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NECESSARY AND SUFFICIENT CONDITIONS
FOR EXISTENCE OF SOLUTIONS TO EQUATIONS
WITH NONINVERTIBLE LINEAR PART

by

Peter W. BATES and Alfonso CASTRO

RESUMEN. Demostramos (véase Teorema
2.1) que la existencia de puntos criti-
cos de cierto funcional J:H =+ R, donde
H es un espacio de Hilbert, se reduce a
la existencia de_puntos criticos de un
nuevo funcional J:N » R, donde N es un
subespacio finitodimensional de H. Las
propiedades variacionales de J son usa-
das en las secciones 3 y 4 para dar apli
caciones a ecuaciones diferenciales ordi
narias y parciales. -

§1. Introduccidn. This paper is concerned with var

iational methods which give necessary and suffi-
cient conditions for the existence of solutions of

the nonlinear operator equation in Hilbert space

“

Au + Bu = p , (1.1)

where A is linear, selfadjoint and noninvertible,



and B is nonlinear but satisfies certain compati-
bility conditicns which we make precise later. Suf
fice it to say that (1.1) may represent a nonlinar
system of elliptic partial differential equations
at resonance. For clarity, the theory developed in
section 2 is for resonance at the first eigenvalue
and in section 5 the extension for resonance at
other eigenvalues is given. Our methods give impor
+ant variational estimates useful in concrete prob
lems. We illustrate this applicability in section
4 by giving an extension of a classical result due
to Ambrosetti and Prodi [19]. The primary motiva-
tion for this work was to get a deeper understan-
iing of the variational result for the pendulum
equation given in [5]. Since this paper was com-
pleted a paper by Amann [18] has appeared contain-
ing results related toc ours. Howeverm Amann's re-
sults, being based on a lemma due to the second
author (see [6]), do nct apply to the problems con

sidered here. In particular our hypotheses do not

imply the M-monotonicity which he requires.

The results obtained here are related to the
classical Landesman-Lazer results [16], but the
assumptions on B allow more general necessity and
sufficiency conditions for the existence of solu-
tions. In [16] as well as in the work of De Figuei
redo and Gossez [9], Darncer [7,8] Berger and Pocdo-
lak [4], Podolak [17], and Kazdan and Warner [15]
the authors studied the Dirichlet problem for

scalar equations and obtained solvability condi-



tions in terms of the asymptotic behaviour of the
nonlinearity. The abstract theorem given here in-
cludes results for the Dirichlet, Neumann, mixed
and pericdic problems for higher order systems of
elliptic partial differential equations. The solva
bility condition given here contains that given in
[16] and, in general, is not given in terms of the
asymptotic behaviour of the nonlinearity. The read
er is encouraged to study [2], [MJ, [7], [8], [9],
[10], [12], [1u], [15], and the recent paper of

Hess [13] for more on the resonance problem.

§2. Abstract Results. Let H be a real separable

infinite dimensional Hilbert space with inner prod
uct (*,+) and norm |+]. Let A:dom ACH + H be a lin
ear selfadjoint operator such that N = ker A is
finite dimensional. Suppose that the restriction
Ay of A to Nl is a positize operator with compact
inverse, i.e., if {yn}C,N is such that {Ayn} is
bounded then {yn} has a convergent subsequence.
Thus, the eigenvalues of A1 form an unbounded se-
quence 0 < Al < AQ £... We note that the positive
square rootLof A1 has a compact inverse and spec-
trum A; < Ag £... . Let A® denote the nonnegative
selfadjoint square root of A, then H1 = domA“ is

a Hilbert space when given the inner product
(u,v)1 = (A%u,A%v) + (uo,vo), where W is the or-
thogonal projection of w on N for each w&H. The
norm in H, will be denoted by "'Ml' Note that the

inclusion map H, - H is compact and continuous.
P.¥1



Let B:H » H be a continuous gradient operator with

potential Y:H » R, i.e. lig (Y(u+tv)-¥(u))/t =
; o

(B(u),v) for all u,veH. Assume that B takes

bounded sets into bounded sets and that for some

vye [0,1) and D > O,
(Bu,u) > -Y"uﬂf-Dﬂuﬂl, for all u€H,. (B1)

Using the fundamental theorem of calculus and (B1),
we see that ¥(u) > -(Y/2)"uﬁf—Dﬂun1-W(O). Hence,
if y' > (y/2) then there exists C&R such that

¥Y(u) > —y'!lullf-c, for all u€H1¢ (2.1)

Suppose that B also satisfies
(B(x+u)-B(x+v),u-v) > -“u-v"f (B2)

for all u,veY, u # v and x €N.

