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NECESSARY AND SUFFICIENT CONDITIONS
FOR EXISTENCE. OF SOLUTIONS TO EQUATIONS

WITH NONINVERTIBLE LINEAR PART

by

Peter W. BATES and Alfonso CASTRO

RESUMEN. Demostramos (v~ase Teorema
2:1) que la existencia d~ puntos ~riti-
cos de cierto funcionalJ:H +R, donde
H es un espacio de Hilbert, se redu~e a
la existencia de puntos criticos de un
nu~vo f~ncional J:N + R, donde N es un
subespacio finitodimensional ~e H. Las
propiedades variacionales de J son usa-
das en las secciones 3 y 4 para dar apli
caclones a ecuaciones diferenciales ordT
narias y parciales.

§1. Introducci6n. This paper is concerned with var
iational methods which give necessary and suffi-
cient conditions for the existence of solutions of
the nonlinear operator equation in Hil~ert space

Au + Bu = P , '(1.1)

where A is linear, selfadjoint and noninvertible,
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and B IS nonlinear but satisfies certain compati-
bility conditions which we make precise later. Suf
fice it to say that (1.1) may represent a nonlinar
system of elliptic partial differential ~quations
at resonanc~. For claritY9 the theory developed in
section 2 i~ for resonance at the first eigenvalue
and in section 5 the extension for resonance at
other eigenvalues is given. Our methods give impo~
~ant variational estimates useful in concrete pro~
lems. We illustrate this applicability in sectinn
4 by giving an extension of a classical result due
to Ambrosetti and Prodi [19J. The primary motiva-
tion for this work was to get a deeper understan-
ding of the variational result for the pendulum
equation given in [5]. Since this paper was com-
pleted a paper by Amann [18J has appeared contain-
ing results related to ours. Howeverm Amann's re-
suIts, being based on a lemma due to the second
author (see [6]), do not app i y to the problems CO~

sidered here. In particular our hypotheses do not
imply the ~-monotonicity which he requires.

The results obtained here are related to the
cLa ss i ceL Landesman-Lazer results [16J, but the
assumptions on B allow more general necessity and
sufficiency condi+ions for the existence of solu-
tions. In [16] as well as in the work of De Figuei
redo and Gossez [9J, Dancer [7,8J Berger and Podo-
lak [4J, Podolak [17], and Kazdan and Warner [15]
the authors studied the Dirichlet problem for
scalar equations and obtained solvability condi-
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tions in terms of the asymptotic behaviour of the
nonlinearity. The abstract theorem given here in-
cludes results for the Dirichlet, Neumann, mixed
and periodic problems for higher order systems of
elliptic partial differential equations. The solv~
bility condition given here contains that given in
[16J and, in general, is not given in terms of the
asymptotic behaviour of the nonlinearity. The read
er is encouraged to study [2], [4J, [71, [8J, [(I,
[10], [12J, [14J, [1SJ, and the recent paper of
Hess [13J for more on the resonance problem.

§2. Abstract Results. Let H be a real separable
infinite dimensional Hilbert space with inner pro~
uct(·,·) and norm 1t1·I(.,LetA:dom ACH -+ H be a lin
ear selfadjoint operator such that N = ker A is
finite dimensional. Suppose that the restriction

1A1 of A to N is a positive operator with compact
.1

inverse, i.e., if {Ynle N is such that {AYn} is
bounded then {Yn} has a convergent subsequence.
Thus, the eigenvalues of A1 form an unbounded se
quence 0 , A1 ~ A2~'" We note that the positive
square root of A1 has a compact inverse and spec-

~ ~ ~trum Ai" ~ "2 ~ .... Let A denote the nonnegative
k

selfadjoint square root of A, then H1 ~ domA2 is
a Hilbert space when given the inner product
(u,v)1 ~ (A~u,A~V) + (uO,vO)' where Wo is the or-
thogonal projection of w on N for each w CH. The
norm in H1 will be denoted by ~-~1' Note that the
inclusion map H1 -+ H is compact and continuous.
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Let B: H ~ H be a co n tin IlOUS grad i e n top er at or wit h

potential ':H + R, i.e. lim ('(u+tv)-'(u»/t =
. t'.....O

(B(u),v) for all u,vc.H. As sume that B takes
bounded sets 'into'bounded sets and that for some
y£:.[O,l) and D > 0,

