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ON PRESERVATION OF NORMALITY

by

H.Z. HDEIB

ABSTRACT. The theory of normal spaces
is treated in this paper. In section 1 we
define a new type of mappings called para
normal, and we prove that a continuous -
mapping onto a normal space is paranormal
if and only if its domain is normal. The
section ends with the study of relativized
notions of normality and paracompactness.
In section 2 we study the normalitv of the
products. Finally, section 3 contains the
discussion of counterexamples relevant to
the definition and theorems in the previous
sections.

Introduction. It is known that the counter image

of a normal space under a perfect mapping need not
be normal. For instance, Tamano {7] proved that

for a completely regular space X, the product XXBX
is normal if and only if X is paracompact. Conse-

quently, if X is a normal non-paracompact space,
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then the projection of XXBX onto X is an example
of such a mapping.

In this paper, we shall define a new type of
mapping, called paranormal, which preserves normal
ity in the above sense, and we shall discuss some
ramifications of this definition. We also prove
some product theorems for normal space. Finally,
we discuss some counterexamples relevant to the
definitions and theorems in this paper. We assume
that every space throughout this paper is at least

Tl' For terminology not define here, see [2] and

(8] .

§1. Paranormal Mappings.

DEFINITION 1.1. 1f A = {Aalae:A} and B =
{BalasjA} are two collections of open subsets of a
space X, then A is called a 4hainking of B provided
that for each ag A, ClAac;Baa

Note that this concept has been considered in

the literature (see [8], Def. 15.9).

DEFINITION 1.2. A continuous mapping f:X » Y
is called paranormal if for every locally finite
open cover U of X, there is a locally finite open
cover V of Y such that for each v in V, the counter
image f-l(v) is covered by a shrinking of a subfam

ily of U.

THEOREM 1.3. Let f be a continuous mapping from
a space X onto a normal space Y. Then X 48 normal
if and only 44§ £ 48 paranormal.
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Proof. Suppose X is normal and f:X =+ Y is a
continuous mapping. Let U be a locally finite open
cover of X. Then U has a shrinking W which covers

X.

Now {Y} is a locally finite open cover of Y
such that f_i(Y) is contained in the union of mem
bers of W and W is a shrinking of U. Thus f is a
paranormal mapping.

Conversely, suppose that f:X > Y is paranormal
and Y is normal. To show that X is normal, it suf-
fices to show that every locally finite open cover
has a closed locally finite refinement (see [2]).
Let U be such an open cover, then there is a local
ly finite open cover I/ of Y such that for each v
in V, f_l(v) is covered by a shrinking of a subfam
ily of U, say wve Since Y is normal, V has a shrin
king H which covers Y. For each HE H, choose V(H)

€V such that CLHZT V(H). Let

S = {£71(CIINCIw | wely gy, HEH)

Now, H and wV(H) are locally finite. By lemma 20.H4,
page 145, of [8], it follows that {ClH | H€H} and
{glw l weWy

can easily see that S is a closed locally finite

} are locally finite. Therefore one

refinement of U which covers X. Hence X is normal.®

REMARKS 1.4. (i) The example given in the in-
troduction of this paper shows that a perfect mapp
ing need not to be paranormal. (ii) The projection
m of RXR onto R is paranormal (indeed, RXR is nor-

mal); on the other hand, m™ is not perfect. In fact
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G : -1
T is neither closed nor the m (y)'s are compact,

The definition of paranormal mapping suggests

the following property of topological subspaces.

DEFINITION 1.5. A subset F of a space (X,T)
datisfies the condition (o) relative Zo X, if eve
ry locally finite open cover of F by members of 1

has a shrinking by members of T which covers F.

The above definition resembles the following
property known to be equivalent to normality: eve
ny Locally f4inite open cover has a shrinking which
{4 also a covern. In this connection we shall also

introduce the following:

DEFINITION 1.6. A subset F of a space X is call
ed noamal nelative to X if for every two disjoint
closed sets C4 and C, of F there exists disjoint
opeqéﬂqts Uq and U2 of X such that C1 < U1 and
CQ»Qﬁgéu (Note that this concent has been consider

ed in the literature, see [3])w

. Observe that if Fc X is normal relative to X,
then it is normal with the relative topology. How-
ever, the converse is not true (see examples 3.1,

3.2 and 3.3 in section 3).

