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ABSTRACT. A preliminary theory of gen
eralized functions as an alternative to
distributions is developed using non-
standard analysis. Various of the elemen
tary results in distribution theory are-
proven using these non-standard general-
ized functions. In particularj non-stand
ard stochastic fields which are alterna
tives to generalized stochastic processes
are introduced.

RESUMEN. Se desarrolla una teoria pre-
liminar de funciones generalizadas como
aternativa a distribuciones, utilizando
el analisis noestandar. Se demuestran
varios de los resultados elementales de
la teoria de distribuciones utilizando
estas funciones generalizadas noestandaro
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En particular, campos estocasticos noesta~
dar que son alternativas a procesos esto-
casticos generalizados son estudiados.

§1. Introducci6n. Distribution theory [lJ gives a
concrete and rigorous realization of Dirac's cal-
culus of generalized functions [2J. In his treat-
ment of quantum mecanics, Dirac needed a "function"
o(y-x) which satisfies

!5(y-x)f(y)dy = f(x) (1)

for any test function f. As it turns out, Dirac's
calculus really did not solve the problem of the
continuous spectrum, but it did motivate mathemati
cians to develop distribution theory.

Let us take our test functions to be elements
of the Schwartz space S(~) i.e. functions f with
the property that f and all its derivatives de-
crease for Ixl ~ 00 faster than any negative power
of Ixl. This set is dense in L2

(R) and complete
orthonormal sets for the latter can be selected
from the former. The distribution corresponding
to o(y-x) is the linear functional 5 defined onx
S(fR) by

5 f = f(x).
x

If we put the appropriate locally convex topology
on S(R), then 5x is continuous i.e. an element of
the dual space S(~)'.

It is worthwhile to make the observation that
74



many physicists still use Dirac's ideas without r~
curring to the theory of distributions, although
they may recognize the latter as justifying the
former. Many, who prefer some degree of rigor in
their work without sophisticated mathematics, refer
to Lighthill's work [3]. Here generalized func-
tions are obtained as equivalence classes of se-
quences of functions. For o(y-x), for example, co~
sidered as a generalized function, one may consider
the equivalence class corresponding to the sequence

2 e.(y)e.(x)
·!<:N ~ ~~'"

N = 1,2,3, .••

where {e.} is a complete orthonormal set in L
2
(R)~

formed by elements of S(R). This converges to
o(y-x) in the sense that the sequence of functions
feN) in L2(~) defined by

f(N)(x) = f( 2 e.(y)e.(x»f(y)dy (4)
i<N ~ ~

converges 1:0 f in L 2(R) .
The main problem with Lighthill's definition

is that one has to work in ins~allments, i.e. work
with the N-th term of the sequence and at the end
take limi t s . A statement like

lim L e:(y)e.(x) = o(y-x)
• 1 ~N-+-oo ~~ N

( 5 )

has no meaning, and, even if it did, it still in-
volves a limite (2) is a more concise definition
in the sense that no limiting process is involved.
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The purpose of this paper is to develop in a
preliminary form a theory of generalized functions
in the spirit of Lighthill [3J, which needs no limi!
ing process as in the theory of distributions [1].
Our main tool will be non-standard analysis [4J.
These results represent the logical foundations for
the work by Yasue [5] and the author [6,7J in sto-
chastic field theory where many of the same ideas
were used without a complete mathematical discus-
sion.

The organization of this paper is as follows:
In the next section we consider special classes of
functions from F to *R and we study the relation
of these to Yasue's space of functions [5J. We will
show that neither Yasue nor the author when he
wrote [6,7] considered the structure of the spaces
involved. In particular, derivatives and products
of generalized elements in a class of functions con
sidered by Yasue may lie outside that class. Even
the question of equality of functions was not made
clear before. Moreover, the relation between or-
dinay L2-functions and generalized functions de-
fined by the author [6] is studied in more detail.
In Sections 3 and 4 we consider specifically ope~
ations on the generalized functions. We restrict
our attention to operations on functions in the
restricted class defined by Yasue [5], although we
now understand that these operations may take the
functions out of his class to a larger class. Ther~
is much new material here, since Yasue did not real
ize that one can embed generalized elements in his
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class of functions (e.g. the delta function). Fi-
nally, in Sections 5 and 6 we consider the applic~
tion of this preliminary theory of genera~ized
functions to stochastic fields, which was the mo-
tivation for their study in the first place [5-7}.

