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SOBRE LA DEFINICION DEL PRIMER GRUPO

DE HOMOLOGIA EN LOS ABIERTOS DEL PLANO.

por

David MOND

§0. Introduccidon. En el prefacio de su "Com-

plex Analysis", [1] L.V. Ahlfors menciona la idea
de Emil Artin de basar la teoria elemental de la

homologia en el plano en el indice de curvas cerca
das con respecto a puntos de su complemento. En =l
conjunto C(Q) de las curvas cerradas contenidas
en 2 (para QN ¢C conexo por arcos), la relacidn
de equivalencia definida por la identidad de indi

ces con respecto a los puntos de € - Q2 puede usar

*
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se de una manera obvia para definir un "grupo de
homologia™ de § . En este articulo daremos los
detalles de esta definicidn y demostraremos que
el grupo asi definido coincide con el primer gru-
po de homologia singular (con coeficientes ente-
ros) cuando ¢ C es abierto. Como corolario na
tural de esta demostracidén obtendremos una demos-
tracidén sencilla del teorema homoldgico de Cauchy,

a partir de la versidn homotdpica.

§1. Definicidon. Sea <« C conexo por arcos,
y ¢(Q) = {y: [0,1] » @] Y continua, y(0) = y(1)}.

Para Y€ C(R) diferenciable, el indice de Y con

respecto a un punto 1z, del complemento de &

estd definido por

(1) Ind (Y, zo) = =— [

No hay ninguna dificultad en extender esta no-
cidén a los deméds miembros de C(f) mediante aproxi
maciones diferenciables de las curvas cerradas me-

ramente continuas (Ahlfors, p.117).

Se define una relacidn de equivalencia en C(Q):

Y, ~ Y, en @ ( Y, es homéLoga a Y, en Q ) si

Ind (Yl,z) = Ind (Y2’Z) para tode z< C - Q.
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Finalmente,en el conjunto cociente de C(Q) por
esta relacidn de equivalencia, se define una suma
de 1a siguiente manera: para Y,, Y,€ c(), vy [Yili
[Y2] sus clases de equivalencia, se toma una cur
va continua & : [0,1] + @ <tal que §(0) = Y,(0)

y 6(1) = Y2(0), y se define

-1
(2) [v,] + [v,] = [yg 8v, 1.
Aqui, & es 6§ recorrida en sentido inverso,
y Y16726_1 es la juxtaposicidn usual de curvas.

Un momento de reflexidn muestra que

Ind(y, 6 y26'1

22) = Ind(yl,z)+ Ind(YQ,z) :
siempre que estos indices estén definidos de mod
que la definicidn (2) no depende de la curva escog]
da. Ladltima relacidén puede reescribirse en

forma

(3) Ind([y1]+[y2], z) = Ind([Yl],z)+ Ind([vzg,z!,
y a partir de esto es rutinario comprobar que
c(Q)/~ provisto de la suma definida en (2) es un
grupo abeliano cuyo elemento neutro es la clase

de las curvas cerradas de indice 0 con respecto

a los puntos de € - Q . Ademd@s es claro que
-[v] = [Ynlj : Denotaremos a este grupo por
Hqy ().
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§2. Ilsomorfismo con el primer grupo de Homolo-

gfa. Para demostrar que ﬁi(n) = Hl(n) cuando £
es abierto y conexo, nos valdremos del siguiente
resultado (Greenberg [2], p-48), donde nl(Q) es
el grupo fundamental y w;(Q) es el subgrupo de

sus conmutadores:

H (Q) z 7_(R)
1 1 /“1(9)
1

cuando  es conexo por arcos. El homomorfismo

HI(Q) * Hl(Q) es natural, cada curva cerrada es

un l-ciclo.