, f'o r· a 11 u ~ Hi~ (B 1 )

Using Lhefundamental theorem of calculus and (Bl),
we see that 'I'(u ) ~. - ( y / ~ ) II u II ~ - D II u III- , ( 0 ) ~ Hen c e ,
if y' > (y/2) then there exists, Cc..1R such that

for all U CH1. ( 2 • 1 )

Suppose Lhat B also satisfies
, 2

(B(x+u)-B(x+v),u-v) > -~u-v~l (B2)

for all u,vCY, u 1- v and xt:.N.
We seek solutions of (1.1) by looking for cri-

tical points of the functional J defined on H1 by
lL ·2J(u) = ~A~u~ /2 + 'I'(u)- (p,u) (2.2)

Letting <,> denote duality pairing, bne sees that
for ucdomA and vCH1,

<V'J(u),v> 1" k= (A~u,A-~v) + (Bu,v) - (p,v)

- (Au+Bu-p,v). (2.3)

For this reason we define u to be a weak solution
of (1.1) if and only if

V'J(u) = o. ( 2 .4)
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C i Ie 1 points w'll be sought by first mini-
.1.

mi zi r g J over the subspace Y ::: N n Hi taken to be

the orthogonal complement of N in Hi' Fe ea h
x€:-N define Jx(Y):= J(x+y),_where y€:..Y.

We write p:;: PO+P1 (see (1.1» with PO£.N and
i

p 1 E:. N , F'r-0m h y pot he s e s (B 1 ) an d (B 2 ) it· f o 1 -

lows that Jy is strictly c nvex. Taking y' C
(y/2,1/2) and replacing (2.1) :n (2.2) we see that
J (Y) ..,)0. 00 a s II Y II t .....00, for eac h x E: NoS inc e J i s

x ~ -
of class C ..., for' each x eN there exi.sts a unique
q,(x,p)€:.Y such that Jx(¢(x,p»:: min{Jx(y): yc.Y}.
Moreover, ¢(x,p) is the only critical point of Jx'
This implies that ¢(x,p) is independet of PO'

Using the compactness of the embedding Hi + H, the
fact that ¢(x,p) is the minimum of Jx' and the
weak lower semicontinuity of the norm, one can
show that ¢(x,p) is continuous in x. Arguing as in
Lemma 2.1 of [6], we see that the functional
J:N ....R, sending x .......J(x+¢(x,p» is of class c1

and
- lim«J(xttx1)-J(x»/t»

t+O

for all x,x1CN. Asimple computation shows that
for xCN and YCY, z:;: x+y is a critical point of
J iff y = ~(x,p) and x is a critical point of J.

Thus, from (2.5), se see that z = x+y is a
critical point of J iff y = (x,p) and

( 2 e 6 )
.L

f o r- a L: x , E: N...
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In (2.6) we have used that A is selfadjoint and
.L.that Pl~N. We restate the above observations as

THEOREM 2.1. Equation (1.1) ha~ a weak ~olu-
tion in and onlif in J ha~ a c~itical point. Hence
(1.1) ha~ a ~olution in and onlif in the~e exi~t
x e; N ~ uch that (206) hoi.d«,

REMARK 2.2. Is is convenient to point out that
even though solving (2.6) is equivalent to finding
a critical point of J; in many cases checking that
(2.6) has a solution is not easy whereas verifying
that J has a critical point may be simpler. We pr~
vide typical examples in the next section,

Also we note that since the function ~(x,p)
depends only on the projection of p on Y, from
(2.6) we see that (1.1) is solvable iff the pro-
jection of p on N lies in the range of
P(B(x+¢(x,p»), where P denotes the orthogonal
projection on N. Hence for P1E;.Y fixed, the solv-
ability of (1.1) is reduced to computing the range
of' P(B(x+~(x,p»). If N is one dimensional the
range is just an interval. In the equation treated
in LS] the interval is always closed and in an
example of [3, theorem 4.~ the interval is always
open.

