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LOCAL LIMIT THEOREMS FOR THE CRITICAL

GALTON-WATSON PROCESS WITH IMMIGRATION
by
*
Bernhard MELLEIN

ABSTRACT. This paper considers a critical Galton-
Watson branching process with immigration, in which
the aperiodic offspring distributign {pg,p1,...} sat-
isfies a j“ log j-condition (i.e. Z p jglog j < «)
and the immigration distribution 3 J log j-condition.
The asymptotic behavior of the n-step transition prob-
abilities Pp(i,j) ad n + % j -, and i/n and j/n
remain bounded, is established. As an application of
this result the asymptotic behavior of the invariant

measure of the process is obtained.

RESUMEN. Este articulo considera un proceso de ra-
mificacidn critico de Galton-Watson con inmigracidn,
en el cual la distribucidn aperiddica de nacimientos
{po,pl,. .} satisface una condicidn de tipo j2 log 7,

21p332 log j < ®, y la distribucidén de inmigracidn
gatlsface una condicidn de tipo j log j. Se establece
el comportamiento asintdtico de las probabilidades de
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transicidn en el paso n cuando n + ®, j +® .y i/n,
j/n  permanecen acotadas. Como aplicacidn, se obtiene
el comportamiento asintdtico de la medida invariante

del proceso.

§1. Introduction. Let {Xil)} be a Galton-Watson branching

process allowing immigration (GWI) initiated by i ancestors
(Xél) = i), in which branching occurs in accordance with
the offspring distribution {po,pl,...}, and which, at each
generation, is augmented by an independent immigration com-
ponent with probability measure {qO’ql""}' In terms of
the respective probability generating functions (p.g.f.'s)
f and h its n-step transition probabilities Pn(i,j) are
given by (see e.g. Athreya & Ney (1972) p.263):

(1)g) = 020 P (10085 = (£ ()i T h(E (8))
gn - n 1, S - n S r S s
k=0 r=0

|s| <1, i,neN,,

whg.re fo(s) = s, fn(s) = f(fn-l(S))’ nelN, and

Il (')r = 1 (N denotes the positive and Nb the nonnega-

r=0
tive integers).

The GWI {Xﬁl)} may be written as

X(l) - X(O)+Z(1) , i,neN
n n n 0
where X;o) and Zﬁl) are independent and {Z;l)} constitutes

an ordinary Galton-Watson process (GW) initiated by i par-
ent particles with p.g.f. f and whose n-step transition

probabilities Qr(i,j) have the representation

o

< = <
(£ (s = ] Qi) i,nelNg, Is| < 1.
: 9=0
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In this paper we are concerned only with the erditical
aperiodic situation, that is when

o]
(1. By aEey kp, =1 and g.c.d.{kew|p, >0} =1,
k=1

and asdume throughout that

{1.2) Py < 1

(1.3) 0<gq,<2

@
£"(1-) = § k(k-1)p, € =
k=2
and
(-]
h'(1-) = Equ <
k=1

Furthermore, let o = l-f"(l--) and Y = l-h'(l—).
2 a

Under the additional hypotheses

©

(1.4) ) p kzlogk < o
el <
k=2

and

a0
484 13 g klogk < @
k=2

we shall obtain a fairly complete description of the asymto-

tic behavior of the transition probabilities Pn(i,j) as

(1.6) n=+®, j =+ j/n remains bounded (ie;NO fixed)
and

(1.7) n+ o, 1+ j-=>x ji/nand j/n remain bounded.

Referring to these situations, which are examined in sections
2 and 3 respectively, we introduce the following notatiocns.

Let us agree that
lim or
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and
lim or —~~_

(i,j,n) (i,3,n)
will indicate that we evaluate a limit or assert asympto-
tic equivalence under conditions (1.6) and (1.7),respecti-
vely. If it is convenient to specify the upper bound C
for j/n in (1.6) and the common upper bound D for i/n and
j/n in (1.7),we will write more distinctly (j,n,C) and

(i,j,n,D) instead of (j,n) and (i,j,n) respectively.