Existe un homomorfismo ¢: ﬂl(Q) > ﬁl(ﬂ),
igualmente natural, cuya definicidon depende de 1la
versidn homotdpica del Teorema de Cauchy; ¢ manda
<y >a [y ] donde < y > denota la clase de
homotopia de la aplicacidn ¥ [0,1] +> Qi o ha
aplicacidn ¢ estd bien definida ya que dos curvas
hométopas en @ tienen el mismo indice con respec-
to a los puntos de € - f; y por la relacidn (3),
¢ es un homomorfismo. Para §} conexo por arcos,
¢ es claramente sobreyectiva (dado Y€ C(Q), sea
§ una curva continua en Q que une Y(0) con zg, el
punto de base, entonces Y~5—1Y5 en Q, luego [Y] %
¢(<5317 §> ) . Como ﬁl(ﬂ) es abeliano, es
automdtico que Ker(bgﬂi(ﬂ). Para mostrar que

ﬁl(n) = HI(Q) s hay que mostrar que la inclusidn
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opuesta es también vdlida. Primero necesitamos al
gunos resultados topoldgicosy B(z,c) denota el dis

co abierto de radio € con centroc z.

n
Lemma 1. S4 A =ig{ B(z,,e), donde cada z <€,

entonces € - A tiene un nidmero findito de componen-
Les conexas.

Demostracidn. Es obvio que la interseccidn de

dos circulos distintos en el plano consta de un nil
mero finito de puntos. Por lo tanto, el grafo pla
no cuyos nodos son los puntos de interseccidn de
las fronteras de los discos B(zi,s} y cuyas aris
tas son los arcos de estas circunferencias que unen
los puntos de interseccidn, consta de un nimero fi-
nito de nodos y de un niimero finito de aristas. De
ahi que el nlimero de caras es finito (por ejemplo,
por la formula de Euler). Las componentes conexas
de € - A se encuentran entre las posibles unio-
nes de estas caras con las aristas, y, por lo tan-

to, son finitas en numeroc. %

Lemma 2. Sea vye C(R) donde Q¢ T 28 ableato
Entonces existe Q' abierto, conexo y acotado, tal
que Q'¢Q, ye;C(QS, y ¢ - Q' tiene un ndmeno find
to de componentes conexas. Si{ ademds y ~ 0 en
Q , se puede escoger Q' de tal manera que y ~ O
en Q.
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Demostracidon. Como € - Q es cerrado, y

ofe

y® ( = y([0,1]) ) es compacto, existe € > 0 tal
que € < d(YA, € - Q).Evidentemente Y== C LJ*B(ZsC)

zey
c N, vy extrayendo un subrecubrimiento fi
nito \3 B(zi,e), obtenemos Q' . Si ademds
i=1
Y ~ 0 en §, podemos definir
n
Q' =y B(zi,e)U{zicllnd(Y,z) # 0}
i=1

El conjunto {ze€ €|Ind(y,z) # 0} esta contenido

en 2, y {ze_@IInd(Y,z) £ 0} - C} B(zi,s) es
i=1

simplemente una reunidn de algunas de las compo-

n
nentes conexas del complemento de U B(Zi’e)‘ A

i=1
Lemma 3. Sea Qc& abdento y acotado. Su-
pongamos ademds que € - Q ZLdene un nidmero findto
de componentes, Bys-cesB Entonces dado cual-
quien punto z, de Q, existe una familia

{Qi}iz de abientos tal que

1,...,N
n
a), 8.2 L iy
i=1
(b) Cada Q. y cada Qif\Qj A0n Conexos .
(c) z,€ Q; para cada i.
(d) B, es La dGnica componente conexa y acotada

de @€ - §.
b B
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Demostracidon: Usaremos repetidas veces el si-

gulente resultadoc (Newman [3] p.112):

(1) .84 F1 y F, son subconjuntos cerrados de C,
<
con uno al menos de ellos acotado,y si &-F,,0-F,
y Fif\FQ son conexos, entonces & - (F_JF,.)
8 ‘<

es conexo.

Construiremos los abiertos Qi demostrando la
existencia de aplicaciones Y ¢ [0,1] + ¢ tales

gue

(2) Yi(O)E Bi » Y;(1)€ U (la componente no

de € -Q), ¥y Yi(fo,l))g Q para cada i ,
(3) vy es 1 - 1 para cada 1i ,
(4) Yffwyé = ¢ para 1 # i ,
(5)°%3 ¢ Y; para cada 1i .