§3o Appl,cations to ordinary differential e qu e-t Io n s ,

As a first application of Theorem 2.1 we consider
the problem of finding weak solution to
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2 2u"(t)tsin (t)sgn(u~.2.n(1+u ) -

t c (0 ~2n ) ( 3 . 1 )

u(O) = u(2n)~ "(0) = u'(2n).

Here we take H ::'L2(O~2n). We put Au = u" for all
functions u satisfying u(O) = u(2n) and u'(O) =
u'(2n). We define

2n
'(u) = -/ G(t,u(t»dt

o

with
" - u 2G(t,u) = sinL(t)! bgn(s)9.n(1+s· lds .

o
Hence, N = KerA is the one dimensional subspace of
H generated by the constant functions and A1 = 1.

for each constant function ceN (of value c)

we have

J(c) = J(c+~(c,f» ~ J(c)

2n 2n
= J (-G(t~c)dt + cJ f(t)dt.

o 0
"Since lim !n(l+uL) = 00, the latter inequality im

lul-+-oo _

plies t~at J(c) 4 _00 as ~c~l -+- 00, for each f ~-L2(0,2n). Hence, for each fCL2(0,2n), J has a
point of maximum cO' Thus cO+~(cO,f) is a weak so
lution of (3.1). Consequently we have proved

LEMMA 3.1. FOil eac.h f C.L2( 0, 2n ) the bounda!l.y
value p!l.oblem (3.1) ha~ a weak ~otut~on.

Next we consider the boundary value problem
13



t:l"( )'+(u(t)!(1+u2(t») :: f(t)

c. ( 0 , z n ) ( 3 e 2 )

ufO),:: u(2Tr., ul(O) ::u'(2n)

For this problem A, H, N and Ai coincide with those
of he problem (3.,). For (3.2) we put

2n . 2 . . '
~(u) :: -(J ~n(l+u (t»dt)/2

o
By Theorem 2.1 we see that (3.2) has a weak solu-
tion iff there exi s a constant function c eN such

that
2n

gee) - f (c+¢(c,f1»!(1+(C+¢(c,f1»2)(t)dto
21T ( 3 • 3 )

- J fo(t)dt
o

2'TT
where f1 - £-(/ f(t)dt)!2 and fa = £-f1" Now we

o
are ready to prove.

g,fo and £1 be a~ above. The
f

21T
a weak ~olut~on ~66 fo(t)dt

o
lie~ ~n the elo~ed ~nte~val [a,S] whe~e a = min
{g(c):cCN}, B = max{g(c):cCN} and 0: c 0 < 8.

P~oo6: S'nee ¢(c,f1) is a critical point of
Jc:Y + ffi, Y * J(c+y) we have

LEt~MA 3.2. Let
equat~on (3.2) ha~

21T
J «¢(c,f1)I(t»2do

21T
- f (h«c+¢(c,f1»(t»o

(3. 4 )
+ f1(t»¢(c,f1)(t)dt - !f1(t)¢(c,f1)(t)dt

where h(s) :: 8/(1+s2). Since h is a bounded func-
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t~on~ f am 3. ) a d the Saba ev embedding The em
[1~p.97] we see tha the e exists a real number M,
which depends on r1, such that

( 3 .5)

for all cCN. From (3.5) it follows t hat gee) -+ 0

as ~c~1 -+ 00. Hence g has a maximum and a minimum.
Also (3.5) implies that g(c)c > 0 for ~c~l sufi-
ciently large. Hence, hv (3.3), the asser' ·ons of
he Lemma have been proved.

REMARK. Since gee) -+ 0 as ~C~l -+ OOf we see
that if

2lT
a < f fo(t)dt < B

o

2lT
and f fO(t)dt ¥ 0

a

then (3.2) actually has at least two weak solutions.
If f(t) is a nonzero constant function with a < f
< B, then (3.2) has two weak solutions. On the
other hand, if f(t) = 0 then the only solution of
(302) is u(t) = a. This illustrates the sharpness
of the result.

