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A DUALITY BETWEEN HILBERT MODULES AND

FIELDS OF HILBERT S5PACES

por

Alonso TAKAHASHI

Abstract. The category of Hilbert modu
les with abelian C¥-algebra of scalars and
the category of fields of Hilbert spaces
over compact Hausdorff spaces are discussed
and a duality between them is exhibited.

§0. Introduction. In [3] we considered Hilbert

modules over a C¥-algebra A ([3], 2.15), and

fields of Hilbert modules ([3], 3.04), obtaining
a representation of Hilbert modules as continuous
sections on a field w: E -+ X over the maximal
ideal space X of the center of A ([3], 3.12);

when the C%*-algebra A is commutative the asso-
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ciated field m is a field of Hilbert spaces ([3],
3.13). This representations will be used here to
get an equivalence between Hilbert modules on the
one hand and fields of Hilbert spaces on the other.
These results appeared first in the author's doc

toral dissertation (Tulane University, 1971).

§1. Decomposable operators. The pull-back

field. In order to state the adequate definitions

of morphism between fields over different base
spaces we need some information about linear maps
between modules of continuous sections on field of

normed spaces.

A field m: E » X of normed spaces ([3], 3.01)
will sometimes be denoted by (E,w, X). A subset
r, of sections of m is full if for any e€E there
exists a section o0€ T4 such that O[H(e)] = e.

We always suppose that I'P(m) is full.

We also assume that for each OEZFb(W) the
function N given by N (x) = fo(x)], =xeX, is
in cP(X). Observe that this is the case when T
is a field of Hilbert spaces, for each pair 0,T€
?b(ﬂ) we have <0|1>¢€ cP(x) and so N = <g|o>

is also in cP(x).

1.01. Lemma. Suppose that (E,m,X) 48 a field
04 noamed spaces and Let o, € rP(m) and X, € X
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Then:

(1) 1§ 0o(xe) # 0 there exists an ac c>(X) such
that (1) 0 < a <1, a(x) =1 and (2) Jao,| =
||0°(x°)|| o

(ii) T4 0o,(x,) = 0 <1then, forn each § > 0 thenre
exL8ts an a 4in Cb(X) satisfying condition (1) abo
ve, and " (3) Jlac, ] < 6.

Proof. Take al(x) =(gg§ {1, "cxo(xc,)ll-1
"oo(x)ll})-1 , in the first case and
a(x) = Sk ol {loo(x)|,8}, in the second.
x€X
Boundecness is clear and continuity follows from

the continuity of x » [o,(x)|] . The other condi-

tions are easily checked. ®

1.02. Definition. Assume that (E,7m,X) and

(E*, "', X) are two fields of normed spaces (over
the same base space X). A linear map T: Fb(ﬂ) +
Fb(ﬂ‘) is said to be decomposable (over X) if there
exists a family {T(x)}x(x such that:

(1) For each x¢ X, T(x) 1is a bounded linear ope-
rator of £ ﬂ_i(x) into E; = (w')-l(x)k
(2) sup [T(x)] < + = .
x€X
(3) (To)(x) = T(x)o(x) for any GCTFb(ﬂ), x€ X.

In this case we write T = {T(X)}xcx . Note



that (3) implies part of (1), namely the boundedness
of the operators T(x), =x€ X. The next proposi-
tion gives equivalent conditions for T to be de-

composable.

1.03. Proposition. For any Linear map
T: IP(n) » rP(n') the §ollowing assertions are

equivalent:

(i) T 44 bounded and Cb(X)-Linean (i.e. T(ao) =
a(To) gor all ac Cb(x), oe:Fb(n))p

(ii) T 44 bounded and forn any =x,€X and any
0,ETP(m), 4§ 04(x) = 0 zhen (Tog)(xg) = O.

(iii) T A4 decomposable over X.

Moreoven, 4t these conditions hold and
T = {T(x)}, 4 2zhen ITl = sup [T(x)]| -

xeX
Proof. (i) == (ii). Assume 0,(x,) = 0 and take
E > 0 arbitrary. Let 6 > 0 be such that

|To] ¢ € whenever o] < 6. By 1.01. (ii) we can
pick ac€ Cb(X) with 0 £ a £ 1, af(xy) = 1 and
"aooﬂ < 8§ . Then |T(a0,)| € €, and this implies
[T(ao,)(x,) € €. But T(aoy)(x,) = [a(Toy)](x,)=
a(xo)(T0y) (%) = {T0,)(x,), thus [(To ) (x,)] < ¢

and since € > 0 was arbitrary, (Toy)(x,) = 0.