For future reference we summarize some well-known re-
sults. Here and in the sequel Ml,M2,...,M,M',M“,...,A,C,L,..

denote suitable positive constants.

THEOREM A. 1§ (1.4) holds, then
My.d
2 b

(1.8) sup Q(l,j) RS ieN ,

j21 n

(1.9) QL) 5, i(on) %exp {-j/an}, ieN fixed.

Theorem A is due to Kesten, Ney and Spitzer (1966).
Their local exponential law (1.9) corresponds to Yaglom's
famous global exponential law, while our main result (2.1)

is the local version of the limit theorem

1im E(exp{-6(an) -~ (l)}) (1+6)-Y, ien,
bonasd

which was obtained independently by Foster (1969), Pakes
(1971) and Seneta (1970). Due to Pakes (1972) is the exis-

tence proof of the following limit function

(1.10) ¥(s) = 1im Vg (s), s <1,  ienw,.

N
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His precise result is

THEOREM B. 1§ conditions (1.u4) and (1.5) are fulgilled,
then the convenrgence 4n (1.10) 48 unigorm overn compact sub-
sets of the open unit disc and the Limit gunction & satis-
fies the functional equation ~(s) = h(s) W(f(s)), |s| < 1.

As a consequence, the coefficients Gj of the power series

representation of W ,

[}

(1.11) ®(s) = J 8,55, |s| <1,
k
k=0
are given by

(1.12) 8, = Lim n'P (i,i), 1,jeN,
oo

and satisfy
o

0§ 6,= ) 8Pk,j), JeN, .
J k=0 k 0

Henceforth, we refer to {le je:NO} as the gnique (because
of (1.12)) stationary measure of the GWI {Xil)}, whose exis-
tence and uniqueness, up to a constant multiple, is already
ensured by (1.1)-(1.3) (Seneta (1969)).

The local limit theorems of this paper prove to be useful
in quite different contexts. In Buhler & Mellein (1980) they
provide answers to questions raised in connection with the
distribution of generations in critical GWI's (Schutzhold
(1975)) and the so-called quasi-competition of independent
processes (Buhler (1967,1978)). In Mellein (1979,1981) they
are used when deriving limiting diffusions for conditioned
critical GW and GWI. Finally they permit a detailed study
of the asymptotic behavior of the Green function of the GWI

(Mellein (1979)).
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To give an example of the results gotten we state the

following theorem which is a direct consequence of Theorem
2,45
THEOREM 1.1. I¢ (1.4) and (1.5) hotd, then lim ejjl‘Y

= (a'T(y)) 7} e

§2. A local limit theorem for the GWI — fixed initial pop-

ulation. For fixed i and j, we saw in (1.12) that Pn(i,j)

3 G;n_ Y as n + ©. Now we want to let j = « also.

.

THEOREM 2.1. I§ (1.4) and (1.5) hold, Zhen, for fixed
ieNo, )
; i =Y j .
(2.1) (?I:) n(%J exp{a%}aYF(Y)Pn(l,]) =1,

Before entering into details we give a brief outline of
the proof. We shall show that the p.g.f. géo) of
{Pn(O,j) IjELNO} may be represented as

0 o » b i [1+(N-1)a(1-s)]Y NG ALY LS s g

n 1+(n-1)a(1-s)]
with N a positive integer depending on the p.g.f.'s f and
h, and Atn,N,s) a power series in s which converges abso-
lutely in s = 1. Just as in Kesten, Ney & Spitzer (1966)
a comparison of coefficients in (2.2) then reveals the (j,n)-
asymptotic behavior of Pn(O,j). Using the easily verified
relaticn )
(2.3) Pn(i,j) = i Pn(O,k)Qn(i,j-k) 5 i,jiJNO

k=0

we finally will find that
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(2.4) Pn(i,j) (5:;) Pn(O,j), i fixed. ®

We start by introducing the following notations. Let

g, = gio), D be the unit disc, and define fora complex power
(]
series a, af(z) = Zoakzk, which converge absolutely in 1,
a 21 norm ”aH "a(z)l 2 |ak] which obviously satisfies
=0

2 Janll .

(2.5) sup |a(z)] < [|a] and
z€D

A first step to arrive at the product representation (2.2)
is
LEMMA 2.1. Assume (1.5), then there 44 a positive inte-

gern N such that, gorn s€D and all n > N ,

n-1 n-1
g (s) = gN(S)kEN{l-h'(1)(1-fk(s))}kEN(1+ak(s)) ,

where a (s), aN+1(s), .., ane cerntain power sernies, satis-

§ying 2 Ha (s)] < .