El proceso de construir las Y; es inductivo. Su-
pongamos que se han construido y,,...,Yy, con las
propiedades (2) a (5), 0 € k < n . Sea Dj= BEUYE,
como Yj es 1 -1, ¢ - Y? es conexo (Newman

p.115). € - B. es obviamente conexo , luego por

{3) veb2)yni® » Dj es conexo, 1 £ j £ k. Por
(u), Di()Dj =¢é para i # j, y por (2), Dif\E:= ¢

para 1 £ i €k, k < j £ n. De (5), del hecho



de que z,&f, y de lo anterior, concluimos con
la ayuda de (1) que si

k n
E, = ( U Dj)k){ U Bj)Lj{zo}
=1 i

8 3 j=k+ 2

entonces € - Ek es conexo (y evidentemente abier

to).

Q. - ~ is Sy ' 2

Sean ahora bk+1€ Bk+1 ¥y Up,q€ U {(1x1),.
Y ¢ T iste

55 ,k(l)}.Ccmo b1 tE ¥V uk+1£¢ E > existe una

aplicacidn continua

: [o0,1] » ¢ - E

Tyr1 X

(0) = byyy ¥ Yy (1) % upyy o

tal que Yk+1
Podemos suponzr que ;k+1 es 1 - 1 (en efecto, coO
mo € - E, es abierto, 7k#1 puede tomarse poligo
nal y es facil comprobar que un camino poligonal
siempre admite un subcamino simple con los mismos
extremos). Sean t, = sup {tIYk+1(t)c By o1 } oy
tl = inf {t € f%glll Yk+1(t)€,U} . Como Bk+1 y U
son cerrados, Yk+1(to)£:Bk+1 y Yk+1(t1)€ U s

Definamos:
Yipg [0,1] > ¢

(t) = (t°+(t1-t°)t)

Yk+1 Yk+1

Entonces, es facil comprobar que Yis1 tiene las
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propiedades (2) a (5). Esto completa la induccidn

# %
Definamos: Qi ST ) yjﬁ
j=1
i#1
» n
Es clarc que zoe;Qi, Qi es abierto y Q = ig{ Qic
S0P iR UV (Y D, ), es evidente que F, es
j#i
conexo. Se ve que ¢ - Qi £ BiLJFi , ¥y como

Bif\Fi = ¢ se tiene (d) para i # j ,
n n

&
Q.NQ. =0 - Y v, =€ - (UUJ({)D) ),
Yol 1K oy K

y es fadcil ver aplicando n veces (1) gue

n
vuUC Y Dk ) no separa a €, de modo que £.{ .
k=1 #e 9

es conexo. Un razonamiento parecido muestra que

Qi es conexo. @

Antes de continuar es necesaric establecer unas

pautas de notacidn:

C(Q, 2zo) = {y: [0,1] + Q| Y continua y

y(0) = Y(1) = z,}

Para Yy2 Yo& C(f2s z,) 5 Y, ® Y, Qquiere decir
i ¥y, 3188 homdtopa a Y, en @, rel.{0,1} ". Deno-
taremos c¢on 2z, la aplicacidn constante de C(Q,2z2,).

El siguliente lema determina Ker ¢ en un caso espe-

cial.
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Lema 4. Sea Q<€ conexo abieato y acotado, y
tal que € - Q tiene una sofa componente conexa
acotada. Si& yeC(R,z,) satisface y ~ 0 en Q,

entonces Yy T z,°

Demostracidon: § es homeomorfo a D' = {ze€ ]

0 < |z| < 1} . Luego m,(2,2,) = m (D') = &

(Greenberg [2], p.14). Sea b un punto cualquie
ra de la componente acotada de € - Q. Existe

we C(Q, z,) tal que Ind(w, b) # 0 ; tal curva se
puede construir utilizando una red cuadrada en el

plano, aunque su existencia es intuitivamente obvia.

