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OBSERVATIONS FROM TWO MODIFIED

POWER SERIES DISTRIBUTIONS
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ABSTRACT.The modified power series dis-
tributions (MPSD) introduced by Gupta (1974)
includes a number of the well known discrete
distributions. In this note we assume that a
sample of N observations is available and
that it consists of N1 observations from a
MPSD and N2 observations from another MPSD.
The maximum likelihood method is used to
identify the population of origin of each-
observation, and to estimate the mean and
parameter of that population. Special cases
are dealt with in detail. The variance of
the estimate of Ni, i = 1,2, is derived.

§1. Introduction. The estimation of the parameters
of mixtures of specified distributions has been
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discussed by many authors. In "the majority of

published work in this field it is assumed that a
sample of size N is chosen from a population
having the probability density function

f ( x ) =

where f1 and f2 belong to the same family with di!
ferent parameters. Rider (1961 a) used the method
of momen s to estimate the parameters of mixed
Poisson, binomial and Weibull distributions. The
mixture of exponential distributions was discussed
by Rider (1961 b), and Tallis and Light (1968).
Blischke (1964) estimated the parameters of mix-
tures of binomial distribution. The mixture of
normal distributions was discussed by Hasselbland
(196b) and Cohen (1967). Jo n (1970 a,b) con ider
ed a different model where the sample available
is assumed to consist of N1 observations originat-
109 from one population and N2 observations fro

noth r population. He discussed the identifi-

cation 0 the population of origin of each observa
tion in the case of "two normal and two gamma popu-
lations. Dickinson (1974) gave an extension of
John's work on the gamma mixture.

The method of maximum likehood is used in
this note to identify the population of origin
of each observation in a mixture of observations
from two modified power series distributions.
Estimates of the parameters are provided.
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§2. The Model. Assume a random sample of iz N

is available and that i is a mixtur. of two ran-
dom sampl s, where N· (i = 1,2) bservations be-

,th "long to the 1 populatlon,wlth a modif'ed power
series i. ribution (MPSD) with probAhilitv rlis-

tribution. function

= a(x){g(Oi»x
f ( e . )

1

1 = 1 ,2 ; ( 1 )

x E.:: T where T is a subset 0 the set of non-negativ.
integers, a(x) > 0, g(Oi) and f(Oi) are positi e,
finite, and differentia leo The mean of a MPSD is

_ gee) f'(O)
w(O) - g'(8)--f(8) , and ts variance is )J2(A)

g(O) ~ (see Gupta 1974).g'(9)dO

=

T e nUT »e r s N1 and 2 of oh" r

nating from the firs and second popul ti n s , res-
p e c t i v e lv, are considered fixed but unknown, and

likelihood functions ar c o n d i ionel on t h e m .
Let he random sample be Xl,X2". "XN and le

. .th ,air = 1 If Xr = xrC 1 p o p u La t i o n , air = 0

otherwise,
is

i = 1,2. Then the likelih09d function

(2)

Taking logarithms. differentiatinp, with respect
to 0i and equating to zero, we get the maximum
likelihood equations
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N
I a.r=l lr

N
I a. xr=l lr r

1=1,2.

Equation (3) can be written as
N N g(8i) f'(8i) = ).J(8.)
I a. x / I a. = '(8) (8) 1r=l lr r r=l lr g i f i

(4 )

i = 1,2,

where ).J(8.) = E8.[xJ.
1 1

" "Before we can evaluate the MLE's ).J(8.) and 8.
1 1

of ).J(8.) and 8., respectively, the a. (i = 1,2,
1 1 lr

and r = 1,2, .•. ,N) must be determined. Let A be
the set of all N-tuples of ones and zeroes. Any
sequence (a11,a12, ... ,alN)' where th~'al~!s where
defined earlier, belongs to A and determines an
identification of the observations with their re-

Nspective populations of origin. A has 2 elements.
Every element in A determines ).J(8.), i = l,2,from

1

(4). If ).J(8)is invertible then 8. and the like-
1

lihood function can be evaluated. The sequence
(a11,a12, ... ,alN) leading to 81 and 82 which ac-
tually maximize the likelihood function will de-
termine the MLE of ).J(8.) and 8.

1 1

identifies the observations with their respective
(i = 1,2), and

population of origin. In section 3, a general
case is discussed where A may be significantly
decreased.

200



§3. General case, g(8),ls monotone increasing.

First, we remark that in this case ~(8) is inver-
tible because the variance of the MPSD is
:~(6)*> 0, g(8) > ° and g'(8) > 0, hence ~(8) is
a monotone increasing function of 8.
Writing (2~ in the form

we conclude that if
Xr

a(xr)(g(81»
f(81)

then a1r = l,a2r = ° and xr originated from the
first population. If

Xr
a(xr)(g(81»

f(81)

Xr
= a(xr)(g(82»

f (82 T
(7)

then we randomize by taking a. = 1 with probabil-
lr

ity; i = 1,2. Inequality (6) is sat~sfied iff

( 8 )

and (7) holds iff the inequality in (8) is replaced
by equality_

Without loss of generality assume 81 > 82,
Since g(8) is monotone increasing: the left hand
side of (8) is a monotone increasing function of x.
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Hence, after arr~ng the observations in an as-
ceding order, the sequence (a11,a12,·· .,a1N) will
be of the form (0,0, ... ,0,1,_ ... ,1). In this case
A contains N+l sequences. Each sequence deter-
mines the values of lJ(8.) and e., i = l,2,from

1 1

(4). Each pair e1,B2 gives a value of the like-
hood function. The pair 81 and 82 which actually
maximize (2) is the MLE of e1 and 82 respectively.
The sequence (a11,a12' ... ,a1N) leading to this so-
lution determines the population of origin of each
observation. The case where gee) is monotone de-
creasing is treated similarly.