§2 Basic·'Principles. Let I be a regular ultrafilter
in the natural numbers. Then the set of non-stand
ard real numbers

{:

R = -J I R/I
E:.1N

(6 )

is well-defined by Robinson's non-standard analy-
sis [4]. The equivalence class of the infinite
sequence (a(N)} of real numbers will be denoted
by [a(N}]. We recall that the [a(N}] have a *arit!:..
metic that models exactly ordinary arithmetic.

Regularity of 1 guarantees that I is free since
N is infinite. Moreover, this implies that each
A e 1 is infinite. This gives a direct way to embed
jR in ":1R. For aeJR, we take [a(N}] so that aU!):: a
except possibly for a finite number of N (Since I
is an ultrafilter, {'N:a(N) 'I a} ¢ 1 implies that
{N:a(N) = a}eI). It also gives a quick way to
check when two equivalence classes are equal:

c (N) (N)for example, ~f a ¥ b for only a finite num
bel' of N, then [a(N)] :;:[bon].

Another interesting point is the relation be-
tween convergent sequences and their limits. In
fact, the following lemma will be extremely useful
in the sequeL
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LEMMA. Le~ (a(N» be a Jequence ~n R Juch ~ha~

a(N) + a a~ N + 00. Then [a(N)J and a d~66e~ by a~

mo~~ an ~n6~n~~e~~mal.

PJLOOO. Let e > 0, e e:.lR.Then there exists an
M such that N ~ M implies that [a(N)_,al < E. Hence
{N:/a(N)-al >,- £}¢I. Thus {N:la(N)-al < £}E:I, so
that I [a(N)]_al < E. This is true for every e, so
I [ (N)] I' . f 0 0 0 I QEDa -a 1S 1n 1n1tes1ma. . ..

It is amusing that this cannot be made stron~
er: (~) is a sequence which converges to zero, but
[~1 1- 0 since {N:~ = O}¢I. Thus [~] is a true in-
finitesimal.

* 0Functions from R to 1R are def1ned easly enough:
given a sequence of funtions (f(N», x ......[f(N)(x)]

.1.

defines a functions from 1R to "lRwhich we will de-
note by F. However, *]RR is so huge that to use it
in its totality would cause probrems. In order to
obtain generalized functions, we can dispose of
many of these functions by simply noting that there
are two definitions of equality possible between
functions. The first is a weak form stating that
F = G iff F(x) = G(x). This would mean that for all
x , {N:f(N)(x) = g(N)(X)}E:I. However, this set of
N's is dependent on x and Q{N:f(N)(x)::: g(N)(x)}
could possible be a set not in 1. The second form
of equality is a strong form and will be the one
used in this paper: F :::G iff {N:f(N) :::g(N)} c 10

In other words, F :::G in the strong sense iff the
intersection previously considered is indeed an
element of I.
78



We further restrict our attention to those func
tions F for which {N:f(N)E L 2(R)} E:: I. Note that
when we write {N:f(N)e: L 2(R)} E: 1, we are stating
something about the whole function feN) and not
its pointwise values. This is another motivation
for selecting the strong equality above. In fact,
since f and g in L2(R) are identified if ~f-g~ = 0,
this soggests that we identify F and G if
{N:lf(N)_g(N)1 = o l c 1.

