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SOBRE LA DEFINICION DEL pRIMER GRUPO

*DE HOMOLOGIA EN LOS ABIERTOS DEL PLANO

par

Oavid'fl40ND

§o. l n t ro du c c Lo n , En e1 prefacio de su "Com-
plex Analysis", [1] L.V. Ah1fors menciona 1a idea
de Emil Artin de basar 1a teor1a elemental de 1a
homolog1a en el plano en el indice de eurvas cer a
das eon respecto a puntos de su complemento. EI a1
eonjunto C(O) de las curvas eerradas eontenidas
en Q (para Q c C eonexo por a r co s L, la r e La c Lo n
de equivalencia definida por la identidad de indi
ees con respecto a los puntos de ~ - Opuede usar

* Este trabajo forma parte de la tesis de grade
del autor en el programa de Magister Scientiae de
la Universidad Nacional de Colombia. y fue reali-
zado bajo 1a direccion del Profesor Jairo Charris.
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se de una manera obvia para definir un "grupo de
homologla" de Q. En este artlcu10 daremos los
detalles de esta definicion y demostraremos que
el grupo as! definido coincide con el primer gru-
po de homolog!a singular (con coeficientes ente-
r-os ) cuando Q c;:; C es abier 00 Como corolario na
tural de esta demostracion obtendremos una demos-
tracion sencilla del teorema homologico de Cauchy,
a partir de la version homotopica.

§1. Definicion. Sea n ~ C conexo por arcos,
y C(Q)::: {y: [0,1] .;. QI Y continua, yeO) = y(1)}.

Para y C C(Q) diferenciable, el :indice de y con
respecto a un punta Zo

est& definido por
del complemento de Q

Ind Cy, zo) = 1 J
y

dz

27[i

No hay ninguna dificultad en extender esta no-
cion a los demis miembros de C(Q) mediante aproxi
maciones diferenciables de las curvas cerradas me-
ramente continuas (Ahlfors, p.i17).

Se define una relacion de equivalencia en C(Q):

Yl - Y2 en n ( Yl e~ homologa. a. Y2 en Q ) si

Ind (y1,z) = Ind (Y2'z) para todo zE: e - Q.
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Finalmente~en el conjunto cociente de C(n) pOl'
esta relacion de equivalencia, se define una suma
de Ja siguiente ma n er-a: para Y1~ Y2€:'C(n), y h1],
[Y2] sus clases de equivalencia, se toma una cur
va continua 0 : [0,1] + n al que 0(0) = y1(O)
Y 8(1) = Y2(0), y se define

(2 )

-1Aqui, 0 es 8 recorrida en sentido inverso,
Y Y 1oy 20-1- es la j uxta p o s Lc Lo n usual de cur va s ,

Un momenta de reflexion muestra que

siempre que estos indices esten definidos de modo
que la definicion (2) no depende de la curva escogi
dao La mtima relacion puede reescribirse en 1
forma

y a partir de esto es rutinario comprobar q e
C(O)!- provisto de la suma definida en (2) as un
grupo abeliano cuyo elemento neutro es la cl se
de las curvas cerradas.de indice 0 con respecto
a los prnt o s de (t - n 0 Ad emfis es claro que
- [y ] -_ ry -1JL Denotaremos a este grupo pOI'
.-
H1(n L
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§2. Isomorfismo con e1 primer grupo de Homo l o »

Agfa. Pa a demostrar que Hi(n); H1(n) cuando n
es ab'er 0 y cone 0, nos valdremos del siguiente

esult do (G eenberg [2]~ p.48)$ donde 'TT1Un es
Ie1 g upo ~undamental y 'TT1(Q) es e1 subgrupo de

sus conmutadores:

cuando Q es eonexo pOI" areose El homomorfismo
'TTl Q) H1(Q) es natura19 eada curva cerrada es
un 1-cicl0.

