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ON THE RESOLUTION OF A MIXTURE OF
OBSERVATIONS FROM TWO MODIFIED

POWER SERIES DISTRIBUTIONS

by

M.S.ABU-SALIH

ABSTRACT.The modified power series dis-
tributions (MPSD) introduced by Gupta (1974)
includes a number of the well known discrete
distributions. In this note we assume that a
sample of N observations is available and
that it consists of Ny observations from a
MPSD and N, observations from another MPSD.
The maximum likelihood method is used to
identify the population of origin of each
observation, and to estimate the mean and
parameter of that population. Special cases
are dealt with in detail. The variance of

the estimate of Nj, 1 = 1,2, is derived.

§1. Introduction. The estimation of the parameters

of mixtures of specified distributions has been
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discussed by many authors. In the majority of
published work in this field it is assumed that a
sample of size N is chosen from a population
having the probability density function

t(x) = 'fl(x\ + (l—é)f;(x)
where fl and f2 belong to the same family with dif
ferent parameters. Rider (1961 a) used the method
of moments to estimate the parameters of mixed
Poisson, binomial and Weibull distributions. The
mixture of exponential distributions was discussed
by Rider (1961 b), and Tallis and Light (1968).
ilischke (196u4) estimated the parameters of mix-
tures of binomial distribution. The mixture of
normal distributions was discussed by Hasselbland
(1966) and Cohen (1967). John (1970 a,b) consider
ed a different model where the sample available
is assumed to consist of N1 observations originat-
ing from one population and Vz observations from
inother population. He discussed the identifi-
cation of the population of origin of each observa
tion in the case of two normal and two gamma popu-
lations. Dickinson (1974) gave an extension of

John's work on the gamma mixture.

The method of maximum likehood is used in
this note to identify the population of origin
of each observation in a mixture of observations
from two modified power series distributions.

Estimates of the parameters are provided.
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§2. The Model. Assume a random sample of size N

is available and that it is a mixture of two ran-
dom samples, where N, (i = 1,2) observations be-
long to the ith population,with a modified power
series distribution (MPSD) with probability dis-

tribution. function

X
Py (X=x) = a(x)(g(8;)) i { = 4,73 (1)

i £(8.)
i

x € T where T is a subset of the set of non-negative
integers, al(x) > 0, R(Gi) and f(ﬂi) are positive,

finite, and differentiable. The mean of a MPSD is
g(B) £'(0)

f = ; 1ts i a ¢ () =
u(h) | T8 F (A and its varianc is u, )
(6) ae
= G 1974) .
27 (9)dp (see Gupta )
The numbers N; and N, of observati

. 2
nating from the first and second populations,res-
pectivelv, are considered fixed but unknown, and

the likelihood functions are conditioned on

Let the random sample be X1’x2""’XN and let

. . R ) ~
0,n T 1 if Xr = x,€1 population, ;. = 0
otherwise, i= 1,2. Then the likelihood function
is

" air
a(x,)(g(8;)) r (2)

f(ei)

2
D)
=1

._.
n

3

nes— =

—

Taking logarithms, differentiating with respect
to Bi and equating to zero,we get the maximum

likelihood equations
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] N N
') Vo, =8) V4. x , 1:1,2.  (3)
ir irnr
£(8,;) r=1 g(8;) r=1

Equation (3) can be written as
g a. x_/ g a = 8(%:) fiigil = udy),
. . -
poq TP L Tir g Zei) f(ei)
(u)
i=1,2,

where u(ei) = Eei[X].

Before we can evaluate the MLE's ﬁ(ei) and 8i
of u(6;) and 6;, respectively, the a, (1 = 2,2,
and r = 1,2,...,N) must be determined. Let A be
the set of all N-tuples of ones and zeroes. Any
sequence (all’a12""’a1N)’ where the alf3s where
defined earlier, belongs to A and determines an
identification of the observations with their re-
spective populations of origin. A has 2N elements.
Every element in A determines u(ei), i=1,2,from
(4). If p(B) is invertible then 6i and the like-
lihood function can be evaluated. The sequence
(all’a12""’a1N) leading to 61 and 92 which ac-
tually maximize the likelihood function will de-
termine the MLE of u(ei) and Gi (i = 1,2), and
identifies the observations with their respective
population of origin. In section 3, a general

case is discussed where A may be significantly

decreased.
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§3. General case, g(0) is monotone increasing.