We denote the set of functions F for which
{N:f(N)c L2(]R)}C 1 and F = G if {N:lf(N)_g(N)" = a}

E: 1 by *K, the .6pa.c.e 06 geneILa.l.,[zed 6unc.,t,[on.6.
* . *On K we may·define a norm bv

IIFf = [llf(N)112] (7)
(N)- (N)where If I is the L2-norm of f for those N

for which it exists and zero for the others. Note
that ~F II is welldefined for strong equali ty but is
not necessarily well-defined for weak equality.
Also note that now F = G simply means that

J.We now make the connection between the ftK de-
fined here and the space of functions used by Yasue
[51. The ultraproduct

( 8 )

is also well-defined by non-standard analysis [41.
Note that, in the sense of model theory, this is
not the * of any standard set; in particular, it
Q N <;': e1S not the * of any ~ However, E 1S a vector
space over *R and also a *Euclidean space with
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respect to the inner product

[' \" (N) ~N)]
LX. y.
'~N 1 1-1....,

(9 )

...
The inner product on ftE can be used to d~fine

a *norm, of course, ioeo a function from *E to the
non-negative non-standar real numbers:

(10)

Note that this is indeed well-defined: [x(N)] ::
[y(N)J iff {N:x(N) = y(N)} E: I and this is'equiv-

alent to [o~N IxiN)-yiN)12] :: 00 In a similar
1, 0 Nmanner, other (equ1.valent) norms on the R can be

«used to define (in gen e.r-aL, Ln aq uLva Lerrt ) norms
...

on . nE 0

PROPOSITION 1. The 6unet~on wh~eh ~end~ a ~e-
quenee (a.) in the ILea.tBanaeh ~paee .tP, p < 00,
to [x(N)]1in 1:E where x~N) :: a , , i.::s:;:N, Ls an,1.1
embedd~ng 06 R-ILeetoIL ~paee¢ whieh a.tmo¢t pILe¢eILve¢
p-nolLm¢ ~n the ¢en¢e that [ r Ix~N)IPJ and ~(a.)~pi~N 1 1 p
d~66eIL by at mo¢t an in6in~te¢ima.t.

PILOOno If [x(N)] :::a in ~':Ethen {N:x(N)=O} cI
and so it Ls in fin iteo G i ve nan y n , .-t)a keN E: I such

(N)that N ~ n; then x = (a1,ooo,an,ooo,aN) = a ,
and so a :: 0. This shows that (ai) :: a and the

n *assignment is on& to oneo E is a *R-vector space,
hence it is a R-vector space and it is clear that
the R-vector space op~rations are preservedo
Finally I lao IP = L Ix~N)IP converges to

i~N 1 i.(N 1
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�(ai)~~ ; hence by the Lemma the last condition
follows. Q.E.D.

Thus for the effects of applications (i.e. up
.o.

to infinitesimals), one can work with fiE just as
well as with lP. Now l2 is one of the important
Hilbert spaces in quantum mechanics. L2(R) (and
its tensor products) is another. The equivalence
of the Heisenberg and Schrodinger formulations of
quantum mechanics from the mathematical point of
view is simply due to the fact that there exists
an isometry of L2(R) onto l2 where each function
in L2(R) is mapped onto the sequence of its Fourier
coefficients with respect to the orthonormal set
{e.}. It is interesting to study ~hether there

J.

exists an extension of this isometry to the case
of 1:E•

The following proposition and the discussion
following it show that the space of functions con
sidered by Yasue [5] is contained in *K.

PROPOSITION 2. SUPPO.6e. {N:f(N)c L2
(iR)}c I aYLd,

6 0 It t h e s e. N, G l N I a ~N )1 2 ~ 0, w h e..~e. the. a ~N) a It e.
J.~ J. J.

the. FouJt~e.Jt eoe.n6~e~e.YLt.6 06 feN). The.YL the.lte. e.x~.6t.6
aYL [x(N)] c ;':E suer: that F aYLd G, the. latte.Jt de.6~YLe.d
by

G(x) = [ I x~N)e.(x)J (11)
i~N J. J.

(N) (N)xi = ai ' aJte. .6u.eh that IF-G~ ~.6 iYLn~YLI-whe.Jte.

te..6~mal.
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P~oo6. We have (with zeros understood for the
entries where N ¢. {N:f(N) E:. L 2('R)}):

~F_G~2 = [!dxlf(N)(x) - ilNx1N)ei(x)12]

= [fdxl.I a~N)e.(x) _ .> x~N)e.(x)12]~=1 ~ ~ ~tN ~ ~

Using the lemma, the hypotheses for the f(N) in-
dicate that ~F-G~ is infinitesimal. Q.E.D.

