~e equ)
valent.

Proof. (a) for each (A~H) J.( let (E~7T,X) :::

A(A~H)~ so that rA(A~H) :::(C(X)~r(7T»o We have
a morphism ~ = ~(A,H)~(A H) rh(A,H) given by
the pair of maps v ~ A C(X) and A ~ H + r(7TL

The f ntion (A,H) "* ll(A"H) is a nat ur-aI trans for
mation of 1)( into r A and since each ll(A,H) is
an isomorphism ([3], 3.12) it is an equivalenc~o

(b) We can also define a natural transformation
V of Ar into I:r as follows. Let (A,H):::
r(E,1T,X) and (E' ,7T' "X) ~ A(A,H); an arbitrary ele
ment of E' is of the forme' :::O'+H , wherex
O'eH::: r(7T), define v7T: e' 1+ O'(xL This maps
is an isomorphism; the inverse is defined a~ fol-
Low s e given ecE take O'Cr(7T) with O'(x)::: e,

where x::: nee)
equivalence. •

and put e H- O'+H x Then v is an
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