Pnooﬁ. (1) Choice 0§ N. Remembering that the right-hand

side of
In'(1)(1-£, (s)] = 20" (1)(1-£, (0))

tends to zero as k + ©, we may choose N € N in such a way

1
that
(2.6)  |n'(D-£(sN] € 3 for all k » N,.
Now let N2€IN such that
2h'(1) . 1
TN S 2

and put N = max(Nl,Nz,u), fixed for the nemainder o4 this

sdection.
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(ii) Deginition of aN(s),a (s),... . It is easily

N+1
seen that
h(s) = 1+h'(1)(s-1)+68(s), s€D,
where
© r-1 I
8(s) = (s-1) | (q L (s-1)).
r=2 “m=1

We use this relation to obtain, for n > N,

n-1 n-1

II h(f,(s)) = g (s) I h(£f _(s))

k=0 K N' "=y ¥
n-1

gN(S) I {l-h'(1)(1—fk(s))+5(fk(s))}
k=N
n-

gn(s)

1 n-1
g.(s) I {1-h'(21)(1-f (s))} 1 (1+a,(s)) ,
N k=N B k= @

with ak(s) defined by

L 8(F(s))
5(8) = TR DE-F () °

k = N,N#1,... ,

which is justified for all s €D by (2.5) and (2.6).

(iii) Bounding the a, . We first state two inequali-

ties. The obvious one

(2.7)  J£(s)-1] € 2, k,meN
and
(2.8)  [f(s)-1] € M,  k,meN,

the latter one following from

m-1 .
Hfﬁ(s)-ln z H(fk(s)—1>jzof§(s)n < mff, (s)-1] = 2m|1-£, (0)]

Now we turn to the estimation of a - Observing that

w
m



a, (s) = 8(£, (s)) 2 {h'(1)(1-f (s))} k > N,
j=0

then (2.5)-(2.8) yield

%2h¢wns§2nafwn|22j
k=N k ] =0
© r-1

=N
zNua(fk(s))u Z ﬂfk(s)—lﬂ z (qrmzluf:(s)-lﬂ)

P~

Z lef (s)-1] | £L(s)-1]
r=2 m=1 k=1

©

r-1 M2
&% a, 2 {2 2 "f (s)-1] + k2 }

r=2 m=1 k=1 k=m

ne-18 n

which is easily seen to be convergent using once more (2.8)

and (1.5). -QsE.D.

Up to a slight modification, the following lemma is Kes-
ten, Ney & Spitzer's (1966,p.528) Lemma 8. It is worth noting
that this statement is the only part of their proof of the
local limit theorem (1.9) where the hypothesis (1.4) enters
explicitly.

LEMMA 2.2. TIf (1.4) hokds, then

1

| < o
koc+(1-s)‘1

Y J1-£ (s) -
k=1 K

LEMMA 2.3. Suppose that (1.u) and (1.5) hold. Then, gor

all n> N and s€D,

N nr(1) 1
(2.9) gn(s) = gN(s) I(l-——>) I (1+bk(s)) .
k=N  ka+(1-s) k=N
and
n-1
(2.10) T {1- e
k=N kd.'f‘(lfS)

h'(1) s 1+(N 1)a(1-s),Y

T+(n-1)a(1-s) H {1+C (s)}

ke
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whene bN(S)’bN+1(S)""’CN(S)’C (s),... are certaln powern

sendies with
T o)) < =, Jle ()] < =.
k=N K K &

N+1

Proog. For k » N, we define bk(s) as error term by

h'(1)