First, we remark that in this case p(8) is inver-
tible because the variance of the MPSD is

g;%%3%§> 0, g(8) > 0 and g'(8) > 0, hence u(B) is

a monotone increasing function of 6.

Writing (2) in the form

xr A1p X (121,
_ a(xp)(g(64)) a(x,)(g(87))
R 1 (5)
r=1|  £(8,) £(8,)

we conclude that if

Xp Xp
a(x,)(g(6,)) alx,)(g(6,))
> (6)
£(6,) £(6,)
then o 1,02r = 0 and X, originated from the

first population. If

Xp Xp
a(x,)(g(84)) . alx,)(g(6,)) -

f(61) f(627
then we randomize by taking a; . = 1 with probabil-
ity +, i = 1,2. Inequality (6) is satisfied iff
g(04) £(64) (8)
X earp—
- logg(ez) log?T§;7

and (7) holds iff the inequality in (8) is replaced

by equality.
Without loss of generality assume 91 > 92.
Since g(8) is monotone increasing the left hand

side of (8) is a monotone increasing function of x.
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Hence, after arranging the observations in an as-

ceding order, the sequence (all’a12""’a1N) will
be of the form (0,0,...,0,1,....,1). ITn this case
A contains N+1 sequences. Each sequence deter-
mines the values of u(@i) and Gi, i=1,2,from
(4). Each pair 81,82 gives a value of the like-
hood function. The pair 61 and 62 which actually
maximize (2) is the MLE of 61 and 82 respectively.
The sequence (all’a12’°"’a1N) leading to this so-
lution determines the population of origin of each

observation. The case where g(0) is monotone de-

creasing is treated similarly.

§4. Special cases. In each of the following special

cases it is easily verified that g(0) is monotone
increasing, henceforth p(f8) is invertible and can

be obtained explicitly or by iterative methods.

a. Genenafized Poisson Distnibution (GPD). Let

(1) be the generalized Poisson distribution given

by
: Al(xl+x2x)x’1(8e-*29)x
P(X=x) = B s X = 0,14254¢44
 $- el

(9)

Alﬁ > 0, ]AQel < 1 (see Consul and Jain 1973). Let

A, ,A. be known and 6 be the unknown parameter.

Bt W X0
Here g(0) = 6e 2 and f(9) = e . Equation (u4) be
comes
La. x A0
m t T e 1 L2, b6
in 271
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(all summation signs run from r 1 to r = N and
therefore the limits will not be shown), and equa

tion (10) has the solution

oo. x_ /%0,
§.. & " 250 .. , i=1,2, (11)

A1+A22airxr/2air

b. Decapitated Genenralized Poisson Distnibution.
Let (1) be the decapitated generalized Poisson
distribution given by
x-1
A (Ag+25x) (6e 129

P(X=x) = Y y %X=51:25598 3
e 1Y_

x! 1

A8 >0, [Ar,0] < 1.

Here g(8) is the same as of the GPD, but £F(O) =
A16
e - 1 and

xle

pu(e) =
-A0 ’
(1 Azei)(l-e )

and equations (4) becomes
A0
Eaipxr/Zair = —pege=y %152, (12)
(1—%261)(1-e 171)

The solution of (12) has been given by Barton, David
and Merrington (1960), in the case Xl = 1, AQ = 0
(decapitated Poisson distribution). Hence, using

the procedure of section 3, we can find 51,52,

{air}§=1 (i = 1,2) which maximize the likelihood
function (2).

We remark that (a) and (b) reduce for Xz 3 |
to the Borel-Tanner and decapitated Borel-Tanner
distributions, respectively (Haight and Breuer

(1960) ).



c. Genernalized (decapitated) Negative Binomial
Distrnibution (GNBD). Let (1) be the GNBD given by

B-1
p(x=x) = —DI(n+Bx) (0€1-9) ) . x=0,1,2,.., (13)

x'T(n+Bx-x+1) (1-6)" "

0 <8 < 1 and |[BB| < 1. (See Jain and Consul 1971).