Ahora, si <0 > genera a ni(Q,zo) entonces-

para algin meZ, <W> = <o>", y por lo tanto
Ind(w, b) = m Ind(o, b).
Esto muestra que Ind(oy, b) # 0. Finalmente, si

YeC(R,z,) satisface Ind(Y, b) = 0, podemos

concluir que <y> = <0>%° , y por lo tanto que

Lemma 5. Sea Q ¢ C conexo y abiento, enton-
V
)

ces Ker ¢ = L (0,2,

Demostracidn. Esto se reduce a mostrar que si

ye C(Q, z,) satisface Y ~ 0 en R, entonces

<Y>e;ni (2, z,). Por el Lema 2, existe Q'C Q
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abiertc conexo y acotado, tal que € - Q' tiene;

un nimerc finito de¢ componentes conexas, y tal que

~ 0 en §'. E. dentemente podemos tomar z,
en '. Sea {Q!'}._ un recubrimiento abier
I 1 IR, ¢ | =
to comoc el del Lema 3 Si Bl,b. ,Bn son las .com

ponentes acotadas de ¢ - ', B, es la (inica)
componente acotada de @€ - Qiu Sea ahora ¢ > U un
ntimero de Lebesgue del recubrimiento abierto de

0,1| formado por los —1(93). Fntonces si me N
Y i

es mayor que % 5 Y (| k;1 " %] ) C Q;k para a)
gun ik (W (S "Lgin o e oM) Como z, y Y(k/m) pertene
cen ambos a Q! NN! y este conjunto €s conexo

Ik k1
y abierto, existe una aplicacidn continua:

§ = [o,1] = Q. MAQ.
[ ] 1x 1k+1

tal que

(o ]
—~
o
~
i
N
o
<

Gk(l) = y{(k/wmw:', pars

k = 1,...,m=-1.

Definimos ademads 6, y Gm como aplicaciones cons-
tantes de valor z,. Para k = 1,...,m, definimos

< Al
Fk C(Qik’ z,) por

=4
Pe = 69 Yx S

donde Yy es el arco de la curva y entre Y(Pél) y

Y(k/m) recorrido en sentido positivo.

Af irmamos que Y = rl""r o en Q' . La homotopia



consiste esencialmente en "recoger" las curvas Gk’
como se muestra en la siguiente figura:

Yy ﬁ

———— ,l..( k /m )//

vzdk /
N .
Z, Zo
La importancia de la factorizacidn Yy = Tl,.¢Fm
radica en el hecho de que ch C(Qi s2,). Conside
, <

remos la aplicacidn al cociente:

T, (Q4z,) > 7, (Riz,)
1 ) 1 o /"1(9220)

Y>> <y> ni(Q;zo)

Escribimos {<y>} en lugar de <y> ni(Q;zo)ﬁ Como

esta aplicacidn es un homomorfismo, tenemos que
{<y>} = {<r1>} .. {<rm>} ;

y como "l/ni es abeliano, podemos reordenar es-
ta factorizacidn de {<y>} agrupando los términos
{<Fk>} que corresponden a un mismo C(QE, Zo) e

Para mayor sencillez de la notacidn, supondremos
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que el producto {<F1>} .. {<Fm>} ya estd ordena
do de esta manera,o sea que existen enteros i1 =

1 <1, €...€ 1 tales que si ij < k € ii en

n+1 +1

S

2

tonces Fk( C(Q%,zo)° Por lo tanto

1

{<y>} = {<F1°°°Fi2'1>}°°'{<r’n°"rm>}

con I'. ...T

. € C(R',z_.). Puede haber varias
ij ij+1-1 j*oe

maneras de hacer esta agrupacidn, puesto que

C(Q;,zo)f\C(Qé,zo) # §, pero ésto no tiene impor-

tancia, como veremos.

Ahora, por 1a definicidn de los Q;, todo miem-
bro de C(Qi,zo) tiene indice 0 con respecto a

los puntos de Bj’ para J # 1, ya que en tal caso

Bj estd8 contenida en la componente no acotada d=

Qif Por larelacidén de homotopia y = T r

1°" " " m

-

tenemos que para bj€ Bj

m
Z Ind(Pk,bj) = Ind(Flc.,Fm,bj) = Ind(y,b.) - 0

k=1

ys por lo que acabamos de observar, esto implica

que
lj*l_l
! Ind( T, by ) =0
k=1
]

o lo que es lo mismo, que
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Ind( I', ...T. s b.) =0
lj 1j+1-1 j

Como Bj es la Gnica componente acotada de € - Q%,
concluimos que I's sesly ~ 0 en Q!'. Por el

b i.,.-1 Jj

J j+1
Lema 4, r. ...r. ~ 2, en Q! , y por lo tan-
i. 1 j
<« 73 Jj+1

to en 2, ya que 93C 2. Concluimos que

"
—~—
A
Ler |

{<y>} - >}”c{<ri aﬂorm>}

{<z°>}cg.{<z°>}

1]

