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ON PRESERVATION OF NORMALITY

by

H.I. HOEIB

ABSTRACT, The theory of no!mal spaces
is treated in this paper. In section 1 we
define a new type of mappings called para
normal, and we prove that a continuous -
mapping onto a normal space is paranormal
if and only if its domain is no mal. The
section ends with the study of relativized
notions of normality and paracompactnesso
In section 2 we study the normali~v of the
products. Finally, section 3 contains the
discussion of counterexamples relevant to
the definition and theorems in 'he previous
sections.

Introduction. It is known that the counter image
of a normal space under a perfect mapping need no
be normal. For instance, Tamano [7J proved hat
for a comple ely regular space X, the product xx6X
is norma if and only if X is paracompac . Conse-
quently, if X is a normal non-paracompact space,
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then the projection of xxBx onto X is an example
of such a mapping.

In this paper, we shall define a new type of
mapping, called paranormal, which preserves norm~l
ity in the above sense, and we shall discuss some
ramifications of this definition. We also prove
some product theorems for normal space. Finally,
we discuss some counterexamples relevant to the
definitions and theorems in this paper. We assume
that every space throughout this paper is at least
T1. For terminology not define here, see [2J and
[8J .

§1. Paranormal Mappings.

Note that

1.1. If A = {A la~J\} and B =a
two collections of open subsets of a
A is called a ~h~~nk~ng of B provided
a c K , CIA c B ea a
this concept has been considered in

(see [8J, Def. 1509).

DEFINITION
{Bala cJ\} are
space X, then
that for each

the literature

DEFINITION 1.2. A continuous mapping f:X ~ Y
is called pa~ano~mal if for every locally finite
open cover U of X, there is a localJ.y finite open
cover V of Y such that for each v in V, the counter

-1image f (v) is covered by a shrinking of a subfam
ily of U.

THEOREM 1.3, Let f be a eont~nuou~ mapp~ng 6~om
a ~paee X onto a no~mal ~paee Y. Then X ~~ no~mal
~6 and only ~6 f ~~ pa~ano~mal.
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P~oo6o Suppose X is normal and f:X ~ Y is a
continuous mapping. Let U be a locally finite open
cover of X. Then U has a shrinking W which covers
x .

Now {y} is a locally finite open cover of Y
such that f-l(y) is contained in the union of mem
bers of Wand Wis a shrinking of U. Thus f is a
paranormal mapping.

Conversely, suppose that f:X + Y is paranormal
and Y is normal. To show that X is normal, it suf-
fices to show that every locally finite open cover
has a closed locally firiite refinement (see [~).
Let U be such an open cover, then there is a loca~
ly finite open cover V of Y such that for each v
in V, f-1(v) is covered by a shrinking of a subfam
ily of U, say W 0 Since Y is normal, V has a shrinv
king H which covers Yo For each HcH, choose V(H)
eV such that CIHC.V(H). Let

S= {f-1(CIH)nCIW I w~WV(H)' HcH}

Now, Hand WV(H) are locally finite. By lemma 20.4,
page 145, of [8J, it follows that {ClH I H~H} and
{CIW I w€:,WV(H)} are locally finite. Therefore one
can easily see that S is a closed locally finite
refinement of U which covers X. Hence X is normal .•

REMARKS 1.40 (i) The example given in the in-
troduction of this paper shows that a perfect map£
ing need not to be paranormal. (ii) The projection
n of ~x~ onto ~ is paranormal (indeed, ~xR is nor-
mal); on the other hand, n is not perfect. In fact
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7T is -1neither closed no~ the 7T (y)IS are compac .

The definition of paranormal mapping suggests
the following property of topological subspaces.

DEFINITION 1.5. A subset f of a space (X,T)
~ati46ie~ the eondition (a) ~elative to x, if eve
ry locally finite open cover of F by members of T
has a shrinking by members of 1 which covers F.

The above definition resembles the following
property known to be equ ival ent to normal ity: ev ~
~y loeally 6inite open eove~ ha~ a 4h~inking whieh
i~ al~o a eove~. In this connection we shall also
introduce the following:

DEFINITION 1.6. A subset F of a space X is cal~
ed no~mal ~elative to X if for every two disjoint
closed sets C1 and C2 of F there exists disjoint
ope~):,~~ts U1 and U2 of X such that C1 C U1 and

s, ~Ai·~~·~. -C2C;~;:;W2 0 (NQ~e. that this concent has been consider
ed in the lite'r.ature, see [3]) e

. Observe that ifF c X is normal relative to X,
then it is normal with the relative topology. How-
ever, the converse is not true (see examples 3.1,
3.2 and 3.3 in section 3).

