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*
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ABSTRACT. A preliminary theory of gen
eralized functions as an alternative to
distributions 1is developed using non-
standard analysis. Various of the elemen
tary results in distribution theory are
proven using these non-standard general-
ized functions. In particular, non-stand
ard stochastic fields which are alterna
tives to generalized stochastic processes
are introduced.

RESUMEN. Se desarrolla una teoria pre-
iiminar de funciones generalizadas como
aternativa a distribuciones, utilizando
el andlisis noestandar. Se demuestran
varios de los resultados elementales de
la teoria de distribuciones utilizando
estas funciones generalizadas noestandar.
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En particular, campos estocdsticos noestan
dar que son alternativas a procesos esto-
cdsticos generalizados son estudiados.

§1. Introduccién. Distribution theory [1] gives a

concrete and rigorous realization of Dirac's cal-
culus of generalized functions [2]. In his treat-
ment of quantum mecanics, Dirac needed a "function"

§(y-x) which satisfies
[8(y-x)E(y)dy = £(x) (1)

for any test function f. As it turns out, Dirac's
calculus really did not solve the problem of the
continuous spectrum, but it did motivate mathemati
cians to develop distribution theory.

Let us take our test functions to be elements
of the Schwartz space S(R) i.e. functions f with
the property that f and all its derivatives de-
crease for [xl + o faster than any negative power
of |x|. This set is dense in L2(R) and complete
orthonormal sets for the latter can be selected
from the former. The distribution corresponding

to 6(y-x) is the linear functional Gx defined on

S(R) by

5xf ='f(x). (2)

If we put the appropriate locally convex topology
on S(R), then 6x is continuous i.e. an element of

the dual space S(R)'.

It is worthwhile to make the observation that
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many physicists still use Dirac's ideas without re
curring to the theory of distributions, although
they may recognize the latter as justifying the
former. Many, who prefer some degree of rigor in
their work without sophisticated mathematics, refer
to Lighthill's work [3]. Here generalized func-
tions are obtained as equivalence classes of se-
quences of functions. For 6(y-x), for example, con
sidered as a generalized function, one may consider

the equivalence class corresponding to the sequence

! e (yle;(x) N2 1,2,3,.00 (3)
i<N

where {ei} is a complete orthonormal set in LQ(R)
formed by elements of S(R). This converges to
§(y-x) in the sense that the sequence of functions

£N) 55 L?(R) defined by

M (x) = [ ] T (e (x))E(y)dy ()
g :
i<N
: 2
converges to £ in L7 (R).

The main problem with Lighthill's definition
is that one has to work in installments, i.e. work
with the N-th term of the sequence and at the end
take limits. A statement like

lim ) e .(yle;(x) = 6(y-x) (5)
N+o i<N T

has no meaning, and, even if it did, it still in-
volves a limit. (2) is a more concise definition

in the sense that no limiting process is involved.
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The purpose of this paper is to develop in a
preliminary form a theory of generalized functions
in the spirit of Lighthill [3],which needs no limit
ing process as in the theory of distributions [1].
Our main tool will be non-standard analysis [‘4]u
These results represent the logical foundations for
the work by Yasue [5] and the author [6,7] in sto-
chastic field theory where many of the same ideas
were used without a complete mathematical discus-
sion.

The organization of this paper is as follows:
In the next section we consider special classes of
functions from R to *R and we study the relation
of these to Yasue's space of functions [5]. We will
show that neither Yasue nor the author when he
wrote [6,7] considered the structure of the spaces
involved. In particular, derivatives and products
of generalized elements in a class of functions con
sidered by Yasue may lie outside that class. Even
the question of equality of functions was not made
clear before. Moreover, the relation between or-
dinay L2—functions and generalized functions de-
fined by the author [6] is studied in more detail.
In Sections 3 and 4 we consider specifically oper
ations on the generalized functions. We restrict
our attention to operations on functions in the
restricted class defined by Yasue [5], although we
now understand that these operations may take the
functions out of his class to a larger class. There
is much new material here, since Yasue did not real

ize that one can embed generalized elements in his
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class of functions (e.g. the delta function). Fi-
nally, in Sections 5 and 6 we consider the applica
tion of this preliminary theory of generalized
functions to stochastic fields, which was the mo-

tivation for their study in the first place [5—7].