{1-h'(1)(1-£, (s))} (143, (s)) = {1- —1(14b, (s))
kat+(1-s)

where the ak(s) are the power series as defined in Lemma 2.1.
Now observe that

© 3 s
1 I . 11 k 43 183 2
-1]] 1+ka (1+ka)2j=1

(2.11)

ka+(1-s)

to conclude that, in view of the choice of N, that

' -1 = ' I ®
,{1_._ h (1)-1} <3 h (1)_1! € 127 =2, k%N
kot+(1-s) r=0"ka+(1-s) "~ r=0

Therefore, with the aid of (2.6), we may estimate the norm
of
bk(S)

= {1—-——Eii&l:iﬂ—l{{l-h'(1)(1—fk(s))}ak(s)+ ———ELLEL:T
kot(1-s) ka+(1-s)

- h'(1)(1-f, (s))} , for all k 3 N, by

1

— - (1-£, N},
ka+(1-s)

Ip, ()] < 2{2)a, ()] +h" (D] y
anéd (2.9) follows from Lemma's 2.1 and 2.2. Now notice

that h'(1) = ay to check that



s oy(1-s) _ a(1-s)
1+ka(1-s) 1+ka(1-s)
ck(s) = 3 k = N,N+1,...
{1+(k-1)a(1-s)1Y
1+ka(1l-s) *

satisfy (2.10). Using (2.11) we find that

Il_ ay(1-s) {1- (1- s)a ‘ “ z (Y a(1-s) _a(l-s) 4 “
1+ka(1-s) “1+ka(1-s) s) 522 317 {+ka(1-5):
» { o(1-s) z { a(l-s) ‘
1+ko(1- s)‘ 20 j+2 T+ka(1- 55

\%
=

3
. % 2 o
s {1+ia} F(y+1) X {1+ka} < 8l(y+1)a"(1+ka) = , k

But this together with

completes the proof. Q.E.D.

{1+(k-1)a(1-s)1Y

1+(k-1)a
1tka(i-s) | * { }

1+ko

We are now in a position to validify the product repre-

sentation (2.2).

LEMMA 2.4. Assume that (1.4) and (1.5) hold. Then zthere
s a constant M and a bounded power sernies A(n,N,s), with
[ACn,N,s)|| < M < = for all n > N, which satisfies

(2.2) for all s €D.
Proof. Let bk(s), ck(s), k > N, the power series as

defined in Lemma 2.3 and set

n-1
A(n,N,s) = gN(s) Il (1+b (s))(1+c (s)).
k=N
The result follows from the cited lemma. Q.E.D.
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To detect the asymptotic behavior of Pn(O,j) by compar-

ing coefficients in (2.2) we need some more results.

LEMMA 2.5. Let ~9(s) be the g.f. (1.11) of Zthe stationary
measure o4 the GWI and A(n,N,s) as defined in Lemma 2.4 and

put

©

Y v
3=0

14 (1.4) and (1.5) hokd, Zthen

n,N,ij = ¥(n,N,s) = A(n,N,s) {1+(N-1)a(1-s)}Y.

(2.12)  1lim ¥(n,N,s) = w(s){a(1-8)} , |s| <1,
n—+e

the convergence being undiform overn compact subsets of the
open unit disc. Furthermmone,

(2.13)  (s) v {a(1-s)} as s+ 1 with |s| <1,

(2.14) ¥ lwn Nl <M <o, n>N, M appropriately
keQ . Y1t
chosen,
(2.15) Lk pp =0'(1), n>N,
k=0 N
(2.16)  limy 4 =,  keNy, n>N,
nroe
(2.17) I o =1
k=0
and ©
(2.18) I ol < =.
k=0

Proof. To conclude (2.12) we write y(n,N,s) as
¥Y(n,N,s) = ann(s)n'Y{1+(n-1)a(1-s)}Y

and apply Theorem B. By (2.2), y(n,N,1) = 1 for all n > N,
1at use of Lemma 2.4 and (2.12) yields (2.13). (2.14)



follows from (2.5), Lemma 2.4 and the obvious fact that
ﬂ(1+(N—1)a(1—s))Yﬂ < o, (2.16) is a consequence (see e.g.
Rényi (1966) p.121) of Cauchy's generalized integration for-
mula and the uniform convergence in (2.12). (2.17) and
(2.18) are immediate from (2.14) and (2.16). By differen-

tiating

g (s) = ¥(n,N,s)(1+(n-1)a(1-s))" Y ,  n > N,

we get
g;(s) _ w(n,N,s)ay(n-1)(1+(n-1)a(1-s)) Y1
= ¥'(n,N,s)(1+(n-1)a(1-s))™' , n >N, |s]| < 1.