(ii) =» (iii). For each x,€ X define

-1
i ' : =
T(xo): E, Exo as follows. Given eCTExo T "(x,)
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let 0C€ Fb(ﬂ) be such that 0(x,) = e and put
T(x,)e = (To)(x,). Let us check that T(x,) is
well defined. Suppose e = 0(x,) = T(x,), o,

T¢ Tb(ﬂ), i.e. (o-1)({x,) = 0. Then, by hypothe-
sis, (T(o-1))(%x,) = 0 and 50 (To)(x,)=(Tr)(x,).Clear
ly T(x,) 4is linear. Now, for e and 0 as above
take a in Cb(X) as in 1.01 (i) if o(x,) # 0
and 2¢a (£)0 e i lgng) i= toy 1ot v =-adc IO(W).
Then 1(x,) = e and [t] = |o(x,)] = Jel; thus we
have: [T(xglel] = JT(xo)1(x,)] [Te(x,) ] <

sup J(Tt)(x)) = Itx] € It Ix] = |t Jel. Since
x€X
ecE, is arbitrary, we get It(x, )0 < 7] < + =,

for all X€ X. Thus each T(x,) 1is bounded. Fi-
nally, for 0€.Fb(n) arbitrary, T(x,)0(x,) =
(To)(x,).

(iii) = (i). For any OGIFb(n) we have:

[To} = supl(To)(x)] = sup|T(x)o(x)]
xeX xeX

< suplT(x)] Jox)] < (supfT(x)|)]o]
xeX xeX

Hence ||T] < BHT(X)" < + w, i.e. T is bounded.
Now take a C C (x) o< F (m) and x€ X, then:

(T(aog))(x) T(x)(ao)(x) = T(x)(a(x)o(x))

1]

a{x)(T({x)o(x)) = a(x)(To){x)

(a(To))(x).

. ¢ b .
Thus T(ac) = a(To), i.e. T is C (X)-linear B
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1.04. Corollary. I§ T 44 decomposable ocver X,

say T = {T(X)}x€x’ then |1] = sup {T(x)].
xeX

1.05. Let (E,m,X) and (E*y ®'¢ X)( /be two
fields of normal spaces over X and let {T(x)}  ,
be a family of maps satisfying conditions (1) and
(2) of 1.02. Then we can use the relation (3) of
(1.02) to define To: X =+ E'. Then TOGZZb(ﬂ) for
each OE-Fb(ﬂ) and we obtain a map T:Fb(ﬂ) > Zb(ﬂ),
o» To. We will also write T = {T(x)}x€x in this
case. If Toc.Fb(n') for each GE.Fb(ﬂ) then T
is a bounded Cb(X)»linear map of Fb(n) into
Pb(n'). In particular {T| = sup {T(x)].

xeX

We will see that this situation holds under a

rather weaker condition. Indeed, suppose that in

addition to (1) and (2) of 1.02 the following con-

dition is verified:

(%) There exists a full subset T', < rP(m)  such
that To€T(m) gor all cerl,.

Define a map @ = QT: E > E' given by fle = T(m(e))e,
for each e €E. Observe that ' ,Q = 7 and @ is

linear on each fiber.
1.06. Lemma. The map 2 L4 continuous.

Proof. Fix e, €E and let x, = T(e,). Since

Fl is full there is a O0,€ F1 with 0,(x,) = ege
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Put 04= TO,; by hypothesis ogCFb(n')c Now take
e€E with x = 7m(e). Then ﬂ'(QTe) = x and more

over, if M > sup "T(x)l, we have:
xeX

HQTe - ol (x) =T (x)e-T(x)o(x)=[T(x)(e-0,(x)) |
S !Ie ¥ Go(x)" 3

showing that for arbitrary € > 0, if e is in the
M-ls-tube around O then QTe is in the e€-tube

around Oyo. We conclude that QT is continuous.®

Now we will prove that the situation described
at the beginning of this section holds in this

case also.