"Existe un homomorfismo ¢: TIi(Q) ~ H1(Q)$
igualmente natural $ cuya def ln Lc f Sn depende de . a
ve sion homotopica del Teorema de Cauchy; ¢ manda
< > [y J do nd e <: y > denota la clase de

omo o p La de 1a a p Li c a c Lo n y: [0,1J -I'- Q • La
plicaci6n ¢ estfi bien de~inida ya que dos curyas

horu6~opas en Q tienen el mismo indice con respec-
o a los puntos de ~ - Q; Y pOI" 1a relacion (3),

Pa~a Q conexo pOI" arcos,¢ es un homomo_fismo.
¢ es c aramente sobreyectiva (dado yl£: C(Q), sea
o una c i rva co nt i nua en Q que une y( 0) con ZO~ e1

d - v_.1"~1vl' t1 1 [ ]pun to e base, entonces ,u ,u en Hi uego y =
¢«o-ly 0) Como H1(Q) es abeliano, es
a u t o ma t Lc o que Ker ¢1'TTi eQ). Para most ar que
'"H1(Q) = H1(Q) , hay que mostrar que la inclusion
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opuesta es tambien valida. P~imero necesitamos al
gunos resultados topo16gicosf B(z,S) denota e1 dis
co abierto de radio £ con centro z.

n
Lemm~. sz A::: U

1=1
entonce~ ~ - A t~ene un
.t:U, co ne xa.~ .

B(z.,S), donde c.a.da. z. e: ct,
l l

n~me~o 6inito de componen-

Demostracl6n. Es obvio que la ~ntersecci6n de
dos circulos distintos en e1 plano consta de un n~
mero finiLo de puntos. Por 10 tanto, el grafo pl~
no cuyos nodos son los puntos de interseccion de

las fronteras de los discos B(z.,E) y cuyas aris
l

tas son los a cos de estas c' cunferencias q'€ unen
los puntos de intersecci6n, consta de un nGmera fi-
nito de no d o s y de in nfim ero finito d,c a r Ls t a e . De
ah1 que e1 n(mero de caras es finito (po ejemplo,
por laformula de Euler). Las componentes conexas
de e - A se encuentran entre las posibles unlo-
nes de estas caras con las arisLas, y, por 10 an-
to) son finitas en numero. ~

lemma 2. S e.a. y <:.: COl) do nde rl r.; (C eo a bi.. eJr..t "I

En.ton~e.~ exi..~.te. rl abieJtto, conexo if acotado, tal
q u e n '~rl ~ y €: C (n) ~ iJ (t ~!'p -i.en£. tttl niimeJto 6-ii1~~
to de ~omponen.te.~ cone.xa~. Si ade.ma~ y 0 en
n J ~e pue.de e~cagen 0' de .tal mane~a qu.e y - 0
en n'.
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Demostracion. Como r - n es cerrado, y
'"#t:

y (

que
= Y([O,lJ) ) es compacto, ex Ls t e e >

~ *£ < d(y-, ~ - n).Evidentemente y C

y extrayendo

o tal
U...B(z,£)

ZE:.y··
subrecubrimiento fiun

~ B(z.,£), obtenemos n'
i=l l

Y - 0 en n, podemos definir

nito Si ademas

n
n' = U B(z.,£) U{zE:~IInd(Y,z) ¢ O} .

• 1l=l

E1 conjunto {zE:(Cllnd(y,z) ¢ O}
en n, y {z€.[IInd(y,z) ¢ O} -

esta contenido

simplemente una reuni6n

n
U

i=l
de a1gunas

B(z.,£) es
l

nentes conexas del complernento de
de las compo-

n
U B(z.,£). •1=1 ).

Lemma 3. Se.a n c e ab-ie.ltto tj ac.ora do , Su-
pongamo~ ade.ma~ que. ~ - n t-ie.ne.un nume.lto 6inito
de. c.ompone.nte~, B1, ..• ,Bn Entonce~ dado c.ual-
qu-ie.1tpunto Zo de. ni e.xi~te. una 6amil-ia
{ni}i=l, ... ,n de. abie.ltto~ tal que.

n
(a ) n =

iYl
n.

.i

(b) Cada n. tj c.o.da n.nn. ~on c.one.xo~ .l l J

(c) Zo E: n. paJLa c.ada i.l

(d) B. e.~ la unic.a c.ompone.nte. c.ane.xa tj ac.otada
l

de. (£ - n ..
l
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Demostracoon: Usaremos re etidas veces el si-
guien e resultado (Newman [3] p.112):

(1) Si F1 Y
.... son subconjuntos cerJ: ~

L

con uno a1 menos de ellos acotado~ y

y F1n F2 son conexos~ entonces <C

es conexoo

ados de
si -fl~ -F2
- (F1UF )

Construiremos los abiertos n. demostra do 1a
1

existencia de aplicaciones y. : [O,lJ + f tales
1

que

(2) Yi(O)€: Bi ~

de tr -n) ~

y, (1) E: U CLa componente 0 acotada
1

Y Yi ( 0,1» s n para cada i

(3) y. es 1 - 1 para cada i
1

para i f, j

"#':
(5) Zo ~ y, para cada i .