§2 Basic Principles. Let I be a regular ultrafilter

in the natural numbers. Then the set of non-stand

ard real numbers

¥ —
R = JIR/T (6)
€N

is well-defined by Robinson's non-standard analy-
sis [4]. The equivalence class of the infinite
sequence (a<N)) of real numbers will be denoted
by [a(N)]o We recall that the [a(N)] have a *aritﬁ
metic that models exactly ordinary arithmetic.
Regularity of 1 guarantees that I is free since
N is infinite. Moreover, this implies that each
A€l is infinite. This gives a direct way to embed
R in *Ro For a€R, we take [a(N)] so that a(N)= a
except possibly for a finite number of N (Since I
is an ultrafilter, {N:a(N) # al¢ 1 implies that
{N:a(N) = alel). It also gives a quick way to
check when two equivalence classes are equal:
for example, if a(N) F b(N)
ber of N, then [a‘N?] = [5V)].

Another interesting point 1is the relation be-

for only a finite num

tween convergent sequences and their limits. In
fact, the following lemma will be extremely useful

in the sequel.
77



LEMMA. Let (a(N)) be a sequence 4in R such that
a(N) + aas N + o, Then [a(N)] and a differn by at

most an Anfinitesimal .,
Proof. Let € > 0, e € R. Then there exists an
(N)

M such that N > M implies that |[a -a| < €.Hence

{N:la(N)—al > e}¢ 1. Thus {N:Ia(N)

that I[a(N)]—al < €. This is true for every €, so

-a| < e}lel, so

I[a(N)]—al is infinitesimal. Q.E.D.

It is amusing that this cannot be made strong
er: (%) is a sequence which converges to zero, but
1 . 1 11 . :
[ﬁ] # 0 since {N:ﬁ = O}¢I° Thus [ﬁ is a true 1in-

finitesimal.

Functions from R to *R are defined easly enough:
given a sequence of funtions (f(N)), x [f(N)(x)]
defines a functions from R to *R which we will de-
note by F. However, *RR is so huge that to use it
in its totality would cause probIems. In order to
obtain generalized functions, we can dispose of
many of these functions by simply noting that there
are two definitions of equality possible between
functions. The first is a weak form stating that
F = G iff F(x)
X, {N:f(N)(x) = g(N)(x)}efla However, this set of
N's is dependent on x and Q{N:f(N)(x) = g(N)(x)}

could possible be a set not in I. The second form

G(x). This would mean that for all

of equality is a strong form and will be the one
used in this paper: F = G iff {N:f(N) = g(N)}CIo
In other words, F = G in the strong sense iff the
intersection previously considered is indeed an
element of I.
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We further restrict our attention to those fung
tions F for which {N:f(N)é L2(R)}€31. Note that
when we write {N:f(N)E L2(R)}€I, we are stating
(N)

something about the whole function f and not
its pointwise values. This is another motivation

for selecting the strong equality above. In fact,

since f and g in L2(R) are identified if [[f-g] = o,
this suggests that we identify F and G if
in: £ g M 2 0yet.

We denote the set of functions F for which
tn:eMe 12(R)}eT and F = 6 if (N:1EM gy = 0}

€l by *K » the space of generalized functions.