§4. An Appl ,cation to a nonl inear Dirichlet prob-

1 em 0 Let n E:. Rn be a bounded region and let H =
L2(n). Let (A.,¢.) be the i-th eigenvalue-normal-

1. 1.

lized eigenfunction pair for the problem

~u + AU ;: 0 in n
U ::::0 in an

2 2where ~ denotes the Lapia ian operator d Idx1+.0•
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2 2+a lax .n

In [19J, Ambrosetti and Prodi considered the
problem

in n
u = 0 on an

~
where p is a real parameter, h YO = <~1> is con-

2tinuous and g is strictly convex of class C and
satisfies other technical conditions. We will show
how our variational information can be used to ex-
tend the results of [19J by weakening the condi-
tions on g.

Suppose that g is continuous and satisfies

(1) lim g(x)/x = ~ < A.,
x-+_oo

(11) , . g(x)/x = 'J c O'l,A2)J, r m
x-+03

( I I I) (g(u)-g(v»/(u-v) ~ y < A2 i. f u 1 v.

THEOREM 4.1. 16 g i6 a6 above, then 6o~ ea~h
h E. Yo the~e ex.i6t.6p( h) 6u~h that p~oblem (4.1)

ha.6 (A) at lea6t two 6olution 6o~ p > p(h), (B) at
lea6t one .6olut~on 6o~ p = p(h), (C) no 6olution
6o~ p < pCh). Fu~the~, ~6 h. -+ h weakly in L2 thenn
p ( h n) -+ p ( h ). 16, in add~ti.on,

(IV) g ~.6 .6t~i~tly ~onvex. ,

then (A) and (B) a~e valid w~th nat lea.6tn ~e-
pla~ed by np~e~~.6elyn.

P~oo6. By choosing £ < A1-~ and C large and
onsidering the equation
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it is clear that there is no loss of generality by

assuming ~ < 0 and g ~ O. We will also take ~1 ~ 0
in n. Define the function G and functional J:H~ -+ R

by x
G-<x) = f g(s)ds

o
and

J(u)

For fixed t let ~(t) be the unique element of Y =
1YonHo such that J(t~l+<I>(t» = min{J(t<f>f+Y): y€,:Y}.

We wish to show that

JI{t) a sit I -+ 00.

Note that

ddtJ(t<f>l+<I>(t» = <\7J(t<l>l+<I>(t»,<I>l>

= tA1-!g(t<l>1+<I>(t»<I>l+P.

Since g is nonnegative, JI(t) -+ _00 as t -+ _00. Also

and for t > 0 and £ > 0 there is a constant C such
that

J(t<l>1) ~ t2A1/2-(V-£)t2/2+C -+ _00 as t -+ +00.

Hence, if JI{t} does not tend to _00 as t -+ 00,
there must exist a sequence tn -+ 00 such that
JI(tn} is bounded. From (4.3) we have f~\7<1>(tn}~2
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� yJ(tn~1+~(tn»2+g(o)f(tn~1+~(tn» < yt~+yJ(¢(tn»2

I g( 0) I (tnf ~1 +(meas(rnll 'V~( tn) Il!.r.r;'».This implies

that ~'V~(t )~!t is bounded and by taking a subse-n n
quence, we can suppose that ~(tn)!tn converges
weakly in Y to ~ say. Replacing t by tn in (4.2),
dividing by tn' and taking the limit as n ~ 00 gives

(4.4)

where
if s ~ 0

if s ~ o.