1.

El proceso de construir las Yi as inductlvO. Su-
pongamos que se han construldo V1'. "'"Yk con as

.t.< . _ hpropiedades (2) a (5), 0 ~ k n. Sea D.- B.Ul.
J J J

es conexo (Newmancomo y.
J

p.llS). <C - B.
]

(1) y (2), ~ - D.
]

..,'(
es 1 - 1 , <C - y.

]
es obviamente conexo luego por

es conexo, 1 .;S j ~ k , POl"

( 4 ) , D.nD. = ¢ para i i j, y po r- (2), D/1BJo:
.1 ]

1 ~ i ~ k, k < j ~ n. De (5), del hechopara
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de que Zoi:.Q~ y de 10 an er-Lo r , concluimos c o

la ayuda de (1) que si

U D.)l){
j~l ]

n
U B.,) ){zo}
j;: k.t:2 J

entonc s <r - E 1, es conexo (y evidentemente bier
to) >

S"'an ahara b , 1· lC B, '1K -)- ,( 1" ...
y u ~:U·· {y,(1),.

Kt 1 i

. , ,
1 •ap.l..lc cion co tinua

tal que 'I('j""'1(O):: b", k+l
y

Podemos s upo n e r que esk+1
e s abi<Lto~Yl 1.<+

comp.obar que

1 - 1 (en efect09 co
puede tom ~se polig£

un camino poligonal
,,0

nal y
siam re admits un subcamino simple con los mismos
B3 remas). Sean to = sup {tIYk+1(tj~ Bk+1} Y

Como B Uk'l-1 Y

son cerrados, y

Yk.1 : [0,1] - IC. r_

Etonces, es facil comprob que Yk+1 tie e las
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pro e de (2 a ( ). Esto c ompI t- 1a inducci6n

D in"mos: n.~
n

Uj=l
j;ti

Es claro q e o E:. fL
1

noes
1

bierto y n =: Q ••~

~ F. ':' U U ( U D. ), e.s eV1dente que r . s1. j i J 1

conexo. Se ve ·ue n. '" B.U r . y como
1. 1

,
B.nF. ::: ¢ se tiene (d) pa a i 1- j
1. 1.

n '. n
Q.nn. Q

..
(U U(;;; ~ U ~ (J; = U D )1 J k= =1 k

s facil vel' aplicando n veces (1)
n

U U< U Dk) no s e p ar-a a CC, de modo
=1

ue
u e Q.nn.

1. J

e s c on e xo , Un azonamiento parecido muestra que

n. es conexo. Q
1.

An es de continual" es n e c e s a r-Lc e s t a b Le c 1:' un a s

pa as de not cion:

C(Q zo) - {y: [0,1] + QI Y continua y

yeO) ;:; ~ i) ;;;; o

Pa 2 Y1 ~ Y2 qUlere decir

n Q, reI.{O,1} It. Deno-

t ,1" mo

so. 6 topa

con Zo 1
'2
p ic c·on const nte de C(Q,zo

E1 s'gu'ente em ete m'n e n n caso s e-
ci 10
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Lema 40 Sea Q <; e c.oI1e.xoabi.eJtto IJ ac.otadop IJ
tal qu.e a: - Q tie.ne una so t.a c.omponente c.one.xa
ac.otadao Si. YE: C(Qszo) .6ati..66ac.e Y - 0 eYl Q,

en t» nc e.6 Y ::::: Zo •

Demostracion: Q es homeomorfo a D' = {z€:ttl

0 < I z I < 1} Luego 7T
1
(Q,Zo) ::: 7T

1
(D') ::: !l

(Greenberg [2] ' p.14)0 Sea b un punto cualqui~
ra de la componente acotada de ~ ~ Q. Existe
WE: C(Q, zo) tal que Ind(w, b) ¢ 0 ; tal c ur-v a se
puede construir utilizando una red cuadrada en el
plano, aunque su existencia es intuitivamente obviao