% : .
On K we may define a *norm by

Ie1? = [e12 (7)
where If(N)ﬂ is the L2 -norm of £N) £or those N
for which it exists and zero for the others. Note
that ﬂF“ is welldefined for strong equality but is
not necessarily well-defined for weak equality.
Also note that now F = G simply means that
r-c]

o
We now make the connection between the “

K de-
fined here and the space of functions used by Yasue

[5]. The ultraproduct

*r = TT RV/1 (8)
NeN
is also well-defined by non-standard analysis [u].
Note that, in the sense of model theory, this is
not the ®# of any standard set; in particular, it
is not the % of any RN, However, *E is a vector
space over *R and also a “Euclidean space with
79



respect to the inner product

[x(N)]°[y(N)] " [x(N)'y(N)] [T x(N) (N)] (9)

igN
s % .
The inner product on "E can be used to define
oo ofs
a “norm, of course, i.e. a function from "E to the

non-negative non-standar real numbers:

1712 = 7 1xV)7 (10)

i<N

Note that this 1s indeed well-defined: [x(N)]
[y (N)] iff {n:xV) - y(N)}€ 1 and this is equiv-
I (N) (N)IQ

1 1

alent to [ ¥
N
manner, other (equivalent) norms on the RN can be

] = 0. In a similar

used to define (in general, inequivalent) *norms
%

on E.

PROPOSITION 1. The function which sends a se-
quence (a ) in the neal Banach space £P, p < =,
to [X(N)] in *E where x(N) = a;, 1 <N, 438 an
embedding of R-recton spaces which almost preserves
p-noams in the sense that [iZle§N)|p] and u(ai)ﬂg

diffen by at most an Ainfinitesimatl.

(N)

Proog. If [x(N)] = 0 in ¥E then {N:x =0} €1

and so it is infinita. Given any n, .take N€1I such

that N > n; then x(N) = (ai,ooo,an,o.e,aN) =0 ,

and so a_ = 0. This shows that (aj) = 0 and the
o L)
assignment is one to one. "E is a *R-vector space,

hence it is a R-vector space and it is clear that

the R-vector space operations are preserved.

Finally Z |a Ip = Z 'X(N)Ip
ig<N i<N

converges to
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u(ai)ﬂg ; hence by the Lemma the last condition
follows. Q.E.D.

Thus for the effects of applications (i.e. up
to infinitesimals), one can work with > just as
well as with ZP. Now £2 is one of the important
Hilbert spaces in quantum mechanics. LQ(R) (and
its tensor products) is another. The equivalence
of the Heisenberg and Schrodinger formulations of
quantum mechanics from the mathematical point of
view is simply due to the fact that there exists
an isometry of LQ(R) onto 22 where each function
in LQ(R) is mapped onto the sequence of its Fourier
coefficients with respect to the orthonormal set
{ei}. It is interesting to study whether there
exists an extension of this isometry to the case
of *E.

The following proposition and the discussion
following it show that the space of functions con

- ofe
sidered by Yasue [5] is contained in “K.

PROPOSITION 2. Suppose {N:£ Ve L2(®)}e T and,

gon these N, iZN a(iN)]2 + 0, whenre the agN) are

the Fourden coefficients o4 £(N) | Then thene exists
an [xY)] c *E such that F and G, the Latter defined

by

ax)=[ § xMe.(x)] (11)
i$N 1 8
(n) _ _(N) LI L
where x;" " = a; ', are such that fr-c|l <& infani-

tesimal .
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Proof. We have (with zeros understood for the

entries where N & {N:f(N)a L2(TR)}):

le-c|? = [fax]£M(x) - inggN)ei(tz]
N [fdx,izlaiN)ei(x) 5 ing§N)ei(x)lz]
- [fdeiZNa§N)ei(x)|2]
= [I 1217
Using the lemma, the hypotheses for the £'N) in-

dicate that |F-G| is infinitesimal. Q.E.D.