But gé(l) = nh'(1) < = so that the formerrelation guaran-
tees the existence of Y'(n,N,1). More precisely it gives

Y'(n,N,1) = nh'(1) - (n-1)ay = h'(1), proving (2.15). Q.E.D.

REMARK 2.1. In the proof of Theorem 2 of Pakes (1972, p.
282), which is stated with an error, appears (after the ob-

vious correction) the relation (2.13) with sx1.

- (Y+j—k—1)

1), ken

LEMMA 2.6. Let B, o> JEN, k& 7.
Then

increas ed

1
+,j decreases 1

N ., Y <
(2.19) 0K R on {0,1,...,3} 4f LN

b

(2.20) B . ~ VY reyn™t as jee, ken

k,] 0

J Y -1 5
(2.21) - }P ooq weld (T'(y+1)) as o+,
k=0 <*J

Proog. Observe that

(Y+t~1)sk, |s] < 1.
0

e~ 8

(1-)Y = T 0XNs* =
k=0 k

=
w



Hence (2.20) and (2.21) follow from (to get (2.20) one has
to use (2.19) which is easily checked) the Tauberian theo-

rem for power series (see e.g. Feller (1971)). Q.E.D.

We are now prepared to complete the proof of Theorem

2.1.

PROOF OF THEOREM 2.1. FOR i = 0. We use the notations

introduced in the previous lemmas. A comparison of coef-
ficients in
1 Y
= >
g,(s) W(n,N,s){1+(n_1)a(l_s)} n>N

gives

A N 1 Y+i-k-1,; (n-1)a ;37K
(2.22) P_(0,i) = kiown’N,k{-————-—“(n_l)a} 3 Ml
n >N, jCINO

or .
Y 31aedy1eY L §
Pn(O,j)a F(Y)exp{an}n(n) k:odk’j’n’N s n >N,
RESES T, 5,m,8 T 200k, 1%, 3,0%0,8,k
with
_ no Y
®n {1+(n-1)a} >
Y+j k 1
b r
k.3 = ( ) (Y)j
and : _k
’ (n-1)ay 3~
“k,j,n exP{an} {1+(n-1)a}

It is easily seen that, for fixed k(lNO,

lima_= limc_ . = lim bk St
me (j,n) KyJ,sD 0 s3]

Ly



which in turn implies

2.23 lim 4, . = i
( ) (jlz)k,JﬂhN wk . k(NO
b
Now let € > 0 and C < o,

We will show that there exists a
constant L = L(eg,C) such that

(2.24) lim

Fla, . | < e
(j:n,C) k=L k’]an,N

But then, in view of (2.23) and (2.18), we deduce for suffi-
ciently large L' > L

@
lim d . -5
(3,m,0) k=0 ¥23smN g Tk
L'ii ‘ )
< lim | (4, . _ V)| + lim a4 . =3 |
(5,0,0) k=0 KaBameN TKTT T (5T ey gempe KodamaN oy Tk
i ©
§  lim % |d
(i,n,C)k=L"

: < 2
ki kZL'IwkI €

which, by (2.17), is the desired result.

To prove (2.24) we argue as follows, beginning with the

Case vy > 1. From (2.19) and (2.20) it is seen that there
is a constant L1 such that

Ibk’j] s L 0< k&
The existence of a constant L2 = L2(C) such that
lck’j’nl < Lo, 0<ksgj, id/msgcC
is obvious. Thus, by (2.14),
: w© =
(jfi?c)kledk’j'“’Nl . LlekingL!wn’N’k| v LlL?kZLlwkl



Henceforth (2.18) permits to choose L satisfying (2.2u).