1.07. Lemma. Fon each o€ I‘b(n)we have Toer‘b(n‘).

Proof. Since we know that TOGIZb(n') we only
have to prove that To: X + E' 1is continuous. But
this follows form the relation TO = QToO because

0 and QT are continucus. ®

1.08. Remark. If T: Tb(n) + Pb(n') is a bound
ed cP(x)-linear operator then it 1is decomposable:

T = {T(x)}xEX , so that (1), (2) and (3) of 1.02

hold. Also (%) is satisfied with Pl = Fb(n). Thus
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the map QT: E~+E', e+ (To)(m(e)) where

o €TP(m) is such that o[n(e))] = e, is continuous.
Furthermore, néQT = m, and it is trivial to check
that QT is linear on each fiber, i.e. if

e,e'€ Ex’ x€Xy, and A€ C, then QT(Ae+e’) =
R‘QTe + QTe'.

When X is compact we can prove the following
converse: Suppose that : E - E' is such that
niQ = m and it is also continuous on E and li-
near on each fiber. For each OCFb(ﬂ) = T(m) 1let
TQG = Qoog: X » E'. Then TQG is continuous and
n'oTQ = T'2{(Qo00) = (W'0f)og = W © 0 = 139 so that
Tro;Fb(ﬂ') = '(m') and we have defined a map
To:T(m) » I(n'). Given ac c’(X) = c(X) and

o,t TI'(w) we have

[Qo(ac+1)] (x) = Q(a(x)o(x)+1(x)) = a(x)Qo(x)

+ Q1(x) = (a.Rooc+QoT)(x),.

for all x€X, proving that T, is C(X)-linear.

We claim that 'I’Q is continuous. It will be

enough to show that it is continuous at o = 0 ,
the zero-section of m. Note TO = O = the zero-
section of m' , thus it is continuous. Now fix

€ > 0 and take x€ X; since § is continuous at
0(x)€ E, there exists a neighborhood V(x) of
x in X and a 6(x) > 0 such that L ¥ 4

ee’ra(x)(o)nzv(x)f*) then Qe €‘T€(O')c Since X

(*) The notation is that of [3].
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is compact there exist XyseocsX € X, n finite,
with X = VlLJ"=lJVn’ where Vi = V(xi) ; let
§. = 6(Xi) and § = min{Gl,.,.,G }. Now suppose

-

oeT(m) is such that |of| < 6. Given =x€X, say

x€ V,, since lo(x)] < 6 £ §. we have G(x)qu.(o)

1

i
NEy; so that Qo(x)€ T (0"), i.e. [(Tgo)(x)]<e
Then "TQOH = sup H(TQO)(x)ﬂse. We have proved
' xeX

that "0" < § implies, "TQoﬂ < € , thus Tq is

continuous.

It is easy to check that the processes just
described are inverse of each other, i.e. if VY =QS
then S = Tw s and conversely.

Note that if the field under consideration are
fields of Hilbert spaces then these assertions are

equivalent:

(i) For all g,t€ I'(m),<a|t> = <To|TT>,

(ii) Each T(x) 1is a unitary operator of E,
S ]

into Ex .

(iii) The map QT is unitary on each fiber, i.e.

if m(e) = m(f) then <e|f> = <Qe|Qf> .

1.09. Lemma. Suppose (Ei,ﬂi,x), i='1,2,3
arne fields with X compact Hausdongg:

(a) 1§ Q.:E; > E

i ip10 17 1,2 with Tieq°%; 7 Ty

+1 1 i
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1,2 anre continuous and €inear on each fiben,

1]

1

Q Q,0Qq has similan properties, and Tq = Ton TQI,

(b) I§ T .:T(m;) > T(m, ), i=1,2, are bound

i+1
ed C(X)-Linean maps them T = T,°0T, 44 such and

QT = QTQOQT

1}

2

1

Proof. (a) Clearly nsoﬁ m, and Q2 is continuous

and linear on fibers. Moreover, for each 0€.F(ﬂ1)

and each x€ X:

1

['r%(rﬂlo)] (x) 92[(T910)(x)] =0, [2,0(x)]

Qo(x) = (TQO)(x)°

(b) Similar to (a)

1.10. Given a field m: E - X of normal spaces
and continuous function f:Y - X we will construct,
in a natural way, a new field with base space Y.

We start by defining a subspace ef of the topolo

gical space Y X E, Ef - {(y,e):f(y) = 7(e)l.