{<z,>}
o sea, que <Y>€'1Ti(Q,zo)° Esto establece que
ker ¢ ¢ ﬂi(Q, -

Combinando esta inclusidn con la opuesta, que es

obvia, terminamos la demostracidn. ®

.Jeorema 1. SL Q¢ € es abdento y conexo entonces

Qy = .
H, () Hl(ﬂ)

Demostracidén. Inmediata, del Lema 5 y del he-

cho de que H, (Q) = "1(9)/"i(9) »

Es obvio por la construccidn que el isomorfis

mo ﬁl(Q) -> Hl(Q) es natural.
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Teorema de Cauchy. S& f :2 > € es helomonfa,

donde Q@ ¢ € es abiento y conexo, entonces

[ £(z)dz = o
Y

para toda y&C(Q) con y ~ 0 en Q.

Demostracidon: Si z, = Y(0), entonces ei hechc

que Y ~ 0 en Q implica que Y es homdtopa a un
producto de conmutadores en C(,z,). Por la ver
sidén homotdpica del teorema de Cauchy, la integral
de f a lo largo de Y es igual a la integral de
f a lo largo de este producto de conmutadores, v

esta GUltima es evidentemente 0 K

3]

Teorema 2. Sean Q, y Q, abientos cenexos de

y dea £: Q, » Q, continua. SL Ty = ¥yoem 8,

entonces £ o Y, ~ f o Y, en Q

5
Demostracion. Podemos suponer sin pérdida de
generalidad que Y,(0) = YQ(O). Si Yi~Y, en
& 4
- 1 Q oy ™oy 1 T ¥
Ql, entonces Y, Y, -~ 0 en g» ¥ por el Lema

-1 ' .. .
<71 Y, >¢€ nl(Ql,zl), donde z, = Yl(u). Luego,
si f, es el homomorfismo “1(91’21)‘“1(92’f(31))

-1
inducido por f, se tiene que f*<yly2 > € Tr‘l(Q2 5
-1 -1
f(zl))e Pero como f*<yly2 > = <(on1)(on2) >

es inmediato que f o Y, ~ f o Y, en Q2.l

[o=Y
w
o



Lema 6. Sea Q ¢ € abiLente, B una componente

conex® y acctada de € - @ , y supongamecs que
d(B,{C - Q)-B) > 0. Entonces existe una curva

Yg& C(R) tal gque

1 z2e B
Ind (YB’Z) =
0 z<(C-2)-B
Demostracion. Nuestra democstracidn es una mo

n

[

dificacidn obvia de los resultados expuestos
13.4 y 13.5, Rudin [4] p.287, y por brevedad la

omitimos. 3

Teorema 3. Sea Q ¢ C abiento, conexo y tal que
d(B,(¢ - Q)-8) > 0 para toda componente conexa y
acctada B de ¢ - Q . Entonces Hl(Q) esta genena-
do Cidbrnemente pon curvas ¥4 (una para cada cempe

nente conexo acotada de ¢ - Q ) tales que

’

"
N

N
w

{
Ind (YB,Z) = J
\
{0 ze {2-0)-B

Demostracidn. El Lesma & asegura la existencia
de las Yy Si veC(), entonces todas las com-
ponentes de (€~ £, salvo un numero finito de ellas,

estdn contenidas en la componente no acotada de

)

¢ - Yn , si nd, se acumularadn en las componentes
acotadas de (¢ - Y*, contradiciendo la hipOtesis.
Dada ye€ C(Q), sean Bl,.H,Bn las componentes
acotadas de € -  que estdn contenidas en compo-
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&

nentes dccotadas de T - y , v sea m, = Indily,z)
: i

para =z € Bi' Entonces es trivial comprobar gue
- . n -
Y] = I mifyg ] en 2,
i=1 i

Lo cual muestra que las [YB] generan a HIiQ);
Como las YB son obviamente independientes, con
cluimos que Hl(Q)’ y por lo tanto H,(R), estéan

v . 3 1
senerados libremente por las [yBj 2

* k%
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