THEOREM 1.7. Fon any closed subset A of a space
X, Zthe following are equivalent:

(i) A satisfies the condition (a) nrelative to X.

(ii) For any closed subset C of A which 44 con-
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tained Ain an open Asubsetf U of X, there exists an
open subset vV of X such that C c Vv C Clv C U.

Proof. (i) = (ii). Suppose that C is a closed
subset of A and CTU where U is open in X. {X-C}U
{u} is a locally finite open cover of A in X, so
it has a shrinking {G,H} in X which covers A. Let
G ¢ C16 € X-C and H < ClH < U; therefore C < H
C oAU

(ii) = (i). Let U = {Ua | @ €A} be a locally
finite open cover of A in X. Well order the set A;
for convenience, then, suppose A = {1,2,3,..,0,..}.
Now construct {Va | a €A} by transfinite induction

as follows: Let F, = A é;ﬁ(AfWU . Then F,C U, ; so

there 1s an open set V1 such that F1C,V1 and (‘lXV1

C[Hf Suppose that VB has been defined for B < a,

Now let Fy = AN[Ah (VM) U S (u, 0an]. Then

Fa is closed in A and F c:U so we have an open

set V in X such that CleaC'U and Faciya
is easy to see that U = {Va | €A} %§ka
of U which covers A. B é}d®Q§~
P
Note that the second part&&% %Q@ RFGQ? of theo

rem 1.7 is modeled on the pﬁoof_dé fheorem 15.10,

page 104, of [8]. <

COROLLARY 1.8. Let A be a closed subset of a
given space X. 1§ A satisfies the condition (o)
nelative to X, then A 4is normal nelative to X.

The above corollary follows from theorem 1.7

(ii). The converse is no true (see example 3.1
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and the observation following example 3.3).

DEFINITION 1.9. [5] A cover U of a space X is
called bounded Locally f4inite, if there is a posi
tive integer n such that every point x of X has a
neighborhood which intersects at most n members

of U.

THEOREM 1.10. Let f be a closed continuous
mapping grom a space X onto a normal space Y. I
A = f'l(B) whene B 44 a closed subset of Y, then
the foLLowing are equivalent:

(i) A 48 nonmal nelative to X.

(ii) A satisgdes condition (a).

(iii) Any coven U 04 A which 44 bounded Locally
finite in X and whose membens anrne open in X has a
shrnkinking V 4in X which covens A.

(iv) Any f4indite coven U o§ A whose membens ane
open in X has a shrinking V which covers A.

Proog. We will show that (i) =>(ii), the other
implications are easy. Let C be a closed subset of
A and CcU, where U is open in X. Now C and (X-U)
N A are two disjoint closed subsets of A, there-
fore there exists disjoint open set Hl’H2 of X
such that C T H; and (X-U)F\ACZHQ; Let K =
(X—U)-Hz, hence KA = @§. By the normality of Y,
there is an open set G of Y such that B & G T C1G
c Y-£(K). Let V = H, N F"1(G). Then C ¢ V © C1V c U.
This ends the proof. B

It is easy to see that a normal closed subset

M of a space X need not to be normal relative to X
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(see section 3 for examples). But we have the fol

iowing theorem:

THEOREM 1.11. Let M be a closed normal subset
04 a space X. 14 F 448 closed in the internion G o4
M, then F 48 normal nrelative to X, in fact, F even
satisfies the condition (a).

Proof. Suppose that A is a closed subset of F
and A U, where U is open in X. Since A UG and
M is normal, there is an open set V in M such that
ATV ClMV € U C G. Therefore, A C VMG szlMVﬂG
< UNG « U. Let N = VNG then ClxN C Cle!’ClXG

so ClxN [ e CleITN = ClMV. Hence A NC C1 N U.