£ ; R 5 :
N . = x 15 -
ote.-that E LJ ({y} Ef( )), this union being

disjoint.

Let Py and Py be the projections of Y X E

onto Y and E vrespectively. Define nf - pilEf:

ef » v ana £ = p2|Bf: Ef - E. The diagram
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m

E e tll o gf
|t
et ol Y

is a pull-back in the category of topological spa-
f

X o

ces. The function " is a continuous open surjec
tion and so (Ef, nf,Y) is a fiber structure; for
each yc:Y the stalk B§ above y is {y}xEg(y)-
The map Ef(y)'* 35 . e'ef(y,e), is a homeomor-

phism and we consider on Ey the unique structure
of normed spaces making this map into an isomor-
phism; in particular, we have "(y,e)l = |e|] for
all (y,e) 1in Ef. If 7 is a field of Hilbert

spaces we define
<(y!e)|(Y,e')> = <e|e'>

for any ((y,e),(y,e'))C.Efv Ef. Note that if Y = X
afid'\ *‘f £ 1, then (Ef, nf,X) and (E,m,X) are na

turally "isomorphic".

Now let O be a continuous section of Tm: since
mo(mo0) = (moo)of = 1 _of = foly, the pull-pack pro
perty provides a unique continuous map of: vy » &
such that: ﬁfonf = lY, i.e. of is a continuous
section of nf, and fToof = gof. These equations
can be rewritten as pi[of(y)] = y and p2[of(y)]=
o[f(v)], for all ye€Y, yielding on explicit expres
sion for of, namely of(y) = (y,o[f(y)]), for all

YE€aY's
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We observe that Jof(y)| = Jo[£f(y)]]| for all
ye€Y and so "of" < ol for each oeT(mw). If f
is surjective then "of" = lo]. Then ofe Fb(ﬂf)
whenever 0€.Fb(ﬂ) and the set S {of:0¢ Fb(ﬂ)}

is a subset of Fb(nf)a

1.11. Lemma. The subset Tt s a full set of

(bounded) continuous Asections of nf.

Proof. Take (y,e)e;Efc Since e€E and Pb(ﬂ)
is full there is a 0€:Fb(ﬂ) with o[n(e)] = e.
But m(e) = f(y) and so o[f(y)]= e. Thus
of(y) = (y,oly(y)]) = (y,e) ®

1.12. Corollary. The f4iber structunre (Ef,nf,Y)
{4 a fLeld of topological spaces.

Proof. The lemma shows that condition (1) of

[1] (page 2) is satisfied. ®

1.13. Lemma. The f§<eld nf s actually a field
o4 normed spaces.

Proof. We will only check condition (2) of [1]
(p-4). Take 0, = (yo, €5) € Ef° An arbitrary neigh
borhood of @, is of the form V = (V, X V2)(1Ef
where V1 is an open neighborhood of y, in Y and
| P qé(o)n Ey (cel(m) with o[ﬁ(eo)] = e, and

W open in X with T7T(eg)e W) is a basic neigh-
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borhood of e, in E. Since f(y,) = n(eg)e W
there exists a neihborhood Vi of . . yg-with
f(V;)g_Wo Without loss of generality we may sup-
pose Vi 2.V13 Let us prove that (q;(of)r7E$j)
<V, Take o = (yse) in the intersection on
the left; in particular ae:Ef and thus m(e)=f(y).
Since a € E£1 then y = nf(a)c V, which implies
T(e) =.f(y)€ W, and so e€E,. On the other hand
ach;(of) so that [e-o[n(e)]| = |e-o[£(y)]|
I(y,e)-(y,o[£(y)])]= la-of(y) ] =ﬂa-of[nf(a)]”
that is eé;q;(o): Thus e EFE(O)FWwa and we
have o = (y,e)c,V1 XV (and also a€E ), so that

i

A
m

g€ V.

Finally we note that cfc P(nf) and of[nf(ao)]=

f . .
o (Yo):\Yoso[f(Yoﬂ)=(y°,0[ﬂ(eoﬂ);(yo,eo):a,ﬂuscmm
pletes the verification of the condition mentioned

at the beginning. ®

1.14. Proposition. I§ Y <4 compact then the
closed cb(Y)~5ubmadu£e 04 Fb(wf) generated by rf
coincides with I‘b(nf)°

N £
Proof. Since I'" is full we can use an argument

entirely analogous to the used in [3], Ji12.5 "

1.15. Definition. The field (Ef,nf,Y) of nor-

med spaces constructed above is called the pull-
back field deteanmined by the pain mw, f.

