Revista Colombiana de Matemáticas Vol. XIII (1979), págs. 193 - 206

CHARACTERIZATION OF CERTAIN CT-SELF-ADJOINT

OPERATORS BY MEANS OF THEIR EXPONENTIAL FUNCTION

by

Klaus Gero KALB

§1. Introduction. Let X be a complex Banach space. Let $T \in \mathcal{I}(X)$ be a continuous linear operator with spectrum $\sigma(T) \in (a,b) \in \mathbb{R}$. For natural T, $1 \le n \le \infty$, denote $V_p^n[a,b]$ the algebra (of Sobolev type) of functions $f \in C^{n-1}[a,b]$ for which $f^{(n-1)}$ is absolutely continuous, and $f^{(n)} \in L^p(a,b)$ for $1 \le p \le \infty$ or $f^{(n)} \in C^n[a,b]$ for $p = \infty$. $V_p^n[a,b]$ is provided with the norm

$$\|f\|_{n,p;[a,b]} = \max\{|f^{(k)}(a)|: k=0,...,n-1\} + \|f^{(n)}\|_{0,p;[a,b]}$$

where $\|\cdot\|_{0,p;[a,b]}$ denotes the norm of $L^p(a,b)$ for $1 \le p < \infty$ and the maximum-norm of C[a,b] for $p = \infty$. For n = 0, only $V^{\circ}[a,b] = C[a,b]$, with the norm $\|\cdot\|_{0}$ so $\|\cdot\|_{0}$, is considered.

the norm $\|\cdot\|_{o,\infty}$; [a,b], is considered. The called V_p^n -self-adjoint (denoted: $T \in [V_p^n]$) if there exists a continuous homomorphism ϕ : $V_p^n[a,b] \rightarrow \mathcal{L}(X)$ with $\phi(e_o) = I$, $\phi(e_1) = T$, where $e_o(t) = 1$, $e_1(t) = t$ ($t \in \mathbb{R}$). It turns out that this notion does not depend on the selection of the interval [a,b]. The V_p^n -self-adjoint operators are interesting examples of \mathcal{X} -self-adjoint (particularly C^∞ -self-adjoint) operators in the sense of Colojoara-Foiaş [2] and extrapolate the C^n -self-adjoint operators of Kantorovitz [7], [8]. As is well known, an operator $T \in \mathcal{L}(X)$ is C^∞ -self-adjoint if and only if the exponential function $R \ni \xi \mapsto e^{i\xi T} \in \mathcal{L}(X)$ of T satisfies a growth condition

(1.1)
$$\|e^{i\xi T}\| = 0(|\xi|^k)$$
 $(|\xi| \to \infty)$

with $k \in \mathbb{N} = \{0,1,\ldots\}$ (cf.[7], Lemma 2.11; [2], Thm.4.5, or section 4 of this note). In Kalb [6] the V_p^n -self-adjoint operators are characterized by conditions on their resolvent function $z \mapsto R(z) = (T-zI)^{-1}$. In this work the V_p^n -self-adjointness shall be described by means of the exponential function of T (and another related function introduced by Kantorovitz [8]). Thereby, among other things, results of Kantorovitz [7], [8] are generalized and newly proven by a very elementary and natural method. This method consists in developing suitable representation formulas for the analytic

functional calculus of T on certain subalgebras of the algebra $\mathcal{H}(\mathbb{C})$ of entire functions (cf. section 3 and Lemma 4.1).

Sections 2 and 3 of this work generalize a portion of chapter 2 of my Habilitationsschrift [5] (where only the case n = ∞ is treated); section 4 was essentially written during a visiting professorship at the Departamento de Matemáticas of the Universidad de los Andes in Bogotá/Colombia (February - April 1979), which was partially supported by COLCIENCIAS.

- §2. Preliminaries. For the sake of selfcontainedness we present here some facts from [3], [7], [6], which we shall need later. For the time being let $T \in \mathcal{I}(X)$ be arbitrary.
- 2.1 LEMMA. Let $\alpha_+ = \sup \{ Im(z) : z \in \sigma(T) \}$, $\alpha_- = \inf \{ Im(z) : z \in \sigma(T) \}$. Then

(2.1)
$$R(z) = \begin{cases} i \int_{-\infty}^{\infty} e^{-i\xi z} e^{i\xi T} d\xi & \text{for } Im(z) > \alpha_{+} \\ \infty \\ -i \int e^{-i\xi z} e^{i\xi T} d\xi & \text{for } Im(z) < \alpha_{-} \end{cases}$$

where the integrals converge conditionally.