X
This ends the ppoof. ®

We shall now apply the above results to prove
and sometimes improve some of the results of Hanai

[3]. We shall start with:

THEOREM 1.12. (Hanani [3]). Let f be a closed
continuous mapping from a space X onto a paracom-
pact To-space V. Then X {8 noamal 4if and only 4f
fon each y 4in Y, f'l(y) i3 nonmal nelative to X.

Proof. It suffies to show that f is paranormai.

Let U be a locally finite open cover of X. Since

f-l(y) satisfies the condition (a), U has a shrin

-1
king Ay = {Ay | a€A } in X which covers f “(y).
2 .
For each y in Y, let Cy = Y-f(X—JgiyAy,a). Then
: =1 = U i
Then for each y in Y, f (Oy)‘:agAyAy,aand 0y is

open. Now {Oy | yeY} has an open locally finite
W TA AR TR £ ol
T

refinement which covers y,say {Wy



and for each Wy, f-l(wy) is covered by a shrin-
king of a subfamily of U. Hence f is paranormal

mapping. B

DEFINITION 1.13. [1] A subset F of a space X
is called o-paracompact (paracompact) nelative Zo
X if every open cover of F in X has an open O0-lo

cally finite (locally finite) refinement in X.
We shall now prove:

THEOREM 1.14. (i) Let f be a closed continuous
mapping 04 a T,-4pace X onto a paracompact Top 4space
Y, such that £-1(y) 44 normal and the boundary
af'i(y) {8 paracompact nelative to X, for each y
in Y. Then X 448 nomnmal.

(ii) Let f be a closed continuos mapping o4 a reg
ulan space X onto a paracompact T, 4pace Y such
that f—l(y) 48 nonmal and the boundanry af'i(y) o
o-paracompact nelative to X, for each y in Y. Then
X 44 normal.

Proof. (i) Let A,B be two disjoint closed sub-
sets of f-1(y); then by the normality of f_l(y),
there exists open sets G and H of X that ACLf~1(y)
Ne, BcC f‘l(y)nn and f'l(y)ﬂc MH = @. Since
af-l(y) is paracompact relative to X and X is T,,
then by theorem 5 of Aull [1] there exist open
sets Gy and Hy of X such that Bf_l(y)F?A A P
Bf-l(y)l7B < H, and HOfWGO = ¢g. Now let G' =
[Int f_l(y)fWG] u [GOIWGJ and H' = [Int f—i(y)rWH]
UlHy MH] . Then ACG' , BCH' and G'NH' =0
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(ii) The proof follows by the same method used in
(i), and theorem 13 of Aull [1]. e

Observe that theorem 1.14%4 improves a similar
result of Hanai [3], which he proves with the
stronger hypothesis in (i) that Bf-i(Y) is compact,
and the stronger hypothesis in (ii) that 8f_1(y) is
Lindelof.

DEFINITION 1.15. Let m be an infinite cardinal
number. A subset F of a space X is called m-para-
compact nelative to X if every open cover of F in
X with cardinality at most m has an open locally

finiterefinement in X. @
We shall prove:

THEOREM 1.16. For an any closed set A of a
topological space X, the following are equivalent:
(i) A 44 m-paracompact nelative to X;

(ii) A 448 m-paracompact and 3A L4 m-paracompact
nelative to X.

Proof. (i) = (ii). It is clear that A is m-pa

racompact. Let U = {U, | a €A}, |A] € m, be an
open cover of 9A in X. Let V = A-3A; then there
exists and open set U in X such that V = UMNA.
Now B = {UlU U is an open cover of A in X. There-
fore, B has a locally finite open refinement in X.
Now it is easy to see that 9A is m-paracompact
relative to X.