105



1.16. Proposition. 14§ (E,m,X) 48 a g<eld of
Hilbent spaces and f: Y + X A& a continuous map
then the pull-back field determine by m and £ 43
also a gf4eld of Hilbent spaces.

Proof. Let I (resp. J) be the inner product
on EVE (resp. Efv Ef) and let P: Efv Ef+EV'V
be the continuous map obtained by restriction and
corestriction of‘ f“ X f". Then J = IoP, thus

it is continuous. ®

Let H (resp. H') be a module over a ring
A (resp. A') and let ®: A + A' be a ring homomor
phism. A map T: H > H' is said to be ¥-£Lineaxr

if for each a in A and o, T in H:
(i) T(o+t) = To + Tt , and
(ii) T(ao) = ¥(a)(To).

When A = A' and ¥ = 1, we say " A-Linean" ins-

tead of "lA-linear"c

Now let (E,m,X) be a field of normed spaces,
f: X' » X be a continuous map and (Ef,nf,x') the
pull-back field determined by ™ and f. The func
tion ‘P:cb(x) - Cb(X') given by ¥®(a) = aof for
each ae¢ Cb(X) is a C*—algebra homomorphism. Let

us consider the map

i & Aﬁ: rPcry » )
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defined by Ao for each o€:Fb(ﬂ). Note

that A[rP(m)]

' 0
=-=Q
Hh

1.17. Proposition. (1) The map A 48 P-Lineanr.

In particulan £t 48 Linean.

(2) fao] < |o] §orn akl occ r®(n). Thus b is bounded
and ||A] < 1.

(3) 14 m 46 a f4ield of Hilbent spaces then <Ac|At>
P(<o|t>) , for all o,T€ rP(m).

Proof. Verification of (1) and (3) is purely

computational; (2) was observed before. ®

In the same context as above, suppose that
(E', m',X') is another given field of normed spaces
over X' and let S: Fb(ﬂf) > Fb(n') be a bounded
Cb(X')-linear map, then the map

T = SoA: IP(m) » IrP(nr)
is such that:

(a) T is ¥Y-linear and bounded.

(b) If the fields involved are fields of Hilbert
b, f
spaces and if <SE|Sn> = <E|n> for all E,nel (n7),
b
then <To|Tt> = P(<o|t>) for all o,T€Tl (m).

o, b
Conversely, take a bounded Y-linear map S:I (m)

: b
+Fb(n°), We claim there exists a bounded C (X')-
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linear map S:Tb(ﬂf) + FD(H') such that T = SoA.
In order to prove this we need some preliminary

facts.

1.18. Lemma. Fon each oe:Fb(n) and each xe€ X
G(x) = 0 4implies To(f 1(x)) = {0}

Proof. Fix € > 0 and pick ooe‘Pb(w), Xo € X
and y,ec Y with 0,(x,) = 0 and f(yo) = %X,; the
lemma claims that To,(yo) = 0. Take & > 0 such
that ||To]l € € whenever lol € 6§ and choose
ac€ Cb(X) with 0 < a £ 1, a(x,) =1 and
lac,l € 6§ (cf. proof 1.03); thus [T[ac,]] < €.
But since ¥(a)(y,) = a(f(y,)) a(xg) #4435 " then
”Too(Yo)" = ll‘."(a)(yo)Too(yo)l “T[aoo](YO)“ <
IT[ac,]] < €. Since € > 0 was arbitrary,

Td,(y,) = 0. 1§

i

1.19. Corollary. Foxr each o€ I‘b(ﬂ), clf(x')=0
implies T = 0. B

For fixed x'€ X' we can define a map

S(x'): Eﬁ. + E,, as follows: Given a = (x',e)c€
Ei, pick oc,rb(n) with o[f(x')] = e (note

that 7(e) = f(x')) and then write S(x')a = To(x').

In order to check that S(x') is well defined
put x = f(x') and assume UI(X) B 02(x) = e.

If o = 0,-0, then o(x) = 0 and then To(x') = 0
by Lemma 1.18. Thus To1(x') = T02(x').
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b f
Note. That for fixed o0€T (m), S(x')o (x') =
To(x'), for all x'e X'.