 $\underline{\text{Proof}}_{\circ}$ Application of the analytic functional calculus of T to the formula

$$\frac{1}{w-z} = \begin{cases}
\hat{1} \cdot \int_{-\infty}^{0} e^{-i\xi z} e^{i\xi w} d\xi & \text{for } Im(w) < Im(z) \\
-\hat{1} \cdot \int_{0}^{\infty} e^{-i\xi z} e^{i\xi w} d\xi & \text{for } Im(w) > Im(z).
\end{cases}$$

195

2.2 COROLLARY. If T satisfies the condition (1.1), then $\sigma(T) \subset \mathbb{R}$

<u>Proof.</u> Under (1.1), the integrals in (2.1) converge absolutely for $z \in \mathbb{C} \setminus \mathbb{R}$ and the affirmation follows from Lemma 2.1 by the identity theorem for analytic functions.

Now let be $\sigma(T) \subset (a,b) \subset \mathbb{R}$. For $\epsilon > 0$ and $n \in \mathbb{N}$ let

$$A_{o}(b,\varepsilon;t) = \frac{1}{2\pi i} \left[R(t+i\varepsilon) - R(t-i\varepsilon) \right] \quad (t \in \mathbb{R})$$

$$A_{n}(b,\varepsilon;t) = \int_{t}^{b} \frac{(s-t)^{n-1}}{(n-1)!} \quad A_{o}(b,\varepsilon;s) ds$$

$$(t \in \mathbb{R}; n \ge 1)$$

(2.3)
$$I_{\varepsilon}^{[-n]}(h) = \int_{a}^{b} h(t)A_{n}(b,\varepsilon;t)dt$$
 (hec[a,b])

2.3 LEMMA (cf. [6], [9]). For every bounded set $M \subset \mathcal{H}(D)$ and function $g \in M$,

$$g(T) = \sum_{k=0}^{n-1} \frac{g(k)(a)}{k!} (T-aI)^{k} + \lim_{\epsilon \to 0+} I_{\epsilon}^{[-n]}(g^{(n)})$$

uniformly on M with respecto to g.

Finally we shall need the following formula, which yields from (2.1):

$$I_{\varepsilon}^{\left[-0\right]}(h) = \frac{1}{2\pi i} \int_{a}^{b} h(s) R(s+i\varepsilon) - R(s-i\varepsilon) ds$$

$$= \int_{-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{a}^{b} h(s) e^{-i\xi} ds\right] e^{-\xi |\xi|} e^{i\xi T} d\xi$$
196

where the integral converges conditionally.

- §3. Description of the analytic functional calculus by means of the exponential function. Let $T \in \mathcal{L}(X)$ with $\sigma(T) \subset (a,b) \subset \mathbb{R}$ and let $n \in \mathbb{N}$.
- 3.1. <u>Definition</u> (cf. Kantorovitz [8]): let $E_n(\xi,T;a)=e_n(\xi,z;a)|_{z=T}$ where

$$e_{n}(\xi,z;a) = e^{i\xi a} \int_{\rho=0}^{\infty} (i\xi)^{\rho} \frac{(z-a)^{\rho+n}}{(\rho+n)!} \quad (\xi \in \mathbb{R}; z \in \mathbb{C}),$$

$$e_{n}(\xi,\cdot;a) \in \mathcal{H}(\mathbb{C}).$$

- 3.2 Remark.
- (a) $e_0(\xi, z; a) = e^{i\xi z}$
- (b) $\frac{d^k}{dz^k} e_n(\xi, z; a) = e_{n-k}(\xi, z; a)$ (0 \(k \le n \).
- (c) $e_n(\xi,a;a) = \begin{cases} e^{i\xi a} & \text{for } n=0 \\ 0 & \text{for } n>0 \end{cases}$

Particularly $E_o(\xi,T;a) = e^{i\xi T}$.

