ON A PROBLEM OF SAMUEL

by

Raj K. MARKANDA and Joaquin PASCUAL

RESUMEN. Se demuestra que si A es un dominio euclideano con respecto a una función que vale 1 en los primos de A, y además A es una k-álgebra finitamente generada sobre un cuerpo k^A que contiene todos los invertibles de A, entonces k es algebraicamente cerrado y $A = k[x]$, el anillo de polinomios en x con coeficientes en k. Por otra parte, el cuerpo de fracciones de A debe tener genus 0.

Interest in euclidean rings was revived with the appearance of an excellent and interesting paper of Samuel [3]. Since then more than 20 papers have appeared on this topic. In this paper we consider the following problem of Samuel. Let A be a unique factorization domain. Then every non-zero element a of A is of the form $a = u \Pi_{i=1}^{e_i} \Pi_{i=1}^{r}$, where u is a unit of A, the Π_i are primes of A and the $e_i \geq 0$ are integers for $1 \leq i \leq r$. Set $\phi(a) =$
e_1 + \ldots + e_r. Under what conditions is A euclidean with respect to \(\phi \)?

Before considering this question, we give some examples of domains which are euclidean with respect to a function of the type \(\phi \).

1. \(A = k[x] \), the polynomial ring with coefficients in an algebraically closed field \(k \).

2. A semilocal principal ideal domain (see Prop. 5 in [3]).

3. A principal ideal domain \(A \) such that \(A^* \to (\frac{A}{Aa})^* \) is surjective for all \(a \) in \(A \), where \(A^* \) is the set of all units of \(A \).

4. If \(A \) is euclidean for a function \(\theta \) then localizing \(A \) at all primes \(\Pi \) such that \(\theta(\Pi) \geq 2 \), we find that the localized ring is euclidean for a function of the type \(\phi \).

Now we consider the following two general cases.

CASE 1. A contains a field \(k \). In this case we suppose that \(A \) is a finitely-generated \(k \)-algebra. This also includes the case when characteristic of \(A \) is not 0. Since \(A \) is euclidean we find that the transcendental degree of \(K \) over \(k \) is 0 or 1, i.e. either \(A \) is a field or \(K \) is an algebraic function field in one variable over \(k \). Thus \(A = \bigcap_{P \in S} v_P \), where \(S \) is a finite set of primes of \(K \) and \(v_P \) is the valuation ring of \(K \) at the prime \(P \).
CASE 2. A does not contain a field. Thus the characteristic of A is 0 and \(\mathbb{Z} \subseteq A \), we now assume that A is a finitely-generated \(\mathbb{Z} \)-algebra. Since A is euclidean, we find that K, the quotient field of A, is a number field. Thus \(A = \bigcap_{P \not\in S} v_P \), where S is a finite set of primes of K containing all the archimedean primes A and \(v_P \) is the valuation ring of K at the prime P.

In view of these examples we may assume that A is contained in all but a finite number of valuation rings of K, where K is the field of fractions of A.

Next we state, without proof, a theorem of Queen and Weinberger (pag.68 in [2]). Let A = \(\bigcap_{P \not\in S} v_P \) be a principal ideal domain, \(\#(S) \geq 2 \), such that its quotient field K is a global field. We also assume a certain generalized Riemann hypothesis if K is a number field. Then A is euclidean and the smallest algorithm \(\theta \) on A is given by

\[
\theta(x) = \sum_{P \not\in S} \text{ord}_P(x)n_P, \quad x \neq 0
\]

where \(n_P = 1 \) if \(A^* \to (A_P)^* \) is surjective, and \(n_P = 2 \) otherwise.

In view of this we find that if a subring A of a global field K is euclidean for a function of the type \(\phi \) such that \(\phi(\mathfrak{m}) = 1 \) for all primes \(\mathfrak{m} \) of A, then A is a localization at a large number of primes of K, i.e. S is infinite. We also need the following.
THEOREM [Cunnea, 1]. Let K be an algebraic function field in one variable over an algebraically closed field k. Let A be a subring of K such that $k \subseteq A$, K is a field of fractions of A and A is contained in all but a finite number of valuation rings of K. Then A is a unique factorization domain if and only if genus of K is 0.

Using this result we prove the following theorem.

MAIN THEOREM. Let A be a domain which is not a field and such that $k = \{0\} \cup \{\text{units of } A\}$ is a field. Let K be the quotient field of A. Suppose now that A is a finitely-generated k-algebra which is euclidean for a function ϕ such that $\phi(\Pi) = 1$ for all primes Π of A. Then K is algebraically closed and the genus of K is 0. Moreover, $A = k[x]$, the polynomial ring in x with coefficients in k.

Proof. Since A is euclidean and K is the field of fractions of A, we find that the transcendental degree of K over k is less than or equal to 1. Now $\text{trans.deg.}(K/k) = 0$ implies that A is integral over k and thus a field, a contradiction to our hypothesis. Thus $\text{trans.deg.}(K/k) = 1$. Choose x in A such that x is transcendental over k. Let $f(x)$ be an irreducible polynomial in $k[x]$ and let

$$f(x) = u\Pi_1^{e_1} \ldots \Pi_r^{e_r}$$

be its prime decomposition in A, where u is a unit of A and the Π_i are primes of A, $1 \leq i \leq r$. Now $k = \{0\} \cup \{\text{units of } A\}$ and $\phi(\Pi_1) = 1$ imply that
Thus we see that k is algebraically closed. It now follows that K is an algebraic function field over an algebraically closed field k. Since A is euclidean, using the result of Cunnea we find that the genus of K is 0 and thus $K = k(x)$, a rational field. Since $k[x] \subseteq A \subseteq k(x)$ and all the units of A are in k, we find that $A = k[x]$ and whence the result.

REFERENCES