Here g(8) = 8(1-0)P"1, £(8) = (1-0)"™ , and equa-

tion (4) reduces to

L L 0 nds i
CipXp/P0yp = W(05) = goggo . P 7 12
which gives
z:Olir'xr/zair
B. = 5 i = 1,2.

n + BZaier/Zaip

Letting f(08) in (13) to be (1-0)"™-1 and x = 1,2,.
we get the decapitated GNBD with
nei

Zairxr/zair = = i=1,2. (14)
(1-Bei)(1-(1-ei) 1)

We also remark that (c) reduces to the binomial

and negative binomial distributions for B = 0 and
B = 1 , respectively.
§5. Case where N1 and N, are known. If in addi-

tion to the condition of the general case we sup-
pose N1 and N2 to be known then the problem 1is
solved in one step; namely, since the sequence

(a = (0,0,...,0,1,...,1) and N, is

11°%12° " 2 %qy)
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known then there will be ”1 ones .n the sequencs«

Hence, the largest N1 observations belong 10 the
first population (the one with the bigger §) he

MLE of 6., in the particular cases of section 4 re
N N
—_— , 5 .
ain valid with Z]airxr/rzlalr replaced by

r
N N
§ X, /N and o, X a,  replaced by
r_-.N2+1 1 1 rz /r\zl 2r
N2
Y x

r=1 P/N2

§6. Asymptotic variances of estimates. Since the

variances of the MLE 61 and 52 ar2 extremely com-
plex, and the standard maximum likelihood theory
may not be used (see Dickinson 19/4) we confine

ourselves to deriving the variance of zalr" The

variance of XOQF is derived similarly. Let

p = log £(81) - 1og£(87)

logg(el) - logg(BQ)

from (8) we get a,, =1 if x_>b,and a, =0
" P 1.z _ -
with probability 35 if X, = b. Moreover, B = 0
if X < b. For 1 = 1,2, let
B, = Pg (X>b) = ] Pg (X=x),
1 X€T 1
X>b
.th .
Ei = Pe'(x;b), and Ai be the 1 population. Then
i
E[Ja, ] = JF(a;=1)

)
“1

AN ~

Jp(xr>:[xr: ADP(X < A+
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+

= = _ A, X =
P(X_e A DP(X =b| X eA)P(ay =1] X €Ay X, =b)]

N N N N
) 1 2.1 N4 1 No
= L1[3,—*B,%*7 —WE1'7 W2
q (15)
Nl(B +=E.) + N2(B +5E ).

1
17271 2 2
2 2
E[la, ] = E[Zair + Y Yaga ] (16)
r#s
From the definition of oy and (15) we get
2 1 1
E[Jaj ] = N (B+3E,) + N,(B,+3E,) (17)

For r # s, E(alrals) is

ijz12 [P(Xr>b, X;>b, X €A, X € Aj)
s ) 4

+ P(X >b, X €A, X =b, o, =1, X €A.)

+ P(Xr=b, a1r=1, X €A., Xs>b, XS( Aj)

+ P(Xp=b, a, =1, X €A., X _=b, a

ir s 15:1’ ngAj)]’

Using the multiplication rule and summing over r

and s we find,

1 _ 2
E[zrzsalpals] = B,N,(N,-1) + 2B,B, BN,
2 (18)
+ B2N2(N2-1) + B1E1N1(N1-1)
+ (BlE2+B2E1)N1N2 + B2E2N2(N2—1)
+ E2N (N.-1)+2E_E_N_N + E2N (N.-1).
11 1 17212 22 2
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From (15) to (18),

var(Jo, ) = N,;B (1-B ) + N,B,(1-B,)

1

1

1
+ N El(a—Bl) + N252(7—32) (19)

1

2

1 2
- ;(N1E1+N252) .

From (15) we conclude that the MLE, qur » of N,
is heavily biased except if (B1+%E1) is very close

1 :
to 1 and (B2+5E2) 1s very close to zero. If b is

not an integer then E1 = E2 = 0 and the terms

involving F E, in (15) and (19) vanish.
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