Revista Colombiana de Matemáticas Volumen XV (1981) págs. 1 - 6

ON A PROBLEM OF SAMUEL

 $h\nu$

Raj K.MARKANDA and Joaquin PASCUAL

RESUMEN. Se demuestra que si A es un dominio euclideano con respecto a una fun ción que vale 1 en los primos de A, y ade más A es una k-álgebra finitamente genera da sobre un cuerpo kGA que contiene todos los invertibles de A, entonces k es algebráicamente cerrado y $A = k[x]$, el anillo de polinomios en x con coeficientes en k. Por otra parte, el cuerpo de fracciones de A debe tener genus 0.

Interest in euclidean rings was revived with the appearance of an excellent and interesting paper of Samuel [3]. Since then more than 20 papers have appeared on this topic. In this paper we consider the following problem of Samuel. Let A be a unique factorization domain. Then every nonzero element a of A is of the form a = $\mathbf{u}\mathbb{I}_{1}^{e_{1}}\dots\mathbb{I}_{r}^{e_{r}}$, where u is a unit of A, the \mathbb{I}_1 are primes of A and the $e_i \ge 0$ are integers for $1 \le i \le r$. Set $\phi(a)$ =

 $\mathsf{e}_{\,\mathtt{1}}$ + \ldots + $\mathsf{e}_{\,\mathtt{r}}$. Under what conditions is \mathtt{A} euclidea with respect to ϕ ? A complete the property of the second state

Before considering this question, we give some examples of domainswhich are euclidean with respect to a function of the type ϕ .

1. A = $k[x]$, the polynomial ring with coefficients in an algebraically closed field k.

2. A semilocal principal ideal domain (see Prop. 5 in $\lceil 3 \rceil$).

3. A principal ideal domain A such that $A^* \rightarrow (\frac{A}{Aa})^*$ is surjective for all a in A, where A^{**} is the set of all units of A.

4. If A is euclidean for a function 8 then localizing A at all primes II such that θ (II) > 2 , we find that the localized ring is euclidean for a function of the type ϕ .

Now we consider the following two general cases.

CASE 1. A *contains a field* k. In this case we suppose that A is a finitely-generated k-algebra. This also includes the case when characteristic of A is not O. Since A is euclidean we find that the transcendental degree of K over k is 0 or 1, i.e. either A is a field or K is an algebraic function either A is a field or K is an algebraic func
field in one variable over k. Thus A = $\bigcap_{P\notin S} v_P$, where S is a finite set of primes of K and $\rm{v}_{\rm{p}}$ is the valuation ring of K at the prime P.

CASE 2. A does not contain a field. Thus the characteristic of A is 0 and $Z \subset A$, we now assume that A is a finitely-generated Z-algebra. Since A is euclidean, we find that K, the quotient field of A, is a number field. Thus $A = \bigcap_{P \notin S} V_p$, where S is a finite set of primes of K containing all the archimedean primes A and v_p is the valuation ring of K at the prime P.

In view of these examples we may assume that A is contained in all but a finite number of valuation rings of K, where K is the field of fractions of A.

Next we state, without proof, a theorem of Queen and Weinberger (pag. 68 in [2]). Let A = $\bigcap_{P \in S} V_P$ be a principal ideal domain, #(S) > 2, such that its quotient field K is a global field. We also assume a certain generalized Riemann hypothesis if K is a number field. Then A is euclidean and the smallest algorithm θ on A is given by

 $\theta(x) = \sum_{P \neq S} \text{ord}_P(x) n_P, \quad x \neq 0$

where $n_p = 1$ if $A^* \rightarrow (\frac{A}{P})^*$ is surjective, and $n_p = 2$ otherwise.

In view of this we find that if a subring A of a global field K is euclidean for a function of the type ϕ such that $\phi(\mathbb{I}) = 1$ for all primes \mathbb{I} of A, then A is a localization at a large number of primes of K, i.e. S is infinite. We also need the following.

3

THEOREM [cunnea, 1]. Let K be an algebraic func tion field in one variable over an algebraically closed field k. Let A be a subring of K such that. $k \subset A$, K is a field of fractions of A and A is contained in all but a finite number of valuation rings of K. Then A is a unique factorization domain if and only if genus of K is 0 .

Using this result we prove the following theorem.

MAIN THEOREM. Let A be a domain which is not a field and such that $k = \{0\} \cup \{units \ of \ A\}$ is a field. Let K be the quotient field of A . Suppose now that A is a finitely-generated k-algebra which is euclidean for a function ϕ such that $\phi(\Pi) = 1$ for all primes $\mathbb I$ of A. Then κ is algebraically closed and the genus of K is 0 . Moreover, $A = k[x]$, the poly nomial ring in x with coefficients in k.

Proof. Since A is euclidean and K is the field of fractions of A, we find that the transcendental degree of K over k is less than or equal to 1. Now trans.deg. $(K/k) = 0$ implies that A is integral over k and thus a field, a contradiction to our hypothesis. Thus trans.deg. $(K/k) = 1$. Choose x in A such that x is transcendental over k. Ley f(x) be an irreducible polynomial in $k[x]$ and let

 $\mathbf{u} = \mathbf{u} + \mathbf{v} + \mathbf{v} + \mathbf{f}(\mathbf{x}) = \mathbf{u} \mathbf{u} + \mathbf{v} \mathbf{u} + \mathbf{v} + \mathbf{v}$

be its prime decomposition in A, where u is a unit of A and the II , are primes of A, $1 \le i \le r$. Now $k = \{0\} \cup \{units \text{ of } A\}$ and $\phi(\mathbb{I}_1) = 1$ imply that

4

- $\left[\frac{A}{\Pi_{1}A}:k\right] = 1,$
- i.e. $\left[\frac{k|x|}{(f(x))};k\right] = 1$,

degree of $f(x) = 1$. $i.e.$

Thus we see that k is algebraically closed. It now follows that K is an algebraic function field over an algebraically closed field k. Since A is euclidean, using the result of Cunnea we find that the genus of K is 0 and thus K = k(x), a rational field. Since $k[x] \subseteq A \subseteq k(x)$ and all the units of A are in k, we find that $A = k[x]$ and whence the result.

 \mathbb{R}^n

REFERENCES

- [1] Cunnea W., Unique factorization in algebraic function fields, Ill. J. Math. 8 (1964) $425 - 428$.
- [2] Lenstra H.W., Lectures on Euclidean Rings, Bielefold, 1974.
- Samuel P., About Euclidean Ring, J.Algebra, $\lceil 3 \rceil$ 19 (1971) 282-301.

÷

Departamento de Matemáticas Universidad de los Andes, Mérida VENEZUELA.

(Recibido en octubre de 1980)