For $f \in L^1(\mathbb{R})$ let $\hat{f}(s) = \int_{-\infty}^{\infty} f(\xi) e^{i\xi s} d\xi$, $s \in \mathbb{R}$, denote the Fourier transform of f. For $f \in C_c(\mathbb{R})$ we have $\hat{f} \in \mathcal{H}(\mathfrak{C})$.

3.3 LEMMA. For $f \in C_c(\mathbb{R})$:

$$\hat{f}(T) = \sum_{k=0}^{n-1} \frac{\hat{f}^{(k)}(a)}{k!} (T-aI)^k + \int_{-\infty}^{\infty} (i\xi)^n f(\xi) E_n(\xi, T; a) d\xi$$

Proof. First we obtain by application of Lemma
2.3 and Remark 3.2:

(3.1)
$$E_n(\xi,T;a) = \lim_{\epsilon \to 0+} \int_a^b e^{i\xi s} A_n(b,\xi;s) ds$$
 $(\xi \in \mathbb{R}),$

uniformly with respect to ξ on compact subsets of ${\bf R}$.

Let $f \in C_{\mathbb{C}}(\mathbb{R})$, again from Lemma 2.3 ensues

(3.2)
$$\hat{f}(T) = \sum_{k=0}^{n-1} \frac{\hat{f}(k)(a)}{k!} (T-aI)^k + \lim_{\epsilon \to 0+} \hat{f}(n)(s) A_n(b,\epsilon;s) ds$$

Let supp(f) $\subset [\alpha, \beta]$. Then

$$\lim_{\varepsilon \to 0+} \int_{a}^{b} f^{(n)}(s) A_{n}(b, \varepsilon; s) ds$$

$$= \lim_{\varepsilon \to 0+} \int_{a}^{b} (i\xi)^{n} f(\xi) e^{i\xi s} d\xi A_{n}(b, \varepsilon; s) ds$$

$$= \int_{\varepsilon \to 0+}^{b} a \alpha$$

$$= \int_{\alpha}^{\beta} (i\xi)^{n} f(\xi) \lim_{\varepsilon \to 0+} \int_{a}^{b} e^{i\xi s} A_{n}(b, \varepsilon; s) ds d\xi$$

$$= \int_{\alpha}^{\infty} (i\xi)^{n} f(\xi) E_{n}(\xi, T; a) d\xi,$$

from where the affirmation of the lemma follows, using (3.2). \blacksquare

From Lemma 3.3 ensues the following characterization of V_p^n -self-adjointness of T, which in the particular case $p=\infty$ was given by Kantorovitz [7],[8] in a similar way.

3.4 THEOREM. For $T \in \mathcal{L}(X)$ with $(T) \subset (a,b)$ the following statements are equivalent:

- (1) $T \in [V_p^n]$.
- $(2) \quad \left\| \int_{-\infty}^{\infty} f(\xi) \, e^{i\xi T} d\xi \right\| \leqslant M \|\hat{f}\|_{n,p;[a,b]} \,, \, \text{for all} \\ f \in C_{c}(\mathbb{R}) \,.$
- (3) $\| \int_{\infty}^{\infty} f(\xi) E_{n}(\xi, T; a) d\xi \| \leq N \| \hat{f} \|_{o, p; [a, b]} , \text{ for all } f \in C_{c}(\mathbb{R}).$

 $\frac{Proof}{v_p^n[\texttt{a,b}]}$. Note that $Z=\{\hat{f}\colon\, f\in C_c^\infty(\mathbb{R})\}$ is dense in $v_p^n[\texttt{a,b}]$.

- (1) \iff (2). Because of Lemma 3.3 applied to n=0 the condition (2) is equivalent to the continuity of the restriction $\phi_0\colon Z\to \mathcal{L}(X)$ of the $\mathcal{H}(\mathfrak{C})$ -functional calculus of T onto Z, with respect to the topology induced on Z by $V_D^n[a,b]$.
- (1) \Rightarrow (3). If $T \in [V_p^n]$, then there exists a constant N such that

$$\|g(T)\| \leq N_{\circ}\|g\|_{n,p;[a,b]}$$
, for all $g \in \mathcal{H}(C)$.