We seek solutions of (1.1) by looking for cri-

tical points of the functional J defined on H; by
= A%, 2
J(u) = [A2u|“/2 + ¥(u) - (p,u) (2.2)

Letting <,> denote duality pairing, one sees that

for ue domA and V€H1,

(A S AT W (Bukw)os. Bpak)

<VJ(u),v>

(Au+Bu-p,v). (2.3)

For this reason we define u to be a weak solution

of i(1.1) if and only ‘if

Va(u) = 0. (2.4)
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Critical points will be sought by first mini-
mizing J over the subspace Y = NLFTH1 taken to be
the orthogonal complement of N in Hl‘ For each
x & N define JX(Y) = J(x+y), where yec VY.

wi write p * Py+py (see (1.1)) with py&N and
p1€.N . From hypotheses (B1) and (B2) it fol-
lows that J, is strictly convex. Taking y'<€
(y/2,1/2) and replacing (2.1) in (2.2) we see that
JX(Y) +> ® 3as WYfl + o, for each x€N. Since J is
cf class Cl, for each x &€ N there exists a unigue
¢(x,p) &Y such that J_(¢(x,p)) = min{Jx(y): ye Y},
Moreover, ¢(x,p) is the only critical peoint of Jx‘
This implies that ¢(x,p) is independet of p,.
Using the compactness of the embedding H1 + H, the
fact that ¢(x,p) is the minimum of JX, and the
weak lower semicontinuity of the norm, one can
show that ¢(x,p) is continuous in x. Arguing as in
Lemma 2.1 of [6], we see that the functional
J:N » R, sending x+ J(x+$(x,p)) is of class C1
and

1im((J(x+tx,)-T(x))/t))
t>0

<v3<x>,x1>

(2.5)
= <VJ(x+¢(x,p)),x1>

for all x,xic_N. A simple computation shows that

for xe N and ye¥Y, z = x+y is a critical point of

J iff y = ¢(x,p) and x is a critical point of e
Thus, from (2.5), se see that z = x+y is a

critical point of J iff y = (x,p) and

0 = <A(x+¢(x,p))+B(x+0(x,p))-p,x,> (2.6)
<B(x+¢(x,p1))=po,x1> for all x1€:NL
11
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In (2.6) we have used that A is selfadjoint and

e
that plc\N . We restate the above observations as

THEOREM 2.1. Equation (1.1) has a weak s0fu-
tion 4§ and only Lf§ J has a critical point. Hence
(1.1) has a so0lution if§ and only Aif there exist
x€ N such that (2.6) holds.

REMARK 2.2. Is is convenient to point out that
even though solving (2.6) is equivalent to finding
a critical point of J, in many cases checking that
(2.6) has a solution is not easy whereas verifying
that J has a critical point may be simpler. We pro

vide typical examples in the next section.

Also we note that since the function ¢(x,p)
depends only on the projection of p on Y, from
(2.6) we see that (1.1) is solvable iff the pro-
jection of p on N lies in the range of
P(B(x+¢(x,p))), where P denotes the orthogonal
projection on N. Hence for P1€;Y fixed, the solv-
ability of (1.1) is reduced to computing the range
of P(B(x+¢(x,p))). If N is one dimensional the
range is just an interval. In the equation treated
in [5] the interval is always closed and in an
example of [3, theorem HOQ] the interval is always

open.

§3. Applications to ordinary differential equations.