THEOREM 1.7. Fo~ any elo~ed ~ub~et A 06 a ~paee
x, the 6ollowing a~e equivalent:

(i) A ~ati~6ie~ the eondition (a) ~elative to x.
(ii) Fo~ any elo~ed ~ub~et C 06 A whieh i~ eon-
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tained in an open ~ub~e~ U 06 x, ~he~e exi~t~ an
open ~ub~e~ V 06 X ~uc.h that C eve civ c u..

P~006. (i) ~ (ii).Suppose thatC is a closed

subset of A and ceu whereU is open in X. {X-C}U

{U} is a locally finite open cover of A in X, so

it has a shrinking {G,H} in X which covers A. Let

G C CIG C X-C and H C CIH C U; therefore C C H

C.CIHCU.

page 104, of [8J.

(ii) =>(i). Let U = {Ua I ae:J\} be a locally

finite open cover of A in X. Well order the set J\;
for convenience, then, suppose J\ = {1,2,3, .• ,o., .. }.
Now construct {Va I a c/ll, by transfinite induction

as follows: Let Fi = A ~l(AnUa}' Then FiCU1; so

t,here is an open set Vi such that Fie V1 and CIXV1

CUi' Suppose that V8 has been defined for 8 < a.

Now let Fa = A,[8~ ( VanA) ) U (y~ (Uy n A) )]. The n

Fa is closed in A and FaCUa so we have an open

set Vain X such that ClxVaCUa and FaCVa'fi:. _.it
~" t, ~-

is easy to see that V = {V", I a E:.J\} ;~ a 5:,9 .,", ing
\4 (;~ _,\1:- _

~"?' \.~ .:~ 'D-""
<'\ _~'9 -$" ,:,,'" ,;,..'v
~v 0"'" c ~}~l-z>

e.,~ ~ov~ ~ rt-:::-
Note that the second part~~f~ t'~e\) J<f~~f of t h eo

~... 'Y ~"i~ _.,-v >~, <
rem 1.7 is modeled on the p~00fG<O'f_0t'hcrdr~<m15.10,

~ \" C;'U (~', .. ,0
/"'" ,

r'!
0,\Y

Qe~Le~ A be a c.to~ed~ub~e~
~ati~6ie~ ~he c.ondi~ion
A i~ no~mal ~elative ~o X.

covers A ••of U which

COROLLARY 1.8.

given ~pac.e x. 16 A
~ela~ive to x, ~hen

06 a
(a)

The above corollary follows from theorem 1.7

(ii). The converse is no true (see example 3.1
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and the observation following example 3.3).

DEFINITION 1.9. [5J A cover U of a space X is

called bounded locally 6lnite, if there is a pas!
tive integer n such that every point x of X has a

neighborhood which intersects at most n members
of U.

THEOREM 1.10. Let f be a clo~ed contlnuou~
mapping 6~om a ~pace X onto a no~mal ~pace Y. 16
A = f-1(B) whe~e B l~ a clo~ed ~ub~et 06 Y, then
the 60110wlng a~e equivalent:
(i) A i~ no~mal ~elative to X,
(ii) A ~atl~6ie~ condition (a).
(iii) Any cove~ U 06 A which l~ bounded locally
6inite in X and who~e membe~~ a~e open in X ha~ a
~h~kinking V in X which cove~~ A.
(iv) Any 6inite cove~ U 06 A who~e membe~~ d~e
open in X ha~ a ~h~inking V which cove~~ A.

P~e06. We will show that (i) ~ (ii), the other
implications are easy. Let e be a closed subset of
A and C CU, where U is open in X. Now e and (X-U)

n A are two disjoint closed subsets of A, there-
fore there exists disjoint open set H1,H2 of X
such that e C Hi and (X-U)nACH2; Let K·-
(X-U)-H~, hence K nA = 0. By the normality of Y,

L

there is an open set G of Y such that BeG c elG
-1CY-f(K). Let V = H1nr (G). Then e CVCCIVC.U.

This ends the proof. •

It is easy to see that a normal closed subset
M of a space X need not to be normal relative to X
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(see section 3 for examples). But we have the fol
lowing theorem:

THEOREM 1.11. Let M be a elo4ed no~mal 4ub4et
06 a ~paee x. In F i6 elo~ed in the inte~io~ G On
M, then F i~ no~mal ~elative to x, in 6aet, F even
6ati~6ie~ the eondition (a).