§4. Special cases. In each of the following special
cases it is easily verified that gee) is monotone
increasing, henceforth wee) is invertible and can
be obtained explicitly or by iterative methods.

a. (GPO) _ Let
(1) be the generalized Poisson distribution given
by

P(X=x) = , x = 0, 1 ,2, • • .

(9)

A B > 0, IA 81 < 1" (see Consul and Jain 1973). Let
1 2

A1,A2 be known and e be the unknown parameter.
- A e A eHere g(B) = 8e 2 and f(8) = e 1 Equation (4) be

comes
Ea. xlr r

Ea.lr
i = 1,2, (10)
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(all summation signs run from r == 1 to r == N and
therefore the limits will not be shown), and equ~
tion (10) has the solution

La. x I La .
8. l.r r l.r i==1,2, ( 11 )==

1. A1+A2La. x ILa.l.r r lr

b. Veeap~tated Ge~e~at~zed Pa~~~on V~~t~~but~an.
Let (1) be the decapitated generalized Poisson
distribution given by

, ,x-l A 8A1(A1+A2x) (8e- 2 )x
P(X==x) =

x ! eX18_ 1
x=1,2, ...

Here gee) is
eA18_'-1

the same as of the r,PD, but fee) ==
and

~ (e) ==

and equations (4) becomes

La. x IEel. =l.r r l.r i==1,2. (12 )

The solution of (12) has been given by Barton, David
and Merrington (1960)~ in the case A1 == 1, A2 == 0
(decapitated Poisson distribution). Hence, using
the procedure of section 3, we can find 61,62,

N{a.} 1 (i :: 1,2) which maximize the likelihoodl.r r==
function (2).

We remark that (a) and (b) reduce for A2 == 1
to the Borel-Tanner and decapitated Borel-.Tanner
distributions, respectively (Haight and Breuer
( 196 0) ).
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c. Genekal~zed (decap~tatedJ Negat~ve B~nom~al
V~4t~~but~on (GNBD). Let (1) be the GNBD given by

p(X=x) =
nf(n+8x) (8(1_8)8-1)X , x= 0,1 ,2, 'c" (13)

x!r(n+8x-x+l) (1_8)-n

° < 8 < 1 and /881 < 1. (See Jain and Consul 1971).
8-1 -nHere g(8) = 8(1-8) , fee) = (1-8) , and equa-

tion (4) reduces to

La. x lEa. = ~(8.) =lr r lr 1

nee
1

i-Be. '
1

i = 1,2

which gives

8. =
1

Ea. x /z«.lr r lr
; i = 1 , 2.

n + SEa. x lEa.lr r lr
-nLetting f(8) in (13) to be (1-8) -1 and x = 1,2,0'

we get the decap~tated GNBD with

Eo.. x lEa. =lr r lr
n8·

1 i=1,2, (14 )
(1-8e.) (1-( 1-8. )n1)

1 1

We also remark that (c) reduces to the binomial
and ~egative binomial distributions for B = ° and
8 = 1 , respectively.

§5. Case where N1 and N2 are known. If in addi-
tion to the condition of the general case we sup-
pose Nt and N2 to be known then the problem is

solved in one step; namely, since the sequence
(al1,a12, ... ,alN) = (0,0, •.• ,0,1,. ,. ,1) and Nl is
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known then there will be NI ones .n the sequenc~.
Hence, the largest N1 observations h Lo n z 0 the
first population (the one with the bigger 8). Tne
MLE of 8; in the particular cases of sectIon 4 re

N N
main valid with I 01 x / I 01 replaced by~ r=lN r r r=lN r

L x1iN1 and L a2 x / L a2 replaced byr:--N2-tl' r=l r- r r=l r
N2r x /N2 0r= 1 r

§6. Asymptotic variances of estimates. Since the
variances of the MLE 81 dod 82 ar_ ~xtremely com-
plex" and the standard maximum liKelihood theory
may not be used (see Dickinson 1974) we confine
ourselves to deriving the variance of Ealr, The
variance of ~a2r is derived similarly. Let

b = log f(B1) - log f(82)
logg(B1) - logg(82)

from (8) we get air:: 1
1with probability 2 if

if xr > b, and a1r :: 0

= b. Moreover, air - 0x
r

if x < b.r- For i:: 1,2, let

B.
1

= PB.(X>b) =
1

LPe.(X=x)
xE:T 1

x>b

E. = Pe (X-b), and A. be the ith population. Then
1 i 1

E[laIr] = 2P(aIr::l)

2:: I Ip r x >: I X .~-' A.) P (X c A.) +
.i '" l' r r - 1 r- 1
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+ P(X E:: A.)P(X =bl x E::.A,)P(<X1 =11 X E:. A., X =b)1r 1 r r 1 r r 1 r

( 15)

r r <Xl <Xl ] •
oJ. r srrS

( 16 )

From the definition of <X1r and (15) we get

(17)

for

L
i,j=1,2

[P(X >b, X >b, X CA., X E: A.)r s r 1 S J

+ P(X >b, X €A., X =b, <Xl =1, X E:. A.)r r 1 S S S J

+ P(X =b, <x1r=l, X CA., X >b. X E:A.)
r r 1 S S J

+ P(X =b, ell =1, X t:..A., X =b, ell =1, X E..A.)].r r r 1 S S S J

Using the multiplication rule and summing over r

and S we find,

( 18)

206



From (15) to (18).

122'4(N1E1+N2E2) •

From (15) we conclude that the MLE. Ialr ' of Nl
is heavily biased except if (Bl+~El) is very close
to 1 and (B2+~E2) is very close to zero. If b is
not an intep,er then £1 = f.2 = 0 and the terms
involving El, E2 in (15) and (19) vanish.
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