Ahora, si < 0 >

para algun
genera a 7T1(Q,Zo) entonces=

m<w> = <0> , y por 10 tanto

Ind(w~ b) = m Ind(o, b)c

Es 0 muestra que Ind(os b) ¢ 00 Fina mentes
E:C01,zo) satisface Ln d f v , b) ;:: 0, podemos

conclulr que <Y> = <0>0, Y por 10 tanto que
•

si

Lemma 50 Sea Q ~ C c.onexo y abi.eJtto, enton-,
c. e.6 Ke r 4> = 7T 1 .( Q , z 0 )

Demostraciono Esto se reduce a mostrar que si
YE:.C(Q, zo) satisface Y - 0 en Q, entonces

Por el Lema 2, existe Q'~ Q
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, abierto conexo y acotado, tal que ~ - 0' tienel
un numerc finito de componentes con xas, y tal que
y - 0 en 0', .dentemente podemos tomar
en \1'. Sea {\1!}._1~ ~- , ... ,n
to como el del Lema 3. Si

un recubrimiento abier
son las .c o m

ponentes acotadas de
componente acotada de

es la (unied)

Lebesg e del
<r-n~, 1.
recubrimien 0 abie.
-1y (n:p.

k-1 ~]
m m) c.

un
nume 0 d o de

forma 0 pOl' los
1

Entonces si meN
] -

gun Como

0'
ik

Y(k/m)

p r'"es mayor qu

i
k

(k: 1,o .. ,m) ..

cen ambos a n~nn!
1.k ~k+l

Y abier 0, existe una aplicaei6n continua:

p rten~
y este coni unto es conexo

tal que y 0k(l) ::y(k/mi, para

k = 1",,,,m-l.

tante de valor
60 y 0 como aplieaciones cons-

m
Zo' Para k = l,o.o,m, de f' i n imo s

DefJnimos ademas

donde es el area de la c ur v a y entre y(- ~~) y

y(k!m) recor~ido en sentido positivo.

Afirmamos que y - f1···r m La homo op!

, j \



consiste esencialmente en "recoger" las curvas Ok'
como se muestra en la siguiente figura:

"-. "I
~ ,.. , ...
Zo Zo

La importancia de la factorizaci6n y = ft ..• frn
ra d i ca en el hecho de que fkc C(n~ ,zo)' Cons idelk
remos la aplicaci6n al cociente:

<t> - <y> 1T~ (n~zo)

Es c rLb imo s {<y>} en lugar de <y> rricn:zo)' Como
un hornomorfismo, tenemos queesta aplicacion es

{<y>} = {<r t>} {<f >}rn

y como 1ft/TIl es abeliano, podernos reordenar es-
ta factorizacion de {<y>} agrupando los terminos
{<rk>} que corresponden a un mismo C(ni, zo)'
Para mayor sencillez de la notaci6n, supondremos
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que el producto {<f >} ya esta ordena
m --

do de esta manera~o sea que existen enteros i1 =
1 ~ i2 ·~ •• o~ i tales que s i i ..~ k ~ i. 1 ennt1 J J+

tonces POI" 10 tanto

can f. o.ef. 1C C(n!tZo)' Puede haber variaslj ljt1- ]

maneras de hacer esta agrupaciont puesto que

c(n!tZ )()C(n!tZo) 1- 0t pero esto no tiene impor-
l 0 J

tancia, como veremos.

Ahora, par la definicion de los n!, todo l,iem-
l

tiene lndice 0 con respecto abra de C(n!,zo)
l

los puntos de B.,
J

esta contenida
para j i it ya que en tal caso

B .
J

n! •
l

tenemos

en la componente no acota a de

Par la re La c i Sn de homo t op f a
que para b. E: B.