P~o06. Suppose that A is a closed subset of F
and ACU, where U is open in X. Since ACUnG and
M is normal, there is an open set V in M such that
A C Y'C CIMY Cue G. Therefore, A C Y no c. C1MvnG

C U nG C~ U. Let N ::::V n c then CIXN C CIXV. ,CIXG
so C1XN C CIXV nN = CIMV, Hence A C N C:. CIXN C_ U ..

This ends the p-oo f , •

We shall now apply the above results to prove
and sometimes improve some of the results of Hanai
[3J We sha Ll, start with:

THEOREM 1.12. (Hanani [3J). Let f be a elo~ed
eon:tinuou~ mapping n~om a ~paee X onto a pa~aeom-
pae:t T2-~ pac.e v Then X i~ no~mal in and only i6
6o~ eaeh y i.n Y, f-1(y) i~ no~mal Itelative :to x .

Pltooi. It suffies to show that f is paranormal.
Let U be a locally finite open c)ver of X. Since
f-1(y) satisfies the condition (a), U has a shrin

- 1k Ln g A :::: {A I a-A} in X which covers f (y).
y s ,« U

For each y in Y, let 0y ::::Y-f(X-a~AyAy,a)' Then

Then for each y in Y, £-1(0 )C ~ A and Oy isy a- y y,a
open. Now {Oy ye,:Y} has an open locally f i n i e
refinement which covers ypsay {Wy I y~Y'}, Y'C Y~
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-1and for ea ch W, f (W) is, ca ve red b.y ash r in-y . y
king of a subfamily of U. Hence f is paranormal,
mapping. It

DEFINITION 1.13. [1] A subsetF of a space X

is called a-pa4aeompae~ (pa~aeompae~) 4ela~ive ~o
X if every open cover of F in X has an open 0-10
cally finite (locally finite) refinement in X.

We shall now prove:

THEOREM ,1.14. (i) t.e«:f be a et.o s ed eon~inuoU-6
mapping, 06 a T2-.6paee X o n.t» a ,paILac.ompae~ T2 .6paee
Y, .6uc.h ~hat f-1(y) i.6 n04mal and ~he bounda4y
af-l(y) i.6 pa4ac.ompae~ ILela~iue ~o,X, 604eaeh y
in Yo Then X i.6 nOILmal.
(ii) Le~ f'be a c.lo.6ed eon~-i.nuo.6 mappi.ng 06 a 4e9..
ulaIL .6paee X on~o a paILac.dmpac.t T2 .6paee Y .6ueh
tha~ f-1(y) i..6n04mal and the bodnda4y af-1(y)i..6
a-paILac.ompac.t ILela~i.ve ~o x, nOll eaeh y in Y. Then
X i..6nOILmal.

PILoo6. (i) Let A,B be two disjoint closed sub-
-1 -1 'sets of f (y); then by the normality of f (y),

" -1there exists open sets G and H of X that AC f (y)
-1 -1nG, Bef (y)nH andf (y)nGnH=~. Since

af-1(y) is paracompact relative to X and X is T2,
then by theorem 5 of Aull [lJ there exist open

-1sets GO and HO of X such that af (y ) n A C GO '
-1af (y)nB C HO and HOnGO = ~oNow let G' =

[rnt f-1(y)J1G] U [GonG] and H' = [rnt f-
1(y)nH]

U[HO n H]. Then' A C G t , Be H' and G' n HI = ~ 0
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(ii) The proof follows by the same method used in
(i)~ and theorem 13 of Aull [1] .•

Observe that theorem 1.14 improves a similar
result of Hanai [3], which he proves with the

-1stronger hypothesis in (i) that af (y) is compact,
and the stronger hypothesis in (ii) that af-1(y) is
Lindelof.

DEFINITION 1.15. Let m be an infinite cardinal
number.·A subset F of a space X is called m-pa~a-
compact ~elat~ve to X if every open cover of F in
X with cardinality at most m has an open locally
finite refinement in X. •

We shall prove:

THEOREM 1.16. Fo~ an any clo~ed ~et A 06 a
topolog~cal ~pace X, the 60llow~ng a~e equ~valent:
(i) A l~ m-pa~acompact ~elat~ve to X;
(ii) A ~~ m-pa~acompact and aA ~~ m-pa~acompact
~elat~ve to x.

P~oo6. (i) ~(iiL It is clear that A is m-p~
racompact. Let U = {Un I <lE:A}, IAI ~ m , be an
open cover of aA in X. Let V = A-aA; then there
exists and open set U in X such that V = UnA.
Now B = {U}U U is an open cover of A in X. There-
fore, B has a locally finite open refinement in X.
Now it is easy to see that aA is m-paracompact
relative to X.