There is then a one-to-one *isometric mapping
". "-of °E into oK defined by

...
By °isometry we mean that

There is a definite practical advantage in our
s;definition of oK: this space of funtions does not

depend on the orthonormal set {e.}o This is not~
obvious in Yasue's paper [5J since he only consid-

82



ers functions of the type (11).
We say that F c ~':Kis integrable if {N:f(N) E:

L 1(lR)}E: 10 In this case the integral is defined
by

(12)

This is well-defined since F = G only if {N:f(N)
= g(N)} E: I, only if {N:!f(N) = !g(N)} E: I, only if
!F(x)dx = !G(x)dx.

Any G of the form (11) is integrable. It is
also infinitely differentiable if we define.

(13 )

The derivative (13) may
but it is an element of
fined function from lR to

not
*K ,

*iR •

be of the form (11),
i.e. it is a well-de

Finally we note that one may define a product
for functions of the form (11) by

[ LX ~ N ) e • ( x )] [ l y ~N ) e • ( x ) ]
i<N 1 1 j<N 1 J

= [';' (N) (N) ]L x : y. e.(x)e.(x)
•. i'N 1 J 1 J1,J..,

Again this may not be equal to a function of the
form (11). Nevertheless, the
tions of the form (11) is in
S(R)o This is precisely the
Yasue [5J.

product of two func-.,.
ftK because {e.} is in

1

product defined by
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§3. Operations with General ized Functions. Throug~
out the rest of this paper we will concentrate on-
lyon those F which have the form (11). Except for
occasional operations which take us out of this
class (but not out of *K), this is all that we will
need. The question of extending specific results
to all of *K will not be considered.

Besides the operations we have already defined',
we also wish to define the convolution and Fourier
transform. To do so, it is convenient to extend
the results of the previous section to complex
functions; this is trivial since we may simply re-

..,~ ...place ·R by n~. Hence there is no longer any need
to assume that the e. are real.

1

We fix a complete orthonormal set {e.} in (the
1

now complex) S(R). All of results may be dependent
on this set. The question of whether these are
actually independent of the selection of {e.} will

1

not be considered in this paper.
The convolution of two elements F, G in (the

now -complex) *K is defined by

(14 )

.-.
PROPOSITION 3.' F~,;Gexcs t:s -in "K 60lt aii eie-

ment.6 F, G E: ~';K 0 6 the 60 Itm (11).
Pltoo6. One verifies that

[ \' (N)(1ffJ -](F*G)(x) = L x. y. e.(~-x)eo(~)d~ .
• ':C::N 1 ) 1 )1,J"
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Since the e. are L1-functions, the result follows.
J.

Q.E.D.

The Fourier transform is a little more diffi-
"cult. Let e.(k) be the Fourier transform of e.

J. J.

(these ~so form a complete orthonormal set), and
define

",F( k ) ( 1 5)

These functions are elements of an entirely diffe~
...ent space, a copy of ftK which we may denote by

*K. Our first step is to show that (15) is consis
tent.

PROPOSITION 4. Suppo~e the 0~din~t~an~60~m
f 06 the 6unetion f exi~t~. Then f and the ~ight-
hand ~ide 06 (15) di66e~ by at mo~t an in6inite~-
imal ..

P~oon. Our hypothesis says that

exists. By Proopositions 2, this differs from

[.~N.y~N);i(k)]
J."

by at most an infinitesimal, where

(N)y. =
J. f ",...--;-:- 1 f -';;--;-;-() f () - i k xf(k)e.(k)dk = --- dke. k dxf x e

J. ~ . J.

= !dxf(x)--1--!dk e.(k)eikx =ill J.

(N)= Xe QoE.Do
J.

!dxf(x)e.(x)
J.
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PROPOSITION 5. The Fou~~e~-Planche~el theo~em
~l> val~d:

(16)

P~o~6. This is a direct calculation:

= [ l x~N)y~N) e.(x)e.(x)dx]
i,j~N ~ J ~ J

= fF(x)G(x)dx.
Q.E.D.