Case Yy < 1. We notice that b[j/2] 3 is bounded (it
b

1- : :
converges to 2 Y as j + &, [x] means the largets integer

< x) and we may therefore deduce from (2.19) the existence

of a constant L3 such that

B . 0< k< j/2.

by 51 € 1

Proceeding as in the previous case we find that there is a
constant L = L(e,C) with

[3/2]
(2.25) 1im a
(j,n,C) k=L

< .
k;j’n,Nl €

To estimate 3

N L
k=[]/2] k,J,n,N

we observe that there is a constant Lu = Lu(C) such that

L 9 OSk\<j$ j/n\<C.

lanck’j’nl & b

Setting

Jn,N,j = max{l\bn’N’kIIki{[j/Q],...,j}} .

we therefore get (j/n £ C)
3 J

Ky3,m,N Lu:’n,N,jkzg/Q]'bk,j

|d
k=[3/2]

!

< LujJ o i By (2.21).

n,N,j

Finally, to assure that  lim jd = 0 , which in com-
(3,n,C)

bination with (2.25) proves (2.24), it suffices to show

= 0 , uniformly for n > N. But the latter

n,N,j



relation is a consequence of (2.15). This completes the

proof of Theorem 2.1 for i = 0.

PROOF OF THEOREM 2.1. FOR i » 1. We first examine the
case Y > 1. Using (1.12) and the previously found (j,n)-be-
havior of Pn(O,j) we obtain for an integervalued function

k(3)

Pn(O,k(j)) A for all sufficiently large j,n with
\ - - 3 Py
Pn(o,j) j/n g A' and'k(j) <€'j, A = A(A'),

and hence for all sufficiently large j,n:

j-1
I P (0,k)Q (i,j-k) € AJP_(0,3)supQ_(i,r)
k=0 r2l
< AMlijn_QPn(O,j) by (1.8)
. =2 &
£ A"jn Pn(O,j).
j-1
In the cade Yy £ 1 we observe that z Pn(O,k) < 1 and get
similarly L

j-l =0
Y P (0,k)Q (i,j-k) € A™n
k‘-"O n n

These estimates together with (2.3) and l}an(i,O) =1
n

prove (2.4) and hence the theorem. Q.E.D.

§3. Local limit theorems — large initial population. The ob-

jective of this section is to study the (i,j,n)-behavior of
Pr(i,j). The analysis consists of a careful examination of
4

the relation (2.3). Theorem 2.1 and Theorem 3.1, the latter
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one giving the (i,j,n)-behavior of Qn(i,j), will be applied.

3.1. THE GW-CASE. Kesten, Ney & Spitzer (1966) have
been concerned with Qn(i,j) when all three variables are
large. In their description of the asymptotic behavior of
Qn(i,j) they impose no restriction on i. We use their re-
sult, which we restate as Lemma 3.1, to develop the (i,j,n)-
behavior of Qn(i,j). The more restrictive assumption on i
results in a more manageable formula.

To fascilitate the statements of the results, we intro-
duce the following notations, where as usual I denotes the

p
Bessel function of order p with imaginary argument.

. -1 i3 e o 2 ke .
An(l,]) = (an) exp{—3§%}¢1/jll(aﬁJT?), i,j,neN .
B_(i,0) = (D(1-£ (0)7(F (0¥, i,neN, reN, iz

. .r-1
‘s ’ -r .
Cn(l,j,r) Bn(l,r)exp{—a%}]r_l)! on) , j,r,neN.

J {(i,j,n)elNa!%{ K,%s K} , 0 < Kk,

K

LEMMA 3.1. Let R 3 1. I§ (1.4) holds, zhen

R
i s ok 5 v = "
(3.2) Qn(l,]) = lecn(l,],r) + Oj(EJmln(l,%J + Gn(l,R) :
with
i
G (i,R) = O(—= ) B_(i,r))
n ) Wi\ n ) s
r=R+1
as j and n behave as 4n (1.6) and i varies arbitrharnily ex-

cept forn the restrniction i > R.