(ii) =» (i). Let U = {Ua | « €A}, |A| € m, be

an open cover of A in X. Since A is m-paracompact,
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there is a locally finite open refinement {WBI Ber)
of {A Ua | a €A}. Let for each B, W'B = WB Int A
Since 9A is m-paracompact relative to X, U has an
open refinement H wich is locally finite in X and
covers J0A. Now {W'B | ReT}UH 1is an open locally

finite refinement of U in X which covers A. ®

THEOREM 1.17. (i) Let f be a closed continuous

mapping o4 a T, space Xonto a paracompact Ty Apace
Y duch that f'l(y) 448 panracompact and the boundanry
af~1(y) 48 paracompact nelative to X, for each y
in Y. Then X 448 paracompact and noamal.
(ii) Let f be a closed continuos mapping of a reg
ularn space X onto a paracompact space Y such that
f"l(y) {4 paracompact and af_l(y) {8 o-paracompaci
nelative to X, gorn each y in Y. Then X 4s paracom
pact and noamal.

Pnooﬁ. It is easy to see that X is paracompact
The normality of X follows from theorem 1.14, ®

Observe that theorem 1.17 improves a similar
result of Hanai [3], which he proves with the
stronger hypothesis in (i) that the boundary af-i(y)
ié compact, and the stronger hypothesis in (i1i)

that the boundary af-l(y) is Lindelof.

DEFINITION 1.18. [4] A collection A of sub-
sets of a space X is called closure preserving if,
for every subcollection B A, the union of closures
is the closure of the union: U{Cl1B | B B} =
cifu{s | BeB}].

Finally we prove:
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THEOREM 1.19. Let f 4nem X onto Y be continu-
ous mapping and Let Y have two coverings {Vil icr1l
and {H; | i1} with the following properties:

(i) fon each ic1, H; 48 open, V,; 48 closed and
f'i(vi) satisfies the condition (o) rnelative to X;
(ii) for each i€ I, V,cH; and {H, | i€ 1} is clos
une preserving. Then X L& normal.

Proof. Let U be a locally finite open cover
>f X. Since for each i€ I, f—l(Vi) satisfies the
condition (a) relative to X, U has a shrinking
Wy. in X which covers f’l(Vi). Let S = {f—l(Hi)fTW
|1w €;in, i€I} ; then S is a shrinking of U,

Hence X is normal. B

§2. Normality of the Products. We shall apply

the results in the previuos section to obtain some

product theorems. The first one follows from Theo

rem 1.19.

THEOREM 2.1. Let X and Y be two spaces such
that Y 48 nonmal and X has two covering {Vil ic1}
and {H; | ie1} with the folLowing properties:

(i) for each ie 1, H; 48 open, V. L4 closed and
V,xY satisfies the condition (a) nelative to XxY;q
(ii) for each ieI, V,CH, and {H,; | i€ I} 48 clo

dune presenving. Then XxY L& normafl.

THEOREM 2.2. Let X and Y be nonmal spaces.
Then XXY 48 noamal £i{§ and only 4§ X has an open
cover {V, | ae A} which is point f4inite closunre
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presenving and fon each a A, Clv_xY L8 normal.
Proof. Since X is normal {Va | a €A} has a

shrinking {Mj | a €A} For each a A, M, < CIMC

Va - ClVa. Therefore MaxY C.ClMaxY C.VaXYC:ClVaXY.

Since ClVaxY is normal, ClMaxY satisfies the con-
dition (a) relative to XXY. Therefore {ClMaI a€ h}
is a closed cover of X and {Va | « €A} is an open
cover of X which is closure preserving and for

each a €A , ClMa < V and ClMaxY satisfies the con
dition (o) relative to XXY. Hence, by theorem 2.1,

XXY is normal. B

THEOREM 2.3. Let X be Locally compact, metric
space. Let Y be normal countably paracompact space.
Then XXY 48 noamal.

