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RANDOM SUM REPRESENTATION

OF THE NONCENTRAL CHI-SQUARE RANDOM VARIABLE

by

Adnan M. AWAD

ABSTRACT, A new simple approach to the
noncentral chi-square distribution is dis
cussed in this paper, Different represen~
tations of this variable are given,

§1, Introductiono The noncentral chi-square distri
but ion is of special importance in many areas of
theoretical and applied statistic~. It is useful
in the chi-square goodness of fit, in evaluating
the power of chi-square test of tbe homogeneity
of means in a normal sample in multidimensional
cases~ and in the computation of approximate cri-
tical values of a test for the uniformity of a
given sampleo
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The density function of the noncentral, chi-
square distribution has been derived by a number
of authors. Fisher (1928) obtained it as a limit-
ing case of another distribution, Tang (1938) used
matrix theory to give an analytic derivation for
this dens itYo Patnaik (1949) gave a geometric d~
rivation. Graybill (1961) and McNolty (1962) used
moment generating function and characteristic fun~
tion methods to derive this dens itYo Kerridge
(1965) gave a probabilistic derivation. Ifram
(1970) used a mixture method to derive the density
of the non central chi-square distribution. All
these papers assume that the number of degrees of
freedom is at least 1. Siegel (1978) defined a
noncentral chi-square distribution with zero de-
grees of freedom.

The methods which have been used in the liter-
ature can not be applied to derive the density of
the noncentral chi-square with zero degrees of
freedom, because they define the noncentral chi-
square random variable with n degrees of freedom
as a sum of n independent normal random variables
with"means ~. (j = 1,.o.,n) and variance one. This

. ]
paper suggests a new definition of the non central
chi-square distribution with n degrees of freedom
when n ~ o. This new approach is very simple to
teach in a first course in statistics dealing with
the above applications of this distributiono It
gives a simple unified way to derive the known
properties of this distribution, and it provides
some new oneso Moreover, it shows the connections
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between some of the approaches which have been used
in the literature.

This rew approach is motivated by a class of
problems in
distribution
servations M

which we are interested, related to the
Mof Lj=lXj where the number of the ob-

follows a discrete distributiono For
example, consider a system of a number of compo-
nents which' fail in a given period of time. This
number is a random variable which may follow a
Poisson distributiono These M components fail at
different times. If X. is the survival time of the

J
jth component then one may be interested in eval-
uating a probabily statement about the total sur-

• • ~M X f h M hv1val t1me, ~j=1 j' 0 t ese components. T eorem
1 deals with such a problem since it gives the

Mdensity function of L. 1X ..
J = J

§2. Random Sum Representation of X2(8). This sec-n
tion provides a general theorem for deriving the
density of a lattice random sum of independent ra~
dom variables. Then this theorem is applied to

2the noncentral chi-square distribution, Xn(8). The
following notation and definitions will be used in
the paper.

A discrete random variable M is said to have a
tatt~ee d~~t~~butianif there exist numbers a and
b with b > 0 such that all possible values of M
may be represented in the form a+bk where k=O, 1,290"

In particular, let M be a lattice random va-
-8 kriable such that P(M=a+bk) = e e Ik~ provided
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that e > 00 Then M is said to have a lattice Poi-
~40n distribution with parameters (a�b;e)o

Let Z1�Z2�o.o�ZM be a sequence of random va-
riables such that M is a discrete random variable
then XM = E~ 1Z. is called a ~andom 4um of the

J= J M
Z .•s. If M has a lattice distribution. E. 1Z, is

J' ' J= J
called a lattice ~andom 4umo

THEOREM 1. Let M be an integ~able lattice ~an
dom va~iable taking value4 a+bk� let xM be a lat-
tice ~andom ~um and 6o~ eve~y given k, ~et Fk(x)
= P(XM ~ xlM = a+bk) and ~upp04e that: (i) Fk
i~ di66e~entiable with F~(X) = fk(x)� and (ii)

00 .,'

Ek=oP(M=a+bk)fk(x) conve~ge~ uni60~mly in Xo Then

the den~ity 06 xM at x i~ g(x)=E;=op(M=a+bk)fk(x).

P~006. Note that

P(XM ~ x) = E(P(XM ~ x 1M»

= E;=op(M=a+bk)p(XM ~ x I M=a+bk)

= E:=op(M=a+bk)Fk(X).