§4. Dirac's Delta function. In this section we fi-
nally return to the ideas of Section 1 to show that
Section 2 and 3 are really consistent with the in-
formal use of Dirac's delta function.

PROPOSITION 6. The gene~al~zed 6unct~on.

(5(y-x) = [ l e.(y)e.(x)]
i~N ~ ~

(17)

hal> the p~ope~ty that

fF(y)O(y-x)dy = F(x) (18 )

The proof is trivialo Note that 0 has the shift
ing property (18) for any element of
(11), which ref~cts the fact that we

1:K of the form
can multiply
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these non-standard generalized functions.

Any physicist uses formally the relation

1 Jd i(k-k')x--- xe =
2iT

<S(k-k'). (19)

By Proposition 6, we know the right-hand side is

c5(k-k') ( 20)

Can this be made consistent with the left-hand
side?

1 ikx.The plane wave ~e 1S not an element of
2 ~2iT

L (R). To make sense out of (19), one needs an ele
ment of *K which has the properties of the plane
wave. We will see that the element with these pro~
erties is

[ L ~.(k)e.(x)].
'~N 1 11",

(21 )

We calculate that the left-hand side of (19) re-
duces to

[ L ~.(k)~.(k')Je.(x)e.(x)dx]
. • ~N 1 ) 1)
1,)"",

Hence [ ) ~.(k)e.(x)] is the correct substitute
i~N 1 1

for the plane wave. Moreover, (21) is consistent
with the Fourier trans form:
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§ 5. Stoe has tic fie 1d s , Stoe has tic f~.l ds ar-e easy
to define: 'f is a stochastic field on some manifold
M if for each x c s , 'P(x):n + lR (or a:) where
(n,p,~) is a probability space, thus f(x} is also
a function of wE: Q t but we will leave w as under-
stood in the following. Stoc.hastic fields are the
natural extension of stochastic,procelrses.

- "Nevertheless, stochastic .kfields -e,hav-e"not been
studied very much in mathematics, ~xcept indirectly,
The reason seems to be that mathematicians consid-
er more manageable the derived generalized stochas
tic process

~(f) = fdxf(x)~(x) (22)

where f CS(M)o This preference stems from the in~
fluence of the theory of distributions, of courseo
It is safe ~P say that most work in this area uses
Gel'fand's treatise (Volume 4 of the five volume
set indicated in [1]) as a starting point, and not
the ideas associated with generalized functions,
primarily because the limiting process is less ma~
ageable. But now, equipped with non-standard gen-
eralized functions, no limiting process is neces-
sary.
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3We take M = R and add a time component. From
the previous sections, we know that

~ \ IN) ~\f'(x)= [ L x ; e.(x)]
i-s N 1 11-.;:

( 23 )

3 J.defines a function from R to nR where e. now forms
1

I . S(JR3) L (N) b h'a comp ete set 1n . et x e a stoc astlc
process on JRN for each N. Then

<.D .... [\ (N) ->0. ]l(X,t) = L x. (t)e.(x)
'~N 1 11", •

(24 )

is a stochastic fieldo The following proposition
is a trivial consequence of our previous work.

PROPOSITION 7. G~ve~ a ~ta~da~d ¢toeha¢t~e
6~eld ~ w~th ¢ample 6u~et~0~~ i~ L2(R3), it~ ~ample
6u~etio~~ d~66e~ with tho¢e 06 a ~toeha¢tie n~eld
06 the no~m (24) by at mo~t a~ i~6i~ite¢imal.

The distribution functions of a field of the
form (24) are defined by

(N) (N) (N) .F(\Yl,tl,ooo,fptp)= [F (xl,tl, ...,xp ,Lp)]
( 25)

(N) h d i ib . f 0wh~re the Fare t e 1str1 ut10n unct10ns of
(N)the component processes x (t) and the f, are

.'. Jtime-independent "classical" fields in nK of the
form

( 26)

Along with the F we can also define
c d 0 0 S h (N)( \ 0lty ens1t1eso uppose eac x t, 1S

(N) (N) (N)there exist p (xl ,t~ ,.oo,x ,t)
L P P

probabil-
such that

with tl1e
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property that

The n p(~l 't1 '... ,'f>p ,tp) de fin ed by

[ (N) (N) (N)P('Yl,tl,···,lf>p,tp) = P (xl ,tl,···,xp ,tp)]

(28)

is called the p-th order probabily density of the
non-standard stochastic field. Equation (27) has
its analog in

(29)

where the functional integral is defined by ite-
ration from

(30)

for any non-standard field of the form (23).