(ii) '*(i). Let U:: {U I <lE:A},<l
an open cover of A in X. Since A is m-paracompact~

IA I .~ m , be
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there is a locally finite open refinement {We I Sen
of {A Ua I a c a l • Let for each B, WI B = WB Tnt A.
Since aA is m-paracompact relative to X, U has an
open refinement H wich is locally finite in X and
covers aA. Now {WI BIB E:. r) UH is an open local y

finite refinement of U in X which covers A ••

THEOREM 1.17. (i) Let f be a eio~ed eont~nuou~
mapping 06 a T2 ~paee Xonto a pallaeompaet T2 ~paee.
Y ~ueh that f-

1(y) ~~ paJl.aeompaet and the baundaJl.y
af-l(y) i~ pallaeompaet Ileiative to x, 601l eaeh y
in Y. Then x i~ pallaeompaet and nOJl.mai.
(ii) Let f be a eio~ed eontinuo~ mapping 06 a Ilea
uiaJl.~paee x onto a pallaeompaet ~paee Y ~ueh that

-1 -1f (y) i~ paJl.aeompaet and af (y) i~ a-pallaeompaet
Ileiative to x, 60ll eaeh y in Y. Then X i~ paJl.aeo~
paet and nOllmai.

Plloo6. It is easy to see that X is pa r-acomp a ct .

The normality of X follows from theorem 1.14. •

Observe that theorem 1.17 improves a similar
result of Hanai [3J, which he proves with the
~tronger hypothesis in (i) that the boundary af-1

(y)

is compact, and the stronger hypothesis in (ii)
-·1that the boundary af (y) is Lindel~f.

DEFINITION 1.18. [4J A collection A of sub-
sets of a space X is called eio6ulle pJl.e~elluing if,
for every subcollection B A, the union of closures
is the closure of the union: U{ClB I B~B} =

CI [U{B I B CBl] .

Finally we prove:
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THEOREM 1.19. Let f 6~om x onto Y be eontinu-
o u.s ma.pping and let y have two e.ove~ing.6 tv iii r l
and {Hi I i ~I} with the 6ollowing p~ope~tie.6:
(i) 6o~ eaeh t c r , H. Ls open, v. Ls ct.o s eo. and

1 1

f-1(vi) .6ati.66ie.6 the eondition (n) ~elative to x;
(ii) fro~ eaeh ieI, V.cH. and {H. I r c r l i.6 «t.o s

J. 1 1

u~e p~e.6e~ving. Then x i.6 no~mal.

P~oo6. Let U be a locally finite open cover.
of X. Since for each iE.I, f-1(V.) satisfies the

).

condition (a) relative to X, U has a shrinking
Wv. in X which covers f-1(Vi)' Let S:: {f-1

(Hi)nH
1.

I W E:..Wv.t iE:.I} ; then S is a shrinking of U.
).

Hence X is normal. -

§2. Normality of the Products. We shall apply
the results in the previuos section to obtain some
product theorems. The first one follows from Thea
rem 1.19.

THEOREM 2.1. Let x and v be two .6paee.6 .6ueh
that y L6 no~mal and x ha.6 two eove~ing {vii r c r l
and {H. lie I} with the 6ollowing p~o pe~tie.6 :

1

(i) 6o~ eac.h i £- I, H. Ls open, V. L6 c.t.os e.d and
). ).

v.xy .6ati.66ie.6 the eondition (a) ~elative to Xxv~
). .

(i i) nolt eac.h i E: I, V, C H. and {H. I .i £.. I} i.6 c.ro
L J. 3. 1

6u~e p~e-6eltving. Then xxv i6 no~mal.

THEOREM 2.2. Let x and v be no~mal 6paee6.
Then xxv i-6 no~mal i6 and only i6 X ha6 an open
c o vea {Va a E:.A} whieh i-6 point 6ini.te elo-6u~e
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p~e~e~v~ng and 6o~ each a A, CIV xy ~~ no~maloa
P~oo6o Since X is normal {Va I a e:A} has a

shrinking, {Ma I a E..A} For each a. A, Ma C ClM C

"« C CIVa. Therefore Maxy C CIMaxy C VaxYCCIVaxy.
Since CIV xy is normal, CIM xy satisfies the con-

a' a.
dition (a) relative to XXY. Therefore {ClMa I aE:A}

is a closed cover of X and {Va I a E::A} is an open
cover of X which is ciosure preserving and for
each a E.A , CIMa C V and ClMaxy satisfies the con
dition (a) relative to XXY. Hence, by theorem 2.1,
Xxy is normal ••