As a first application of Theorem 2.1 we consider

the problem of finding weak solution to
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u"(t)+sinz(t)sgn(u)1n(1+ul) = f(t)
t€ (0,2m) (3.1)

u(0) = u(2m), u'(0) = u'(2m).

Here we take H = L2(0,2ﬂ). We put Au = u" for all

functions u satisfying u(0) = u(2m) and u'(0) =
u'(2m). We define

2m

¥(u) = -f G(t,u(t))dt

0
with

. 2 u 2

G(t,u) = sin (t)f sgn(s)egn(1+4s” )ds.
C

Hence, N = KerA is the one dimensional subspace of
H generated by the constant functions and Al = 1.

For each constant function c€ N (of value c¢)

we have
J(c) = J(c+d(c,f)) < J(c)
2m 27
= f (-6(t,c)dt + cf f(t)de.
0 0
Since lim 2n(1+u2) = «©, the latter inequality im
lu'-Nx

plies that J(c) + - as ﬂcnl + o, for each f &
L2(0,2ﬂ). Hence, for each f€:L2(O,2ﬂ), J has a
point of maximum cg e Thus co+¢(c0,f) is a weak so

lution of (3.1). Consequently we have proved

LEMMA 3.1. Fon each fcL,(0,2m) the boundary
value probLem (3.1) has a weak so0lution.

Next we consider the boundary value problem

13



a"(t)+Cult) /(14u(t))) = £(t)
te (0,2m) : (3.2)

u(0) = u(2mw), u'(0) = u'(2m)

For this problem A, H, N and Xi coincide with those

of the problem (3.1). For (3.2) we put
2n 2
¥(u) = -(f Ln(1+u“(t))dt)/2
0

By Theorem 2.1 we see that (3.2) has a weak solu-

tion i1iff there exists a constant function ¢ & N such

that
27 )
glc) = [ (c+d(c,£,))/(1+(c+d(e,fy)) ) (t)dt
0
2T (3.3)
= é fo(t)de

2m
where f, = f-(f f(t)dt)/2 and fo = f-fl. Now we
- 0
are ready to prove.

LEMMA 3.2. Let g,f, and £y be as abogﬁ. The
equation (3.2) has a weak solution iff [ f£,(1)dt
Lies in the closed interval [a,B] where a = min
{g(c):ce N}, B = max{g(c):c€ N} and a < 0 < B,

Proog: Since ¢(c,f1) is a critical point of
J.:Y * R, y» J(c+y) we have

2m 5 2T
[ ((ole,£)1 (1))t = [ (n((c+d(c,f)) (1))
0 0
(3.4)
+ £(0))¢(e,f)(t)dt - [£,(£)0(c,f,)(t)dt
where h(s) = S/(1+82). Since h is a bounded func-
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tion, from (3.4) and the Sobolev embedding Theorem
[1,pc97] we see that there exists a real number M,

which depends on fl’ such that
max{|[¢(c,f )(t)|:te R} < M (3.5)

for all c€ N. From (3.5) it follows that g(c) = O
as ”c"1 + o, Hence g has a maximum and a minimum.
Also (3.5) implies that g(c)e > 0 for "c[}1 sufi-

ciently large. Hence, by (3.3), the assertions of

t+he Lemma have been proved.

REMARK. Since g(c) + 0 as "c"1 + ©,  we see

2m 2m
@ < [ fy(t)dt < B and [ f(t)dt # 0
0] 0

then (3.2) actually has at least two weak solutions.
If f(t) is a nonzero constant function with a < f

< B, then (3.2) has two weak solutions. On the

other hand, if f(t) Z 0 then the only solution of
(3.2) is u(t) = 0. This illustrates the sharpness

of the result.

§4., An Application to a nonlinear Dirichlet prob-

iem. Let Qe:Rn be a bounded region and let H =
L2(Q). Let (Xi,¢i) be the i-th eigenvalue-normal-

lized eigenfunction pair for the problem

Auv + Au 0 in

"

u =20 in 99
s 2 2
where A denotes the Laplacian operator 0 /3x1+,hp
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2 2
+9 /axn.