1.20. Lemma. (1) For each x'e X', S(x') 44 a
; f :
bounded Linean operator of E_, 4nto EZ,

(2) Isx") < Itl, for all x'e X'.

Proof. An easy computation shows that S(x') is
linear, so it is enough to prove (2). Keeping the
notation as above, suppose e = o(x) # 0. By 1.01
(i) we can pick ae:Cb(X) with 0 <€ a < 1, a(x)=0
and |aoc] lo(x)| (= [le] = Jal). Since (ao)(x) =
a(x) o(x) e we have S(x')a = T(ao)(x') and
thus [s(x")a] < |T{ao]lll < ITllac] = ITlla] for any
aG:Ei' . Hence |s(x")] < "TI , for all x'egX'.®

This Lemma is the first step toward the appli-
cation of the process discussed 1.05 to the family
{S(x')}x'ex'° Now, if we take T, rf - {Of:
0€;Fb(ﬂ)} then T is full (Lemma 1.11) and more-

4
ower, if for each EE.Fb(ﬂf) we define SgE€ Zb(ﬂ')

"

by letting SE(x') = S(x')E(x') for all x'€ X'
f
then, by the Note before 1.20 we have S0 = TO<
Fb(ﬂ') for all of in Fl’ i.e. condition (%) of
- 1
1.05 holds for S = {S(x )}x'cx'
According to 1.05 and Lemma 1.07 we conclude
that the function S:£ + S& 1is a bounded Cb(X')~
linear map of Fb(ﬂf) into I°(m') with Isi = $up
X'€D5
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fs(x')] . Since To = sof = s[ao] , for all
0€:Fb(ﬂ), we obtain T = SoA and this proves

our claim.

1.21. Remark. Assuming X' compact, if §':
Pb(ﬂf) > Fb(n“) is another bounded G(X') linear
map with T = S'oA then S and S' coincide on
A[Fb(w)] = ¥ and then Proposition 1.14 implies
they are equal, in this case we will denote S by

Tfo Thus we have a commutative diagram:

b T
r(m) = I'(7 "}

1f moreover <TO|TT> = ?(<0|1>) for all O,T
in Fb(v) then Tjs satisfies <Tf£|Tfn> = <g|n>
for all g,ngl’(wf).

For X and X' compact we have canonical bi-

jections between:
(a) All bounded ¥-linear maps T: T(mw) » I'(m').
{b) All bounded C(X')-linear maps S:F(ﬂf) SipPinty;

(c) All continuos maps f : Bf + E' which are 1li-

2 £
near on each fiber and such that m'oQ = 7m" .

The correspondence between (b) and (c) is

110



obtained applying the discussion in 1.05 to the

fields (Ef,wfsx') and " (EY, m' . X").

§2. The category of fields of Hilbert spaces.

The pull-back fiel allows us to relate two fields
on different base spaces; we use this approach to
define morphism between fields. Although our con-
siderations partially carry on to fields of normed
spaces, we restrict ourselves to fields of Hilbert
spaces with compact Hausdorff base space. First
we need some additional properties of pull-back

fields.

2.01. Given a field (E,m,X) and two continuous

maps f': X" » X' and f:X' *» X, we can construct

first the pull-back (Ef,ﬂf,X"f determined by T,f
& =t ; f fV
and then the pull-back ((Bf)f s, (m7) X" ) de-
termined by nf, . i
f
“ - v ‘" ]
P i pfe (£1) eghHf
l
f'
m wf L(nf)
¥ /¢ £
Firg X' % X"

2.01. Lemma. The farge rectangle 4n the above
diagram i4 a pull-back. Hence we can <identify Zhe
geeed ((eHYE', (HE L xm) with  (88,48,xm)
where g = fof' ; the map identifying (Ef)f' with
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ef°f' - EB being (x",(x',e)) w (x",e).