If $f \in C_c^{\infty}(\mathbb{R})$ is given, choose $g \in \mathcal{H}(C)$ such that $g^{(k)}(a) = 0$ for k = 0, ..., n-1, $g^{(n)} = \hat{f}$. Then

$$\|\lim_{\epsilon \to 0+} I_{\epsilon}^{[-n]}(\hat{f})\| = \|g(T)\| \le N \cdot \|g\|_{n,p}; [a,b]$$

$$= N \cdot \|\hat{f}\|_{0,p}; [a,b], \quad \text{(Lemma 2.3)}.$$

But it holds, by a calculation similar to that in the proof of lemma 3.3 , that:

$$\lim_{\epsilon \to 0+} I_{\epsilon}^{[-n]}(f) = \int_{-\infty}^{\infty} f(\xi) E_{n}(\xi,T;a) d\xi.$$

 $(3) \Rightarrow (2)$. From Lemma 3.3 it follows

$$\|\int_{-\infty}^{\infty} f(\xi)e^{i\xi T}d\xi\| = \|\int_{k=0}^{n-1} \frac{\hat{f}(k)}{k!} (a)(T-aI)^{k} + \int_{-\infty}^{\infty} (i\xi)^{n} f(\xi) E_{n}(\xi, T; a) d\xi\|$$

$$\leq M_{1} \cdot \max\{|\hat{f}^{(k)}(a)| : k=0, \dots, n-1\} + N \cdot \|(i \cdot)^{n} f(\cdot)\|_{0,p}; [a,b]$$

$$= M_{1} \cdot \max\{|\hat{f}^{(k)}(a)| : k=0, \dots, n-1\} + N \cdot \|\hat{f}^{(k)}\|_{0,p}; [a,b]$$

$$\leq M \cdot \|\hat{f}^{(k)}\|_{0,p}; [a,b]$$

 $3.5 \ \underline{\text{Remark}}$. Instead of the interval [a,b] with $\sigma(T) \subset (a,b)$, an interval $[-\alpha,\alpha]$ with $\sigma(T) \subset (-\alpha,\alpha)$ can be considered and the expansion point a can be substituted by 0. Then Lemma 3.3 and Theorem 3.4 hold with $E_n(\cdot,T;0)$ instead of $E_n(\cdot,T;a)$.

To prove this, only Lemma 2.3 has to be adapted to this situation, usign another kernel function $\tilde{A}_n(\epsilon,t)$ (cf. the proof of Lemma 2.3 in [6]).

§4. Estimation of the order of C^{∞} -self-adjoint operators. Let $T \in \mathcal{L}(X)$ be an operator whose exponential function satisfies the growth condition (1.1), then $\sigma(T) \subset \mathbb{R}$. Let \mathcal{L} be the space of rapid-

ly decreasing functions of Schwartz; the Fourier transform is a topological isomorphism of $\mathcal F$ onto itself (c.f. e.g. [4]). Define a continuous linear transformation $\Psi\colon \mathcal F \to \mathcal I(X)$ by

$$\Psi(\hat{f}) = \int_{-\infty}^{\infty} f(\xi) e^{i\xi T} d\xi \qquad (f \in \mathcal{Y})$$

(This and the following integrals converge absolute ly).

4.1 LEMMA. Let $\sigma(T) \subset (a,b)$ and let $\chi \in C^{\infty}(\mathbb{R})$ be a function with $supp(\chi) \subset (a,b)$ and $\chi \equiv 1$ on an interval $\left[a_1,b_1\right]$ such that $\sigma(T) \subset \left(a_1,b_1\right) \subset \left[a_1,b_1\right] \subset (a,b)$. Then $\hat{f}(T) = \Psi(\chi,\hat{f})$ for all $\hat{f} \in C^{\infty}_{C}(\mathbb{R})$.