There is then a one-to-one ‘isometric mapping
oo
of *E into "K defined by
[X(N)] - [] ng)ei]
ig<N

%,
By isometry we mean that

1702 = 11 1713

ig<N
2
= [Idx|.§Nx§N)ei(x)| ]
18
N 2
- u[,ng§ e 11
l\

There is a definite practical advantage in our
oo
definition of "K: this space of funtions does not
depend on the orthonormal set {ei}o This is not

obvious in Yasue's paper [5] since he only consid-
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ers functions of the type (11).
% . . . (N)(
We say that F€ "K is integrable if {N:f
LI(R)}ilIo In this case the integral is defined
by
[F(x)dx = [ff(N)(x)dx]. (12)

This is well-defined since F = G only if {N:f(N)
= g(N)}e I, only if {N:ff(N) fg(N)}C I, only if
[F(x)dx = [6(x)dx.

Any G of the form (11) is integrable. It is

also infinitely differentiable if we define.
¢ x) = [T x{Melk) )], (13)
; i i
i<N
The derivative (13) may not be of the form (11),
but it is an element of *K, ijei it is .a well-de
&
R.

Finally we note that one may define a product

fined function from R to

for functions of the form (11) by

[;ZNx§N)ei(x)][.zNyﬁN)ej(x)]
i j

= [. Z x§N)y§N)ei(x)ej(x)]
i,j<€N
Again this may not be equal to a function of the
form (11). Nevertheless, the product of two func-
tions of the form (11) is in *K because {ei} is in
S(R). This is precisely the product defined by
Yasue [5].
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§3. Operations with Generalized Functions. Through

out the rest of this paper we will concentrate on-
ly on those F which have the form (11). Except for
occasional operations which take us out of this
class (but not out of =':K), this is all that we will
need. The question of extending specific results
to all of *K will not be considered.

Besides the operations we have already defined,
we also wish to define the convolution and Fourier
transform. To do so, it is convenient to extend
the results of the previous section to complex
functions; this is trivial since we may simply re-
place *R by *¢. Hence there is no longer any need
to assume that the e; are real.

We fix a complete orthonormal set {ei} in (the
now complex) S(R). All of results may be dependent
on this set. The question of whether these are
actually independent of the selection of {ei} will
not be considered in this paper.

The convolution of two elements F, G in (the

now complex) "K is defined by

(F#G)(x) = [F(E-x)G(E)dE . (14)

PROPOSITION 3.  F%G ex{ist4 4in “K fon all ele-
ments F,G € *K 0§ the form (11).

Proof. One verifies that

(F26)(x) = [ ] ng)y§N)fei(£-x)ej(E)d£],

i,jen t
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Since the e, are Ll-functions, the result follows.

Q.E.D.

The Fourier transform is a little more diffi-
cult. Let gi(k) be the Fourier transform of e;
(these also form a complete orthonormal set), and
define

Foo = [ xMa 0] . (15)
igy * 1
These functions are elements of an entirely differ
ent space, a copy of *K which we may denote by
*R. Our first step is to show that (15) is consis

tent.

PROPOSITION 4. Suppose the'ondinaq/tnanaéonm
f 0f the function f exists. Then £ and the night-
hand side of (15) differ by at most an Linfinites-

Lmal .

Proog. Our hypothesis says that

B(x) = —fr(x)e tk¥ax

2m

exists. By Propositions 2, this differs from

[ ] yM% 001

i<N

by at most an infinitesimal, where

(N) kx
vy = If(k)e (k)dk = —fdke ) [dxE(x)e™d
. y2m
B fdxf(x)—i;fdk 8,00 ™ = [axf(x)e (%)
= (M) Q.E.D.
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PROPOSITION 5. The Foundier-PLancherel theorem
L5 valid:

JF(k)8(k)dk = [F(x)G(x)dx. (16)

Proof. This is a direct calculation:

[E)E(ax = [ ] xﬁN)y§N)f3i(k)3j(k)dk]

x§N)y§N)

|
[ |
o~

e.(x)e.(x)dx
i,j<N N J ]

fF(x)G(x)dx.