Proof. The first assertion is a general fact

about pull-backs. The rest follows. ®

2.02. Lemma. In the same setting as above, the

golLowing diagram commutes:

ki
Rm0s SO o T ®) errrrrrs TS ]

£

m nw

Af Af'

F(Nf)
Th writ A"f AT = AT
us we can waite Ag,ob; = A .,

Proof. Given o€Tl'(m) and x"€ X" then

Tlf mw 'ﬂ'f m
[(Af,oA )o](x") = [Af,(A )] (x")
= (x",(830) [£' (x")])=(x", (£ (x"),a[Fof (x")])))
w o (x",0[g(x")]) = (A;o)(x"). n

Given two fields (Ei,ﬂi,x), i=1,2, over X
and a continuous-map f:X' + X, let (Eg,nf,x') be
the corresponding pull-back and let Q: El > 52 be
continuous, linear on each fiber and such that
“29 = m,. By the pull-back property there exists

1
a unique map Q#: Ef + Eg making the following dia-
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gram commutative

"2

&
N

E,
'I'

Explicitly : Q#(x',el) = (x',Qel) for each

f : 4 ;
(x',el)(_E1 . Clearly ot is linear on each fiber.

Given a bounded C(X)-linear map S:F(v1)+F(n2),

an application of 1.21 yields a unique bounded

C(X')-linear map, call it S# , making the follow-
ing diagram commutative:
A2 )
F(n2) > I'(n,)

#

b is given by st - gt

2.03. Lemma. The map S

P
and thus QS# = QS

Proof. All we need is to show that T #OA =
S



e

’AIEOS. Take OE:F(ﬂi) and x'g X' arbitrary:

]

i m™
[TQ§<Afio>]<x-) -2ttt = el ol

(x',(s0)[£f(x")])

i

L 1]

(x',QSO[f(x')])

-
[Af (so)j(x'). =
2.04. Lemma. Let (Ei,ﬂi,X), i-=0 15008,/ be
gcelds and Let Ql.:r.i * Ejqo i = 1,2, be contin
uous maps, Linear on each g4ber and such that

Ll o, =w,, 1i=1,2. Then
1 1

# _ ofF o F
(920Q1) 2 92091

Proof. Simple computation. ¥

2.05. Definition. Let ¥ be the class of all
fields ™ = (E,m,X) of Hilbert spaces with X
compact Hausdorff. A moaphism of (E,n,X) F into
(E',m',x') F is pair (£f,22) of continuos maps

) 7
f:X'" * x and QZEf + E' such that m'ef =7 s

and 8 is linear on each fiber. In this case we

write

(f',Q)i (E,",X) e (Evsn’,X')o

Suppose (f',Q'): (E',w',X') > (E",n", X") is an -
other morphism. The map Q uniquely determines the

# y o A 2 :
map 0": (E”) + (E")f s and identifying
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f 1 1
CEDHE ,(aHE xn)  with (EB,7B,x"), g = fof!

(Lemma 2.01) we can consider Q": E& - (E')

#

If we write ¥ = Q'0Q": E& » Em we obtain the mor
phism (g,¥): (E,m,X) » (E",m",X"). Let us define
(£',2')o(£,0) = (g,¥).

That this composition of morphism is associa-
tive can be proved using Lemma 2.04. It follows
that F with the morphisms and composition just de-

fined is a category.

2.06. Lemma. Let (£,2): (E,m ,X) = (E',m',X")
be a morphism and f£': X" > X a continuous func-
tion. Then the folLowing diagram commutes :

r'(m*)
/29///1 ANTA
f \l ot
r(m) r(n)f7]
;EE\\\\\ ////?:;

P[(“f)f']

Proof. Take &Eﬁr(nf) and x"e¢ X" arbitrary.
Then

[Ag:(TQE)](x")=(x",TQ£[f'(x")])=(x",QE[f'(x")])

4 4 Trf TIf
= QU(x",E[£'(x")])=0 [(Af,i)(x")]z[TQ#(A e E)](x")n



2.09 Lemma. Assume that (£,0): (E,m,X) =
(E',TT', Xv) and (f,QE); (Ei’."o’ X') > (E",TT"9X")
are morphism ant that (g,y) = (f’,n')ogf,ﬂ). Degine

m ] D.—.T A“
T = Tolg 2 PiGm) + TOmr),  T' = T olg)

r(n') - I'(n") and U = TWaAg : T(r™Y's p(a™. Then
U = T"%eTs

Proof. By the definition of T and T' and

Lemma 2.06 the following diagram commutes:

& i iy

T'(m) > [(m?) == T (m")
/’ N 7
T / m’
//
rnf) “ rlcr)f']
: 3
m Th#
Af,\\\\ Q
£ fq
Fitx"1"]
Anf AT o AT H "
But g @ Bgi = § by 2.02, and TQ. TQ# = TQ'oQ#