Proof. Choose $\Upsilon \in \Upsilon$ such that $\mathring{\Upsilon} = \chi \cdot \mathring{f} \in \Upsilon$. Then $\Psi(\chi \cdot \mathring{f}) = \Psi(\mathring{\Upsilon}) = \int_{-\infty}^{\infty} \Psi(\xi) e^{i\xi T} d\xi$ $= \lim_{\varepsilon \to 0+-\infty} \int_{-\infty}^{\infty} \Psi(\xi) e^{-\varepsilon |\xi|} e^{i\xi T} d\xi$ $= \lim_{\varepsilon \to 0+-\infty} I_{\varepsilon}^{[-0]}(\mathring{\Upsilon})$ $= \lim_{\varepsilon \to 0+} I_{\varepsilon}^{[-0]}(\chi \cdot \mathring{f})$ $= \lim_{\varepsilon \to 0+} \frac{1}{2\pi i} \int_{a_1}^{b_1} \mathring{f}(t) [R(t+i\varepsilon) - R(t-i\varepsilon)] dt$ $= \mathring{f}(T).$

Here, (1) ensues from formula (2.4) because

 $\frac{1}{2\pi} \int_{a}^{b} \hat{\phi}(s) e^{-is\xi} ds = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{\phi}(s) e^{-is\xi} ds = \phi(\xi) \text{ (Fourier inversion formula), (2) follows from the inclusion } \left[\left(\left[a, a_{1} \right] \bigcup \left[b_{1}, b \right] \right) \times \mathbb{R} \right] \subset \mathbb{C} \setminus \sigma(T), \text{ and (3)}$ from Lemma 2.3 with n = 0.

This lemma permit us to characterize the V_p^n -self-adjointness of T by conditions of the type of those in Theorem 3.4, in which the interval (a,b) no longer appears. For $1 \le n < \infty$, $1 \le p < \infty$, denote $\|\cdot\|_{n > p}$ the norm

$$\|f\|_{n,p} = \max\{|f^{(k)}(t)|:t \in \mathbb{R}, 0 \le k \le n-1\} + \|f^{(n)}\|_{L^{p}(\mathbb{R})}$$

and for $0 \le n < \infty$, $p = \infty$, the norm

$$\|f\|_{n,\infty} = \max\{|f^{(k)}(t)|:t \in \mathbb{R}, 0 \le k \le n\} \quad (f \in \mathcal{T}).$$

4.2 THEOREM. The following affirmations are equivalent:

- (1) $T \in [V_n^p]$.
- (2) $\|\int_{-\infty}^{\infty} f(\xi) e^{i\xi T} d\xi \| \leq M_0 \|\hat{f}\|_{n,p}$, for all $f \in C_c^{\infty}(\mathbb{R})$.
- (3) $\left\| \int_{-\infty}^{\infty} f(\xi) E_{n}(\xi,T;0) d\xi \right\| \leq M \cdot \left\| \hat{f} \right\|_{L^{p}(\mathbb{R})}$, for all $f \in C_{\infty}^{\infty}(\mathbb{R})$.

<u>Proof</u>. (1) \Rightarrow (2) and (1) \Rightarrow (3) ensue from

Theorem 3.4 and remark 3.5 respectively, because $\|\hat{f}\|_{n,p;[a,b]} \le \|\hat{f}\|_{n,p}$.

(2) \Rightarrow (1). Let Ψ be as in Lemma 4.2. First we have because of hypothesis (2) that

$$\|\Psi\left(\hat{f}\right)\| = \|\int_{-\infty}^{\infty} f(\xi)e^{i\xi T}d\xi\| \leqslant M \cdot \|\hat{f}\|_{n,p}, \text{ for all }$$

 $f \in C_c^{\infty}(\mathbb{R})$; as $C_c^{\infty}(\mathbb{R})$ is dense in f it follows by reasons of continuity that

$$\|\Psi(g)\|\leqslant M\cdot\|g\|_{n,p}\quad\text{, for all }g\in\text{\mathcal{Y}}\,.$$

Therefore, for every $f \in C_{c}^{\infty}(\mathbb{R})$ it holds

$$\|\hat{f}(T)\| = \|\Psi(\chi \cdot \hat{f})\| \leq M \cdot \|\chi \hat{f}\|_{n,p} \leq M \cdot \|\hat{f}\|_{n,p}; [a,b].$$