Proog. X has an open cover {Va | a €A} such
that ClVa is compact. Since X is paracompact,

{VOl | « €A} has an open locally finite refinement
{FY | Ye T} Now for each YyeT', there is a € A such
that ClFY C Clvau Therefore, for each Y, ClFY is
compact. By theorem 21.4 of [8], leYXY is normal.
Thus X has an open locally finite refinement

{FY | yeTl} such that for each Yel', ClF_xY is

Y
normal. Hence by Theorem 2.2, XXY is normal. B8

Observe that theorem 2.3 is a generalization
of the well known theorem of Dowker ([8], Theorem

21.4).
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§3. Counterexampies. In this section we discuss

some counterexamples relevant to the definitions
and theorems in the previuos sections. Concerning
Definition 1.6, it is easy to see that a normal
closed subset need not to be normal relative to X.
In fact, take any non-normal space X having two
disjoint closed normal subspaces A and B that can
not be separated by open sets. Then M = AUB 1is
normal and closed but it iIs not normal relative
to X.

A particular case of this situation can be
realized in each of the following three examples

taken from [6]0

3.1. TYCHONOFF PLANK. The Tychonoff Plank is
defined tobe T = [O,Q]XLo,w]-{(Q,m)} where both
ordinal spaces [0,9] and [O,w] are given the in-
terval topology. Let A = {(Q,n) | 0 & n < w} and
B = {(a,w0) | 0 a < Q}. Both A and B are normal
and closed in T, but on the other hand, A and B
can not be separated by open sets (thus M = AUB
is normal and closed in T but M is not normal rel

ative to T).

3.2. MICHAEL'S PLANE. Let X = R, define a to-
pology T on X in the following way: G 1t if and
only if G = UUV where U is an open subset of R in
usual topology and V is any subset of the irration
als. Let Y be the space of irrationals. Now take
A = {(x,y) | x is rational} and B = {(x,x) | x is

irrational}, then A and B are normal and closed
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in XXY, but cannot be separated by open sets (thus
again M = AUB is a normal and closed subset of Xxy

but is not normal relative to XxY).

3.3. NIEMYTZKI'S SPACE. Let T = PUL where P
is the open upper half plane with the euclidean to
pology T, and L is the real axis, we generate a to
pology T* on T by adding to T all sets of the form
{x}UD, where x€L and D is an open disc in P which
is tangent to L at x. Now the real axis L is a
normal and closed subset of T which is not normal
relative to T. This can be seen by writing L = QU I,
where Q is the rationals and I is the irrationals.

Q and I are normal closed subset which can not be

separated by open sets.

Observe that Michael's plane (example 3.2)
shows that theorem 2.3 is not valid for non-locally

compact metric spaces.

In theorem 1.8 it has been shown that if A sat
isfies the condition (a), then A is normal relative
to X. However, the converse is not true. An example
of‘this can be found in any non-normal space X
having two disjoint closed sets A and B which can
not be separated by open sets and such that B is
normal and A is normal relative to X. In this case
A does not satisfy the condition (a) (indeed, A
satisfying the condition (a) implies that A and B
can be separated by open sets). This situation can
be realized, for example in the Tychonoff Plank

with the same sets A and B of example 3.1. Both A
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and B are normal relative to T. The proof for B is
obvious; for A use the fact that given two dis-
joint closed subsets of A one of them will be com
pact. But both A and B do not satisfy the condi-
tion (a). This shows also that the union of dis-
joint closed subspaces which are normal relative

to a space need not to be normal relative to the

space

Note also that each of the example 3.2 and
3.3 canbe used here for the same purpose. One has
to rely on the statement: In a regulan space X
any closed countable subspace X, 48 normal nrela-
tive to X. A proof of the above statement is ob-
‘tained by a straightforward adaptation of the
well-known argument (due Tychonoff [8]) that a
regular Lindeldf space is normal. Indeed, let X,
be a countable closed subspace of a regular space
Xiy Iyed A= {al,a2,..,} and B = {b1,b2,.°.} be two
disjoint closed subsets of Xo- For each n, choose

U V_ open subsets of X such that a €U, clu NB

3 Rl o
= ¢ and bn€.Vn, CanriA = ¢. Now put

U

(01-01v1)u (02-(c1v1 c1v2))

\

(vi-cwl) u(vz-(cw1 c102)) P

Then ACU, BCU, and UNV = @.
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