Notice that lim<'VJ(t ¢l+¢(t »!t ,y> = lim 0 - 0n n nn~OO n~oo
for all s c t , Le.,

o = limf('V~(tn)·'Vy-g(tn¢l+~(tn»y+hy)!tnn~oo

But putting y = ~ gives

=

which implies that ~ = O. Now (4.4) becomes 0 =
Ai-v, a contradiction. Thus, J'(t) ~ _00 as It I ~ 00,

which implies the existence of p(h) satisfying (A),
(B) and (C). Observe that this also implies that
the set of zeros of J' (i.e. the solutions of (4.1»
is bounded. Suppose that (IV) in the statement of
Theorem 4.1 holds and that for p ~ p(h) there are
three distinct solutions u, v and w of (4.1). The
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function U = u-v satisfies

flU + pU :: 0 in n
( 4 • 5 )

U = 0 on an,

where p = (g(u)-g(v))/(u-v) when u(x) ¢ v(x), and
o otherwise. Since p < A2 in n, U does not vanish
in n. We may suppose, therefore, that u ~ v ~ w
in n. If we define q = (g(v)-g(w))/(v-w) then by
the convexity of g, q ~ p and q # p on a set of
positive measure. But this gives a contradiction
since V = v-w satisfies

flv + qV = 0 in n, V = 0 on an.

Hence, there are at most two solutions for p ~
p(h), that is, horizontal lines cut the graph of
~~'(tct>l+ct>(t))in at most two places. This implies
that for p = p(h) there is precisely one solution.
Finally, the fact that p(h) depends continuously
on h will follow by showing that ct>(t) depends co~
tinuosly on h. Let h1,h2E:YO and for t fixed let
~1 and ~2 be fue ct>(t)corresponding to replacing h
in J by h1 and h2, respectively. Then

and

Subtraction gives
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- (t~1+'2»} + !(hl-h2)('1-'2)'

o ~ II v ( , 1 -, 2 ) II 2 - y II , 1 - 'Y 2 [I 2 -II h 1 - h 2 1111 , 1 - '¥ 2 lil 0

This may be written

Thus, for fixed t, the mapping h ~(t) is globally
Lipschitzian from L2 into H~o Now (407) shows that
if hi + h weakly in L2, and if '¥ , , denote the cor

n -
responding ~(t)IS, then 'n is bounded in H~. Hence,
by the 5mbolev embedding Theorem [1,p.97] we can
assume that' +' in L2. Finally (4.6) shows that

1 ~
'n + , in HO and the proof is complete.

§5. Reson~nce at eigenyalues other than the first
~. Let A,B and {Ai; i = 1,2, ... } be as in section
2. We consirler the problem

AU-Aku+BU = P ( 5.1 )

and, instead of (Bl) and (B2), we assume that there
exist real numbers y and Yl such that Ak-Ak+1 < y

~ Yl < Ak-Ak_l and

( 5 c 2 )

Let Xl denote the linear subspace generated by the
eigenfunctions corresponding to the eigenvalues 0,
Al, ... ,Ak_l, let Y denote the closed subspace gen-
erated by the eigenfunctions corresponding to the
eigenvalues Ak+l, •.. and let N denote the kernel
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of A-AkI. Define J as in section 2 replacing A by
A-AkI and B by B+AkI.

For each x -= xl +x2' xl C Xl' x2 C. N 'there ex-
i sts a unique el em en t <p ( x ) c. y such t hat J (x +<p ( x ) )

::min{J(x+y): Yc r l . It is easily proved that the
critical points of J coincide with the critical
points of the functional F:H1 ~ R defined by

F(u) :: 2J(x+<P(x»+J(x+y)

where x denotes the orthogonal projection of u on
X1®N, and y = u-ix ,

Following a procedure similar to that of sec-
tion 2, it is easily shown that for each xCN there
exists a unique ¢(x) -= <P1(x)+<!>2(x)CX1 ® Y such
that

F(x+¢(x» -= min F(x+z) - F(x).
ZE:X1@N

From theorem 2.1 we have:

THEOREM 5.1. The equation (5.1) iA Aolvable L~6
F haA a ~~Lti~al point. Hen~e (5.1) LA Aolvable L~n
thelte e.xcs rs xCN .6u~h that <\7F(x+~(x»,x > :: 0o
6o~all x eN.o

Theorem 5.1 together with remark 2.10 general-
ize theorem 4.1 of [3J" Considerations as those
given in section 3 permit simplifications to give
explicit solvability conditions for (5.1) in terms
of B and the elements of N.
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