§6. Markov Field. We say that the stochastic field
.'f is' Markov ..if the ccmp one n t x (N) (t ).are Ma.rkov
processes. In this case, let us suppose that all
component processes have an associated transition
probability p(N)(x{N),t/x(N),t). Then the transi

o 0
tion probability for'Pis given by

p ('f t I If t ) = [p(N )(x (N) t Ix (N) t )J. ( 31 ), 0' 0 ' 0 ' 0
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PROPOSICION 8. p(~,tl~ ,t ) 4at~4n~e4 a Chapman-o 0
Kolm~go4ov equat~on.

P400n. This is trivial using (30). The required
equation is

Q.E.Do

Equation (32) is characteristic of Markov
fields. Using it, one can show:

PROPOSITION 9. G~ven that the eomponente t4an-
4ition p4obabil~tie4 exi4t, we have

p
P ( If1' t1' 0.0 , 'fp ,tp) = IT p(f'. ,t .)'f'. -1 ' t .-1 )P (1'1' t1) .j=2 J J J J

(33)

Equation (33) shows that the basic objects are
the transition probabilities. Just as in the case
of ordinary Markov processes, once one knows them
one knows the probability densities and hence the
moments

< 'P( ;1 ' t1) .,. 'f( ;p ,tP )> = J 0 "P1... 0 IfpP(f l't1' ... ,~p ,tP ).

( 34 )

These may be also obtained by differential and in-
tegral methods for a special type of Markov field
where each component x(N)(t) is a diffusion proc-
ess. This is the subject of the papers by Yasue [51
and the author [6,7J 0
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�§7. Concluding remarks. We have seen that ftK con-
tains enough elements to make it interesting as a
candidate for a space of generalized functions.
Some applications of these ideas are hinted at in
Sections 6 and 7 and their consequences have al-
ready appeared [5-7]. Doubtlessly many another ap-
plications are possible.

The ideas reported on here were stimulated by
the work of Yasue [5]. Although he did not study
generalized functions, it is clear that the moments
of stochastic fields will in general be generalized
functions. This is what motivated the author to

~consider hK as a space of generalized functions in
the first place. In all fairness it must be stated
that the results in Sections 2 though 5 may have
appeared earlier, independently of the author's
work, in a paper in Japanese to which Yasue makes
references [8J. Since the author does not know
Japanese, there is no way for him verify this.

There are certainly many open questions that
one may consider here besides applications of the
theory. Firstly, from the viewpoint of aesthetics
al least, we would like to find a minimal subset

~of ftK which contains functions of the type (11)9
their products, their derivatives and their con-
volutions as well as the delta function and its
derivatives; moreover, we would like to make this
subset independent of the choice of {e.}, Although~
the existence of such a minimal subset is not nec-
essary for applications (for applications we only
need to have the operations well-defined with re-
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spect to one {ei})t the discovery of such a subset
with the desired closure properties would allow
us to better understand the generalized functions.

*SecondlYt K would appear to contain duplicated
elements ift for examplet the definition of o(y-x)
(eq. (17» does indeed depend on the choice of {ei}.
The author conjectures that this is not the caset
but the conjecture remains to be proven.

We also have avoided questions of convergence
(i.e. topological questions) in the space *K. There
are two justifications for this. The first is that
these questions have not affected the applications
(so far). The second is that until one finds a
minimal subset like that described abovet the study
of topology would seem to be only of remote inter-
est. Howevert there is no doubt that convergence
in *K or the minimal subset will be a topic of fu-
ture research.

Hence there is still much work to be done and
many new and interesting ideas to explore within
the context of the theory of non-standard gener-
alized functions.
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