In [19], Ambrosetti and Prodi considered the

problem
Au + g(u) = PP, + h in Q
(4.1)
u = O on 9f)
where p is a real parameter, h YO = <¢1>- is con-

tinuous and g is strictly convex of class C” and
satisfies other technical conditions. We will show
how our variational information can be used to ex-
tend the results of [19] by weakening the condi-
tions on g.

Suppose that g is continucus and satisfies

(1) 1im g(x)/x = p < X,
X> -0 -
(11) lim g(x)/x = v €i(Ai,A2)

X+

(111) (g(u)-g(v))/(u=-v) < y < Az i€ e Fovs

THEOREM 4.1. 14 g 44 as above, then for each
heY, there exists p(h) such that problLem (u.1)
has (A) at Least two solution gfor p > p(h), (B) at
Least one solution fon p = p(h), (C) no solution
for o < p(h). Furnther, if h_ =+ h weakly 4in L? then
p(h ) » p(h). If, 4n addition,

(IV) g 48 strnictly convex ,

then (A) and (B) are valid with "at Least" ne-
placed by "precisely"”.
Proof. By choosing € < Al-u and C large and

considering the equation
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Au+(X1-€)u+(g(u)-(Al-E)ui-C) = 01¢1+h1,

it is clear that there is no loss of generality by
assuming 4 < 0 and g 2 0. We will also take ¢1 > 0

in Q. Define the function G and functional J:Hé'*R

by e
G(x) = [ g(s)ds
0
and
J(u) = j(]Vu|2/2-G(u)+p¢1u+hu).

For fixed t let ¢(t) be the unique element of Y =
Yoflﬂg such that J(td +¢(t)) = min{J(t¢1+Y): vevYl.
We wish to show that

L] - d E
J'(t) = 5¥J(t¢1+¢(t)) + - as |t| » ="

Note that

$I(E0,+0(t)) = <TI(t,+6(1)),0,>

(4.2)

txl-fg(t¢1+¢(t))¢1+p.
Since g is nonnegative, J'(t) =+ -» as t + -o, Also
J(td, +¢(t)) < J(td,) = t2A1/2+tp—fG(r¢1), (4.3)

and for t > 0 and € > 0 there is a constant C such

that
2 2
J(td,) < t A1/2-(v-e)t /2+C * - as t + +o,
Hence, if J'(t) does not tend to -® as t > o,

there must exist a sequence t > @ such that

J'(tn) is bounded. From (4.3) we have f“V¢(tn)ﬁ2

17



< Yf(tn¢1+¢(tn))??g(o)!(tn¢1+¢(tn)) < Yt§+Y[(¢(tn))2
lgCo)|(t [é,+(meas(2)|Vo(t D]/YX,)). This implies

that ﬂV¢(tn)H/tn is bounded and by taking a subse-
quence, we can suppose that d)(tn)/tn converges
weakly in Y to ¥ say. Replacing t by t, in (4.2),

dividing by tos and taking the limit as n + o gives
2
0 = f(lV¢1| —g1(¢1+W)¢1), (4.4)

where
us if s < 0

gl(s) =
Vs if s 2 0.

Notice that 1im<VJ(t ¢1+¢(t ))/tn,y> = 1lim C = O
n-+>® a s n-+co

for all yec Y, i.e.,

o
"

1im[(V¢(t )+Vy-g(t ¢,+6(t ))y+hy)/t

n->

[V¥eVy-g, (¢, +¥)y.

But putting y = ¥ gives

LIYIZ < v = e (e ey < fov? = v]y)?

0. Now (4.4) becomes 0 =

which implies that ¥
Al-v, a contradiction. Thus, J'(t) + - as |[t| » =,
which implies the existence of p(h) satisfying (A),
(B) and (C). Observe that this also implies that

the set of zeros of J' (i.e. the solutions of (4.1))
is bounded. Suppose that (IV) in the statement of
Theorem 4.1 holds and that for p > p(h) there are

three distinct solutions u, v and w of (4.1). The
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function U = u-v satisfies

AU + pU 0 in Q

1]

(4.5)
U =0 on 99,

where p = (g(u)-g(v))/(u-v) when u(x) # v(x), and
0 otherwise. Since p < 12 in 2, U does not vanish
in . We may suppose, therefore, that u > v > w
in Q. If we define q = (g(v)-g(w))/(v-w) then by
the convexity of g, q < p and q # p on a set of
positive measure. But this gives a contradiction

since V = v-w satisfies
AV + qVv = 0 in Q, V = 0 on 3Q.