This series converges because it is bounded by
E~=oP(M=a+bk) = 1. Now� by a well known converg~ce
criter~a (Apostol� 1957� Theorem 13-14� p.403)�
this together with condition (ii) implies that the
derivate of P(XM ~ x) with respect to x exists and

00equals Ek=op(M=a+bk)Fk(x). A

THEOREM 2. Let M be a lattice Poi~40n ~andom
va~iable with pa~amete~4 (n�2�e/2)� and let {z.}

Jbe i.i.do no~mal with mean ze~o, va~iance one and
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00 -8/2 k
g(x) =I; e (8/2)

k=o
(n/2)+k-1 -x/2x e

k!

P~oo,fi. Note that

Fk(x) = P(YM ~ x I M=n+2k)

2= P(Xn+2k ~ x )

= JX t(n/2)+k-1e-t/2
o 2(n/2)+k~(n/2)+k)

x= f fk(t)dt, say, where Fk(x) = fk(x).
o

Now it will be shown that the assumptions of Theorem
1 hold. Assumption (i) is obvious. It can be shown
that suPxfk(x) = fk(n+2k-2). Take

then it can be shown that

1. I Rk+111m--
k-+oo Rk

-1
. e 8 (= 11m-- 1 +

k-+oo2k
1 )(n/2)+k-2 = 0,

(n/2 }+k-2

00i.e. ~ R converges and hence condition (ii) fol-Lok=o k
lows by the Weirstrass test. •

It may be remarked that this theorem suggests
that for any given n ? 0,
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2(8) = L~ Z~ = L~+2M'Z~Xn J=l J J=l J

where P(M' = k) = e-8/2(8/2)k/kl .

2§3 Appl ications. The main properties of the X (8)n
with n > 0 can be derived from the random sum rep-
resentation given in Section 20 For example, the
r-th moment is

The characteristic function of X2(8) at t isn

h(t;X~(8» = E(exp(itYM» = E(E(exp(itYM)IM»

= (1_2it)-n/2E(1-2it)-M

= (1-2it)-n/2exp(it8/(1-2it»0 (3.1)

In particular, if n = 0 then

h(t;X2(8» = exp(it8/(1-2it».
o

(3 •2 )

Formula (3.1) can be used to show that the
2rth cumulant of X (8) is given by
n

r-lc = 2 (r-l)~(n+er),
r

the skewness is «n/2)+38)/(n+8)3/2, the kurtosis
(excess) is 6(28+(n/2»/(8+(n/2»2, and if X~(8)
and X~(A) are independent then
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2X (8+A).n+m

§4 Factorization of X2(8). Different factorizationsn
of X2(8) have been given in the literature. This

n
section gives relations between them and provides
a new ;actorization of X2(8).n

It has been shown that

2(8)
I

= L~+2MZ:Xn J=1 J

n-m 2 L~+2M' z:= L. 1Z. +]= ] ]=n-m+1 J

= L~-mZ: + L~+2M'Z:
]=1 ] ]=1 ]

2 x2(8).= Xn_m + m

(take n ? 2)

for 0 ~ m ~ n

(independent)

222In particular, if m = 1 then Xn(8) = Xn-1 + X1(8)
which is a well known result given by Patnaik

222(1949). If m = 0 then Xn(8) = Xn + Xo(8) which is
given by Siegel (1978). Another interesting fac-
torization is

2= Xn + N(6,46) ,

2where Xn and N(8,48) are dependent with zero co-
variance. To prove this statement, note that if
{Xo} are independent N(~.,l) random variables for] ]
j = 1,o.c,n, then Y = L~_1X: has a X2(8) distri-

• 0 n 2]-] nn 2
b ut Lo n wJ.th e = Lo 1~o, also U = Lo 1(Xo-~.)

J= ] J= J ]
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has a X2 distribution and H
n

has a N(e,4e) distribution.
Now use the fact that

Var(U+H) = Var(U) + Var(H) + 2Cov(H,U)

to get Cov(H,U) = D. Finally, assume U and Hare
independent to get

h(t;U+H) = h(y;U)h(t,H) # h(t:X2(e»n

which is a contradiction and completes the proof. ,

It may
shown that
with 2(e)Xn

be remarked that Siegel (1978) has
X2(e) ~ N(e,4e) as e ~ 00. Compare this
02222

= Xn + Xo(e) and Xn(e) = Xn+N(e,4e)o
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