(3) \Rightarrow (2). The affirmation ensues from

$$\int_{-\infty}^{\infty} f(\xi) e^{i\xi T} d\xi = \int_{k=0}^{n-1} \frac{\hat{f}(k)(0)}{k!} T^{k} + \int_{-\infty}^{\infty} (i\xi)^{n} f(\xi) E_{n}(\xi, T; 0) d\xi$$

(cf. note 3.5) the same as in the demostration of Theorem 3.4. ■

The growth condition (1.1) for the exponential function of T is used here to dominate the infinite integrals. In the case $p = \infty$ a somewhat $f\underline{i}$ ner argument (using conditionally convergent integrals) shows that the affirmation of Theorem 4.2 remains valid for arbitrary $T \in \mathcal{L}(X)$, if $C_{\mathbf{c}}^{\infty}(\mathbb{R})$ is substituted by $C_{\mathbf{c}}(\mathbb{R})$. (cf. also Kantorovitz [8], Thm. 1).

Note that the implication (2) \Rightarrow (1) remains valid, if the norm $\|\cdot\|_{n,p}$ is substituted by

$$\|f\|_{n,p} = \max\{\|f^{(k)}\|_{L^{p}(\mathbb{R})}: k=0,1,..., n\}$$

4.3 COROLLARY. (cf. Albrecht [1], Satz 3.3). Let $T \in \mathcal{L}(X)$ be an operator whose exponential function satisfies the growth condition (1.1). Then T is V_2^{k+1} -self-adjoint (all the more C^{k+1} -self-adjoint)

<u>Proof.</u> Choose M > 0 such that $\|e^{i\xi T}\| \le M^{\circ} |\xi|^k$ for $|\xi| \ge 1$. Then it holds for every $f \in C_c^{\infty}(\mathbb{R})$, applying the $L^2(\mathbb{R})$ -isometry of the Fourier transformation, that:

$$\|\int_{-\infty}^{\infty} f(\xi) e^{i\xi T} d\xi\|$$

$$\leq \int_{|\xi| \leq 1} |f(\xi)| \cdot \|e^{i\xi T}\| d\xi + \int_{|\xi| > 1} \frac{\|e^{i\xi T}\|}{|\xi|} \frac{1}{|\xi|} |\xi^{k+1} f(\xi)| d\xi$$

$$\leq C_{1} \cdot \|\hat{f}\|_{L^{2}(\mathbb{R})} + M(\int_{\mathbb{R}} \frac{d\xi}{|\xi|^{2}} \int_{\mathbb{R}} |\xi^{k+1} f(\xi)|^{2} d\xi)^{\frac{1}{2}}$$

$$\leq c_1 \cdot \|\hat{\mathbf{f}}\|_{L^2(\mathbb{R})} + c_2 \|\cdot \hat{\mathbf{f}}^{(k+1)}\|_{L^2(\mathbb{R})}$$

BIBLIOGRAPHY

- [1] E. Albrecht, "Funktionalkalküle in mehreren Veränderlichen für stetige lineare Operatoren auf Banachräumen". Manuscripta Math. 14 (1974), 1-40.
- [2] I. Colojoara and C. Foias, Theory of generalized spectral operators. New York: Gordon and Breach 1968.
- [3] E. Hille and R.S. Philips, Functional analysis and semigroups. Providence; Amer. Math. Soc. Coll. Publ. 31, 1957.
- [4] J. Horváth, Topological vector spaces and distributions. Reading: Addison-Wesley 1966.
- [5] K.G. Kalb, "Charakterisierung von Operatoren mit Cⁿ(R)-Funktionalkalkül". Habilitations schrift, Mainz 1977.
- [6] K.G. Kalb, "Charakterisierung gewisser C -selbstadjungierter Operatoren durch ihre Resolventenfunktion". To appear (Preprint).
- [7] S. Kantorovitz, "Classification of operators by means of their functional calculus". Trans. Amer. Math. Soc. 115 (1965), 194-224.
- [8] S. Kantorovitz, "Characterization of Cⁿ-operators". Indiana Univ. Math. Jour 25 (1976) 119-133.
- [9] E. Marschall, "Vektorwertige Ultradistributionen und Funktionalkalküle". Diplomarbeit, Mainz 1976.

Fachbereich Mathematik der Universität D 6500 Mainz República Federal de Alemania.

(Recibido en mayo de 1979).