Hence, there are at most two solutions for p >
p(h), that is, horizontal lines cut the graph of
%%L(t¢1+¢(t)) in at most two places. This implies
that for p = p(h) there is precisely one solution.
Finally, the fact that p(h) depends continuously
on h will follow by ‘showing that ¢(t) depends con
tinuosly on h. Let hl’h2€:Yo and for t fixed let
wl
in J by h1 and h2, respectively. Then

and ?2 be the ¢(t) corresponding to replacing h

0 = [{(VY, V(¥ -¥,)-g(t¥,+¥,)(¥,-¥,)+h (¥, -¥,))}
and

0 = [{(VY, V(¥ -¥,)-g(td +¥ ) (¥, -¥,)+h, (¥, -¥,))}
Subtraction gives

2
0 = V(Y -¥ ) -f{(g(t¢1+w1)-g(t¢1+w2))((t¢1+w1) -
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- (to +¥,0)} + [(hy-h, ) (¥, -¥),

(4.6)
2 tw 2
0 > uv<w1-w2)u ‘yuwixwzl -ﬂhi-hzﬁuwl-?znc
This may be written
HV(?E-W?}Q-é /X;V{AQ-Y)ﬁhlwhﬁﬂo (4.7)

Thus, for fixed t, the mapping h ¢(t) is globally

Lipschitzian from L“ into Hau Now (4.7) shows that

D

if h1 + h weakly in L°, and if ?n’ b4 denoti the cor
responding ¢(t)'s, then Wn is bounded in Hy. Hence,
by the Sebolev embedding Theorem [1,p.97] we can
assume that ?a + ¥ in L2, Finally (4.6) shows that

Wn + ¥ in Hé and the proof is complete.

§5. Resonance at eigenvalues other than the first

one. Let A,B and {Ai; i=1,2,...} be as in section

2. We consider the problem
Au-Aku+Bu = p (5.1)

and, instead of (B1) and (B2), we assume that there
exist real numbers Yy and Yl such that Xk—Ak+1 <' iy

< v, < Ak_xk-i and

Yﬂu-v"2-s (B(u)-B(v), u-v) £ Ylﬂu-vﬂ2 (8. 2)

Let X1 denote the linear subspace generated by the

eigenfunctions corresponding to the eigenvalues 0,

RS P

erated by the eigenfunctions corresponding to the

let Y denote the closed subspace gen-

eigenvalues Ak+1"" and let N dencte the kernel
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of A-XkI, Define J as in section 2 replacing A by
A-lkl and B by B+Xk1.

For each x = X tXo, xlenxl, x2€_N there ex-
ists a unique element ¢(x)&€ Y such that J(x+p(x))
= min{J(x+y): ye Y}. It is easily proved that the
critical points of J coincide with the critical

points of the functional F:H1 + R defined by
F(u) = 2J(x+¢(x))+J(x+y) ;

where x denotes the orthogonal projection of u on

X4 @ N, and y
Following a procedure similar to that of sec-

u-X.

"

tion 2, 1t is easily shown that for each x& N there
exists a unique ¢(x) = @1(x)+¢2(x)€LX1 @Y such
that

F(x+0(x)) = min F(x+z) = ;(x).
z(Xf@N

From theorem 2.1 we have:

THEOREM 5.1. The equation (5.1) £4 sclvable 444
F has a cnitical point. Hence (5.1) 44 so0lvable L44
thene exists xe€ N such that <VF(x+$(x)),xo> = 0
for all x EN.

Theorem 5.1 together with remark 2.10 general-
ize theorem 4.1 of [3]. Considerations as those
given in section 3 permit simplifications to give
explicit solvability conditions for (5.1) in terms

of B and the elements of N.
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