J J

m
I Ind(fk,b.) :: Ind{I'l",·r .s .: = Ind(Y,b.) - 0k=1 J m ] J

Y9 poria que acabamos de observar, esto 1m ic

que
1j+1-1

r Ind( fk, bj = 0
k=io

J

o 10 que es 10 mismot que
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Ind( f. ".f. l' s .» = 0
~j ~j+l- J

Como B.
J

concluimos que
es la unica componente acotada de [ - ~~,

J
f. . .. I' . 1 - 0 en ~ ~ e Por el~j ~j+l- J

Lema 4, f. e •• f .
~j ~j+l

y por 10 tan-

to en ~, ya que ~~c ~.
J

Concluimos que

{<y>} = {<fl·,~r. l>} ... {<f ... of >}
. 1 - ~ m2 n

= {<zo>}o ..{<zo>}

Esto establece que

Combinando esta inclusion con la opuesta
j

que es
obvia, terminamos la demostraci6n. -

"H (~) ~ H (~) 0

1 1

.Teorema 10 Si ~C;[ e s ab Len.t» Ij c.one.xo e.ntoJ1c.e.,~

Demostracion. Inmediata~ del Lema 5 y del he-

•
Es obvio por la construccion que el isomorfis

mo ~1(~) + Hl(~) es natural.

134



Teorema de Cauchy. Si f :Q + C e6 halomo~6a,
donde Q ~ [ e6 abie~to If conexo, entonce6

f f(z)dz :::a
y

pa~a t.odo: y €: C (Q) con y _ a en Q.

Demostracion: Si Zo = yCO), entonces e~ hecho
que y - 0 en n implica quey es hom6topa a un
producto de conmutadores en C(Q,zo)' Por la ver
sian homotapica del teorema de Cauchy, la integral
de f a 10 largo de y es igual a la integral de

f a 10 largo de este producto de conmutadores, y
esta ultima es evidentemente 0 •

Teorema 2. Sean Q1 IfQ2abieltto.6 c o ue xc s de e

If .6ea f: Q1 + Q2 continua. Si Yl - Y2 en 01
entonce.6 f 0 Y - f 0 Y en n1 2 2'

Demostracion. Podemos suponer s n p€ d'da de

generalidad que Si n

e1 Lema 5

donde zl = YiCO). ego,

si f* es e1 homomorfismo n1(Q1,zl)~TI1(Q2Jf(zl»
- 1 f

f;,: <y 1 Y 2 > C n 1 (Q 2 '

-1 -1f(Zl». Pero como f1:<Y1Y2 >= «foY1)(foY2) >

inducido por f, se tiene que

es inmediato que f 0 Y1 - f 0 Y2 en Q2'.
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�!!la 6. Sea $1';' <r a6.{vl.:to~B una componen:te.
con2X~ y acotada de r - $1 , y 6upongamo6 que
d(B,([ - $1)-B) > o. En:tonce6 eX.{6le una cuAva
y s: C W ) ta£ que.

B

z c:: B

Demostracion. Nuestra demostraci6n es una rna
dificaci6n obvia de los resultados expuestos en
13.4 y 13.5, Rudin [4J p.287, Y por b revedad la
umitimos lit

Teorema 3. Sea $1 c c ab.{e~:to, conexo y :tal que
d(B,([ - Q)-B) > a pa~a toda componen:te conexa y
acotada B de X - n . En:tonce~ H1(Q) e~:ta gene~a-
do £ib~emen:te po~ cunva~ YB (una pa~a cada compo
nente eone.xo 1C lada de c - Q ) :tale~ que

,
(

(YB,z) I 1 zE: B_n z: /
\
1 (~::-rn- Bl 0 Z€:.
\

Dcmo:;traci6n. E Lema 6 asegura la existencia
de las YB' S' YE:C(n), entonces todas las com-
po n e n t e s de (L - Q" salvo un n Iirne r-o fin ito de elIas s

est&n contenidas eri la compon~nte no acotada de
~ - Y* , s1 no, se acumularan en las componentes

s;

acotadas de ~ - y", contradiciendo la hip6tesis.
Dada y~C(n), sean Bl, .•~,Bn las componentes
acotadas de [- n que estan contenidas en compo-
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nentes a~otadas de sea m. = !nd(y~z)
1

para z (: B ••
1

Entonces es trivial comprobar que

n
[yJ .- I m~[YB ]

"-1 1 ;- . ""
en Q ,

10 c ua L mues r r-a que las [YB] ge ne r-a n a HI (Q).

Como las YB son obviamente independientes. CO~

cluimos que ~1(Q), y pOI' 10 tanto H1(Q), est~n
~enerados libremente per las ry 'J"

L B

***
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