TW 'by 1.2.4 (a) and the definition of V¥ Thus
£ q

,OTQ#°Ag.°A ks L A

f'

™
U = TWOAg = TQ

The last lemma has a clear functorial charac-
ter. In order to express 1t 1in an apropiate set-

ting it is convenient to inctoduce a category M
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whose objects are all Hilbert modules with abelian
C*aalgebra of scalars. Since we are about to con-
sider Hilbert modules over a not necessarily fixed
t%-algebra we will us< ..e notation (A,H) for an
A-Hilbert module H. The identity of A will be
denoted 1A‘

2.08. Definition. A moaphism of (A,H)e M 4nto
(A'H')eM is pair (¥Y,T) where ¥V:A + A" is a
C*aalgebra homomorphism and T: H =+ is a boun-
ded $P-linear map. If (¥,T): (A,H) - (A',H') and
(P¥, T"): (A',H') » (A",H") are morphism we de-
fine (P', T')o (P, T) = (¥, T'0T).

It is easy to check tha +irn--e definitions make
M into a category. Define 2 function I': F +» J{ by
sending each (E,m,X)€F into T(E,m,X) = (C(X),
'(m)), and each morph £f,2): (E,m,X)
(E',m',X') into the mc _uism (¥,T): (Cc(X),T(w))
+ (C(x"),T(m*")), where “(a) = aof for each
acC(X) and T = Tgolj.

2.09 Proposition. The map T': FEM 44 a
guncton.

Proof. Follows from 2.07 u

Now define a function A: M~+F which sends
each (A,H)€M into (A,H) = (E,7m,X), the field

associated with the A-module H. Without loss of
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generality we may suppose that H = I'(m) and

A= C(X). "If (P,T): (A,H) + (A" ,H')" 1is a ‘mor-
phism in M and A(A,H) = (E,m,X), A(AJH') =
(E',m'",X'), there is a unique continuous map

f: X' + X such that ‘Y(a) = aof for all acA.
Moreover, there is a unique C(X')-linear map

S = T.: I'(nf) » I(n') such that T = SeAl . This
S determines a unigue § = QS: Ef *..Erc with

T'ofd = nf, which is continuous and linear on
each fiber. Then (f,Q): (E,m,X) » (E',7m',X"') is
a morphism in F; this is by definition the image

of (¥,T) wunder A.

2.10. Proposition. The map A: M+ F 4is a

guncton.

Proof. Take (A,H) {P2TL (arvgry L8LTIL (an gn)
in M and let A(A,H) = (E,m,X), etc. Assume
A = C(X), H=T(m), A' = C(X'), etc. and let
(P, T")o(P,T) = (P,V), di.e. P'of =19y and
T'oT = V. Now put A(P,T) =.(£f,0), A(¥P',T') =
(f',6') and A(Y,V) = (g,p); also put S = Tf,
S' = T%, and U = Vg, so that ¢ = QS, o' = QS'
and ¥ = Q, . By definition we have (f',®')o(f,d)

U

= (g,Q'oQ#) and thus all we have to show is

Y = 3o » that is QU = QS,oQg. But U = S'oS#9

where S# is defined as in the discussion pre-
ceding Lemma 2.03. Then by 1.09 (b) and 2.03,

x o #
Ry = Bg,00 y = 8,00,
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2.11. Theorem. The categories M and F are equi
valent.

Proof. (a) For each (A,H) M let (E,m,X) =
ACA,H), so that TA(A,H) = (C(X),I'(m)) We have
a morphism p = Hea H)s(A,H) * TA(A,H) given by

?
the pair of maps Y : A * C(X) and ~: H * T'(m),
The funtion (A,H) = M(a,g) 1S a natural transfor
. L] -

‘ 1 : E : , .

mation of . into A and since each u(A,H) is

an isomorphism ([3], 3.12) it is an equivalence.

(b) We can also define a natural transformation
v of AT into Ifaas follows. Let (A,H) =
r{Em,Xx) and (E',m',X) = A(A,H); an arbitrary ele
ment of E' is of the form e' = 0+Hx , where
OCH = T'(m), define v e' » 0(x). This maps
is an isomorphism; the inverse is defined as fol-
lows : given e€E take o0<Tl(m) with o(x) = e,
where x = m(e) and put e+w o+H_ . Then v is an

equivalence. ®
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