THEOREM 2.3. Let X be locally compact, met~ic
~pace. Let Y be no~mal countably pa~acompact ~paceo
Then Xxy ~~ no~mal.

p~o 0 6. X has an 0pen co vel' {val a E: A } su ch
that CIVa is compact. Since X is paracompact,
{Va I a EA} has an open locally finite refinement
{Fy I YE:.f} Now for each YE:.f, there is a e.t: such
that CIFy C CIVa. Therefore, for each y, CIFy is
compact. By theorem 21.4 of [8J, Clfyxy is normal.
Thus X has an open locally finite refinement
{Fy I yE:.f} such that for each Yef, CIFyxy is
normal. Hence by Theorem 2.2, Xxy is normal .•

Observe that theorem 2.3 is a generalization
of the well known theorem of Dowker ([8], Theorem
21.4) .
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§3. Counterexamples. In this section we disc ss
some counterexamples relevant to the defini ions
and theorems in the previuos sections. Concerning
Definition 1.6, it is easy to see that a normal
closed subset need not to be normal relative to x.
In £act~ take any non-normal space X having two
disjoint closed normal subspaces A and B that can
not be separated by open sets. Then M = AU B is
normal and closed but it is not normal relative
to x,

A particular case of this situation can be
realized in each of the following three examples
taken from [6J.

3.1. TYCHONOFF PLANK. The Tychonoff Plank is
defined tobe T = [o,n]x[o,wJ-un,w)} where both
ordinal spaces [o,nJ and [O,w] are given the in-
terval topology. Let A = {(n,n) I 0 ~ n < w} and
B = {(ex,w) I 0 ~ ex < n}. Both A and B are normal
and closed in T, but on the other hand, A and B
can not be separated by open sets (thus M = A UB
is normal and closed in T but M is not normal reI
ative to T).

3.2. MICHAEL'S PLANE. Let X = R, define a to-
pology T on X in the following way: G T if and
only if G =: U UV where U is an open subset of R in
usual topology and V is any subset of the irration
also Let Y be the space of irrationals. Now take
A = {(x,y) x is rational} and B = {(x,x) I x is
irrational}, then A and B are normal and closed
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in XXV, but cannot be separated by open sets (thus
again M = A UB is a normal and closed subset of x~y

but is not normal relative to XxV).

3.3. NIEMYTZKI'S SPACE. Let T = PUL where P
is the open upper half plane with the euclidean to
pology T, and L is the real axis, we generate a to

~t,pology T on T by adding to T all sets of the form
{xl U D, where x E:..Land D is an open disc in P which
is tangent to L at x. Now the real axis L is a
normal and closed subset of T which is not normal
relative to T. This can be seen by writing L = QUIt

where Q is the rationals and I is the irrationals.
Q and I are normal closed subset which can not be
separated by open sets.

Observe that Michael's plane (example 302)
shows that theorem 2.3 is not valid for non-locally
compact metric spaces.

In theorem 1.8 it has been shown that if A sat
isfies the condition (m), then A is normal relative
to X. However, the converse is not true. An example
of this can be found in any non-normal space X
having two disjoint closed sets A and B which can
not be separated by open sets and such that B is
normal and A is normal relative to X. In this case
A does not satisfy the condition (m) (indeed, A
satisfying the condition (n) implies that A and B
can be separated by open sets). This situation can
be realized, for example in the Tychonoff Plank
with the same sets A and B of example 3.1. Both A
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and Bare normal relative to T. The proof for B is
obvious; for A use the fact that given two dis-
joint closed subsets of A one of them will be com
pact, But both A and B do not satisfy the condi-
tion (a). This shows also that the union of dis-
joint closed subspaces which are normal relative
to a space need not to be normal relative to the
space .

Note also that each of the example 3.2 and
3,3 can be used here for the same purpose, One has
to rely on the statement: In a ~eguta~ hpa~e X
any ctohed ~ountabte hubhpa~e xo i~ no~mat ~eta-
live to x. A proof of the above statement is ob-

·tained by a straightforward adaptation of the
well-known argument (due Tychonoff [8J) that a
regular Lindelof space is normal. Indeed, let Xo
be a countable closed subspace of a regular space
X , Let A = {a1,a2,· ..} and B = {bi,b2,· ..} be two
disjoint closed subsets of XO' For each n , choose

Un' V open subsets of X such that anc Iln, CIUn n Bn
= ~ and b CV c iv n n A = 0. Now put

n n'
U = (U1-CIVi)U (U2-(ClVi ClV2»
V = (Vi-CIU1) U(V2-(CIU1 ClU2»

Then ACU, BCU, and U nv = 0.

'I:
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