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RANDOM SUM REPRESENTATION

OF THE NONCENTRAL CHI-SQUARE RANDOM VARIABLE

by

Adnan M. AWAD

ABSTRACT. A new simple approach to the
noncentral chi-square distribution is dis
cussed in this paper. Different represen-
tations of this variable are given.

§1. Introduction. The noncentral chi-square distri

bution is of special importance in many areas of
theoretical and applied statistics. It is useful
in the chi-square goodness of fit, in evaluating
the power of chi-square test of the homogeneity
of means in a normal sample in multidimensional
cases, and in the computation of approximate cri-
tical values of a test for the uniformity of a

given sample.
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The density function of the noncentral chi-
square distribution has been derived by a number
of authors. Fisher (1928) obtained it as a limit-
ing case of another distribution, Tang (1938) used
matrix theory to give an analytic derivation for
this density. Patnaik (1949) gave a geometric de
rivation. Graybill (1961) and McNolty (1962) used
moment generating function and characteristic func
tion methods to derive this density. Kerridge
(1965) gave a probabilistic derivation. Ifram
(1970) used a mixture method to derive the density
of the noncentral chi-square distribution. All
these papers assume that the number of degrees of
freedom is at least 1. Siegel (1978) defined a
noncentral chi-square distribution with zero de-
grees of freedom.

The methods which have been used in the liter-
ature can not be applied to derive the density of
the noncentral chi-square with zero degrees of
freedom, because they define the noncentral chi-
square random variable with n degrees of freedom
as a sum of n independent normal random variables
with means uj (j = 1,...,n) and variance one. This
paper suggests a new definition of the noncentral
chi-square distribution with n degrees of freedom
when n > 0. This new approach is very simple to
teach in a first course in statistics dealing with
the above applications of this distribution. It
gives a simple unified way to derive the known
properties of this distribution, and it provides

some new ones. Moreover, it shows the connections
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between some of the approaches which have been used
in the literature.

This new approach is motivated by a class of
problems in which we are interested, related to the

distribution of X? where the number of the ob-

=1%5
servations M follows a discrete distribution. For
example, consider a system of a number of compo-
nents which' fail in a given period of time. This
number is a random variable which may follow a
Poisson distribution. These M components fail at
different times. If Xj is the survival time of the
jth component then one may be interested in eval-
uating a probabily statement about the total sur-

=1
1 deals with such a problem since it gives the

A ; M
vival time, Zj Xi’ of these M components. Theorem

density function of Z?zlxjo

§2. Random Sum Representation of Xi(e). This sec-

tion provides a general theorem for deriving the
density of a lattice random sum of independent ran
dom variables. Then this theorem is applied to
the noncentral chi-square distribution, xi(e), The
following notation and definitions will be used in
the paper.

A discrete random variable M 1is said to have a
Lattice distnibution if there exist numbers a and
b with b > 0 such that all possible values of M
may be represented in the form a+bk where k=0,1,2,...

In particular, let M be a lattice random va-

riable such that P(M=a+bk) = e_eek/k! provided
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that 6 > 0. Then M is said to have a fLattice Poi-

s40n distribution with parameters (a,b;0).

Let Zl,Zz,a.o,ZM be a sequence of random va-
riables such that M is a discrete random variable
then X, = Lo .2Z.

M j=1773 M
Zj,s. If M has a lattice distribution, Zj=1Z. is

is called a nandom sum of the

]
called a Lattice random sum,

THEOREM 1. Let M be an 4integrable Latilice hran
dom variable taking values a+bk, Let X, be a Lat-
tice random sum and for every given k, set F, (x)
= P(Xy, < x|M = a+bk) and suppose that: (i) F
{8 differentiable with FL(X) = £, (x), and (ii)

Z:=OP(M=a+bk)fk(x) convenges uniformly in x. Then

the density of Xy at x 44 g(x)=2k=oP(M=a+bk)fk(x).