84, Dirac's Delta function. In this section we fi-

nally return to the ideas of Section 1 to show that
Section 2 and 3 are really consistent with the in-

formal use of Dirac's delta function.
PROPOSITION 6. The generalized function.

§(y-x)

[ ] 5 (e (0] (17)

igN
has the propenty that

[F(y)8(y-x)dy = F(x) (18)

for any element F in "X of the form (11).

The proof is trivial. Note that § has the shift
ofs
ing property (18) for any element of K of the form
(11), which reflects the fact that we can multiply
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these non-standard generalized functions.

Any physicist uses formally the relation

i(k-k')x -

L fdxe §(k-k'). (19)

2™

By Proposition 6, we know the right-hand side is

§(x-k') = [} &.(k")e.(x)]. (20)
. i i -
i1<N
Can this be made consistent with the left-hand
side?
The plane wave 7£qglkx is not an element of
2 27T
L(R). To make sense out of (19), one needs an ele
ment of *K which has the properties of the plane
wave. We will see that the element with these prop
erties is
[} ei(k)ei(x)]. (21)
i<N
We calculate that the left-hand side of (19) re-

duces to

[

éi(k)ﬁj(k')fei(X)ej(x)dX]

=
i,3<
[

N
1Z &; (ke  (k"M)] .

N

Hence [°ZNéi(k)ei(X)] is the correct substitute
1s

for the plane wave. Moreover, (21) is consistent

with the Fourier transform:

ad . p(x)e tK%

2

dx =

87



= ) ng)G (k)fei(x)e (x)dx]
1,7¢n 3 3

= [ 7 xWa 0] .
iEN r o

%
§5. Stochastic fields. Stochastic fLaihs are easy
to define: Yis a stochastic field on some manifold
M if for each x M, P(x):2 + R (or C€) where
(2,P,B) is a probability space, thus ¥(x) is also

a function of w€Q, but we will leave w as under-

stood in the following. Stochastic fields are the
natural extension of stochastic processes.
Nevertheless, stochastic *fields -have not been
studied very much in mathematics, except indirectly,
The reason seems to be that mathematicians consid-
er more manageable the derived generalized stochas

tic process

P(£) = [dxf(x)P(x) (22)

where f € S(M). This preference stems from the in-
fluence of the theory of distributions, of course.
It is safe to say that most work in this area uses
Gel'fand's treatise (Volume 4 of the five volume
set indicated in [1]) as a starting point, and not
the ideas associatéd with generalized functions,
primarily because the limiting process is less man
ageable. But now, equipped with non-standard gen-
eralized functions, no limiting process is neces-

sary.
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3 3
We take M = R and add a time component. From

the previous sections, we know that

P(x) =[] x ei(;)] (23)

igN

. . 3 &
defines a function from R to R where ei now forms

(N)

a complete set in S(Ra). Let x be a stochastic

process on RN for each N. Then

P(x,t)

[ 7 x{M(t)e, (] (24)

i<N

is a stochastic field. The following proposition

is a trivial consequence of our previous work.

PROPOSITION 7. Given a standard stochastic
field P with sample funcitions 4in LQ(Rs), Lts sample
functions diffen with those of a stochastic fLeld
0§ the form (24) by at most an Anfinitesimal.

The distribution functions of a field of the

form (24) are defined by

(N) (N) (N)
F(?l,tl,cac,?ptp)= [F (x 1,9 , X 5 T \]
(25)
where the F(N) are the distribution functions of

the component processes x(N)(t) and the Y. are
time-independent "classical" fields in *K of the
form
Vj(x) =[] ng)e (x)] - (26)
<

isN
Along with the F we can also define probabil-

ity densities. Suppose each x(N)(t) is such that

there exist p(N)(x(N) tiseeos X;N),tp) with the
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property that

IdeiN).ocd(N)x;N)p(N) - p(M) (27)

Then p('Y ,tl,...,$},tp) defined by

[D(N)(XiN) (N)

p(\Pl,tl,...,\P ,t ) atls"':xp stp)]

P P
(28)

is called the p-th order probabily density of the
non-standard stochastic field. Equation (27) has

its analog in
[89...8% p(Put s, f st ) = F(Put s fut)

(29)

where the functional integral is defined by ite-

ration from

[e{PYep= [[atN) (MM, (N)yq (30)

for any non-standard field of the form (23).