Proof. Note that

b
A
"

E(P(X, < x | M)

Lo P(M=a+bk)P(X, < x | M=a+bk)

) 4y P(M=a+bk)Fk(x).
k=o

This series converges because it is bounded by
z;=°P(M=a+bk) = 1. Now, by a well known convergence
criteria (Apostol, 1957, Theorem 13-14, p.403),
this together with condition (ii) implies that the
derivate of P(XM < x) with respect to x exists and

(o]
- |
equals Ek=°P(M-a+bk)Fk(x). A

THEOREM 2. Let M be a Lattice Poisson random
variable with parametens (n,2,6/2), and Let {Zj}
be £{.4.d. nonmal with mean zenro, variance one and
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N(0,1). Then fon any given n, the density of the
M 2

nandom sum YM = Zj=1zj at x A4
k= k! 2(n/2)+kr((n/2)+k)

Proof. Note that

n

F (x) = P(Y, < x | M=n+2k)

2
P(x < x)

n+2k
% t(n/2)+k—1e-t/2
2(n/2)+k

I'(n/2)+k)

"

X
£ fk(t)dt, say, where F)(x) = £ (x).

Now it will be shown that the assumptions of Theorem
1 hold . Assumption (i) is obvious. It can be shown
that suprk(x) = fk(n+2k—2). Take

Ry

P(M=a+bk)fk(n+2k-2)

then it can be shown that

R =
riw| XL o 1in® 91 4 2 y(n/2)4k-2_
kreo R k+eo 2k (n/2)+k-2
i.e. z:=oRk converges and hence condition (ii) fol-

lows by the Weirstrass test. A

It may be remarked that this theorem suggests

that for any given n 2> 0,
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2 M 2 n+2M'_2
(6) = £, .2, = L %
Xn j=173 ij=1 ]

where P(M' = k) = e_e/2(6/2)k/k!

§3 Applications. The main properties of the xﬁ(e)

with n > 0 can be derived from the random sum rep-
resentation given in Section 2. For example, the

r-th moment is

E(x2(0))7 = E(E(vg|M)
= B[], (2M+25+n-2)].

The characteristic function of xi(e) at t is

h(t;x2()) = Eexp(it¥,)) = E(E(exp(ity,)|M))

= (1-2it)'n/2E(1-2it)'M
= (1-2it) " Zexp(ith/(1-2it)).  (3.1)
In particular, if n = 0 then
h(t5x2(8)) = exp(it8/(1-2it)). (3.2)

Formula (3.1) can be used to show that the
rth cumulant of xi(e) is given by

c, = 2r—1(r—1)!(n+8r),

the skewness is ((n/2)+36)/(n+9)3/2, the kurtosis

(excess) is 6(26+(n/2))/(6+(n/2))2, and if xi(e)
and x;(k) are independent then
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2 2 2
X2(0)4Xz (M) = X7, (8+)).

; . 2 . . i
§4 Factorization of xn(e)° Different factorizations

2 s i " s
of xn(e) have been given in the literature. This
section gives relations between them and provides

. 9 2
a new factorization of Xn(e).

It has been_shown that

2 n+2M_2
= A Z°
Xn(e) Z]=1 Jj (take n > 2)
n-m,2 n+2M' 2
= 7 : RS <
25=173 jan-m+123 for O m n
-m,2 )
= Z?zTZj Z?:iMZj (independent)

2 2
X2_p * Xp(8).
. . 2 2 2
In particular, if m = 1 then xn(e) = Xpoq1 * xl(e)
which is a well known result given by Patnaik
(1949). If m = 0 then xs(e) = x2

n
given by Siegel (1978). Another interesting fac-

+ xi(e) which is

torization is

2,0y _ 2
XS(8) = x, + N(8,40) ,

where Xi and N(6,48) are dependent with zero co-
variance. To prove this statement, note that if

{X.} are independent N(uj,l) random variables for

2
j =1,...,n, then Y = z?_lxj has a xi(G) distri-
. ( n R n 2
bution with 6 = Zi=1uj’ also U = Zi=1(xj-uj)
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)

2
n+N(6,u6L

has a xi distribution and H = ] (2u]XJ ui
has a N(6,46) distribution. Hence xi(e) = X

Now use the fact that
Var(UtH) = Var(U) + Var(H) + 2Cov(H,U)

to get Cov(H,U) = 0. Finally, assume U and H are

independent to get
h(t3U+H) = h(y30)h(t,H) # h(t:X>(8))

which is a contradiction and completes the proof. A

It may be remarked that Siegel (1978) has
shown that XA (6) $ N(G 48) as 6 » «, Compare this

with x2(8) = xﬁ + x2(8) and x2(8) = y2+N(B,40).
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