§6. Markov Field. We say that the stochastic field

Y is Markov if the component x(N)(t) are Markov
processes. In this case, let us suppose that all

component processes have an associated transition

(N)( (N) (N)
X
o

tion probability for ¥is given by

probability p ,tlx ,to). Then the transi

p(‘P,tlY’o,to) = [p(N)(x(N),tIxéN),to)]. (31)
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PROPOSICION 8. p(?,t|$;,to) satisfies a Chapman-
KoZmogorov equation.
Proof. This is trivial using (30). The required

equation is
[pCPat| Pt )p (Pt [P 5t )8 = p(P,t|P .t ) (32)

Q.E.D.

Equation (32) is characteristic of Markov

fields. Using it, one can show:

PROPOSITION 9. Given that the componente tran-
sLtion probabilities exist, we have

p
PUPyatys s sty) =jT;T2p(\Pj,tj)"Pj_1,tj_1)p(\P sty
(33)

Equation (33) shows that the basic objects are
the transition probabilities. Just as in the case
of ordinary Markov processes, once one knows them
one knows the probability densities and hence the

moments

<?(§1,t1)“.9(§p,tp)>=f643."sq;p(Pi,ti,.n,$%,tp).

(34)
These may be also obtained by differential and in-
tegral methods for a special type of Markov field
where each component x(N)(t) is a diffusion proc-
ess. This is the subject of the papers by Yasue [5]
and the author [6,7]g
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§7. Concluding remarks. We have seen that *K con-

tains enough elements to make it interesting as a
candidate for a space of generalized functions.
Some applications of these ideas are hinted at in
Sections 6 and 7 and their consequences have al-
ready appeared [5-7]° Doubtlessly many another ap-
plications are possible.

The ideas reported on here were stimulated by
the work of Yasue [5]° Although he did not study
generalized functions, it is clear that the moments
of stochastic fields will in general be generalized
functions. This is what motivated the author to
consider *K as a space of generalized functions in
the first place. In all fairness it must be stated
that the results in Sections 2 though 5 may have
appeared earlier, independently of the author's
work, in a paper in Japanese to which Yasue makes
references EBJU Since the author does not know
Japanese, there is no way for him verify this.

There are certainly many open questions that
one may consider here besides applications of the
theory. Firstly, from the viewpoint of aesthetics
al least, we would like to find a minimal subset
of *K which contains functions of the type (11),
their products, their derivatives and their con-
volutions as well as the delta function and its
derivatives; moreover, we would like to make this
subset independent of the choice of {ei}. Although
the existence of such a minimal subset is not nec-
essary for applications (for applications we only

need to have the operations well-defined with re-
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spect to one {ei}), the discovery of such a subset
with the desired closure properties would allow

us to better understand the generalized functions.
Secondly, *K would appear to contain duplicated .
elements if, for example, the definition of &(y-x)
(eq. (17)) does indeed depend on the choice of {ei}.
The author conjectures that this is not the case,
but the cbnjecture remains to be proven.

We also have avoided questions of convergence
(i.e. topological questions) in the space *K. There
are two justifications for this. The first is that
these questions have not affected the applications
(so far). The second is that until one finds a
minimal subset like that described above, the study
of topology would seem to be only of remote inter-
est. However, there is no doubt that convergence
in K or the minimal subset will be a topic of fu-
ture research.

Hence there is still much work to be done and
many new and interesting ideas to explore within
the context of the theory of non-standard gener-

alized functions.
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