THEOREM 3.1. Let 0 < K < », If condition (1.4) 48 gul-
§lled, then

4g



Q(1,9) "ol R (1,])
n
(i,3,n,K)
Proog. Let € > 0 be given. We first compare An(i,j) and
the last term of the right-hand side in (3.2).

(i) Define § = 1 + é-and observe that, with N, suffi-

ciently large, for all n 2> N1 and 1 > R > 1

R
z B (1 r) =1 - } B (1,r)
r=R+1 r=0
. _ i
£1- Bn(l,O) = 1 - (fn(o))

§ 1 :
€1-(1-0) € &.
n n

\"
)

Under the further assumptions (i,j,n)€~JK, n > Nl’ i

we find the estimates

Z B (1 r) £ 5%- Gaexp{ 2 }/;:‘/

an‘an
r=R+1

(3.3) < an(1+a)exp] K}A (1,3)

Next observe that Lemma 3.1. provides constants N2 and M

such that
|G (i,R)|n/ﬁ
< M, n %N,
2 B (i,r)
r= R+1

This leads, together with (3.3), to

|6 (i,R)] 2k ot
—-A-I-l—(i—’j—)— £ Ma(1+a)exp{—a-} ﬁ s

for all R > 1 and (1,],n)€.JK with n > N' = max(Nl,Nz) and

i>R.

Now we choose R" such that



e /R" > Mu(1+a)exp{2§} ;

and turn to the comparison of An(i,j) and the first summand

in (3.2).

(ii) We will prove: There are constants R' = R'(€) >R"
and N3 = N3(e) such that
R'
rzlcn(i,j,r)
(3.4) 1-e & — — < 1+e, (i,j,n)edy
A (1,3)

with i,n > N3 ,

proceding as follows. It is not difficult to see that
i

r
B (i,r) -~ ——{an} xp{——n} . reN, ,
(im,K) o

and inspection of (3.1) shows that there exists a R' > R"
such that
€ 2k+1 K

[} —— < el
(3.5) 17 & i (2x) 2 k'(k+1)' < 5L ""O’a’
Combining these facts one finds that there is a N3 = Ns(e)
such that, for all (i,j,n)iZJK with i,n > N, and all
I‘E{l,Q,-.-,R'} b

(3.6)  (1-5)D_(i,3,r) € C_(i,3,r) & (1+€)D_(i,3,7) ,

where
D (4,d.2) = (ot (o107 2] ()T axp{ il
,(i,3,r) = (anri(r-1)! ey e exp{-=~1
P LoD, R
sum up to
3 1 ogy R 11/13,2#
& .. — i+ %
(3.7) wZ1Dn(l’3’r) = a;/z7gbxp{—-a;ﬂkzo (k! (k+1)!) { an} *
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Now use (3.7) and the left-hand inequality in (3.6) to verify
R'
y C (1,3,r)

oty (1-e/2) R Vi, 2k
P N ETEEYCTY Z (k! (k1)) 7H =1} .
n

for all (i,j,n)€|JK with i,n > N This, together with the

3
first estimate in (3.5), yields the first part of (3.4). The
second inequality of (3.4) is obtained similarly, using the
upper bounds in (3.5) and (3.6).

(iii) For (i,j,n)e.JK we have
. i s 2 2K
mln(l,E)/An(l,j) < a“nexp{ }mln(l —}—

< a2nexp{2§}

Consequently, there exists a N4 so that
|middle summand in (3.2)|/An(i,j) 3

for all (i,j,n)E:JK with n > Nq and j sufficiently large.
Finally, in view of the choice of R", (i), (ii), (iii)

and Lemma 3.1 it is clear, that
3 Qn(i,j)/An(i,j) < 143 ,

for all (i,j,n)eiJK with n > max(N’,Ns,Nq), i max(R',NS)
and j sufficiently large. This completes the proof. Q.E.D.

REMARK 3.1. The assumption i + « in Theorem 3.1 may be
dropped. This follows from (1.9) and the behavior of the
Bessel function at O+. More precisely, when j,n + ®© ,
j/n & K, %-+ 0 (i.e. especially for i fixed), then the

asymptotic behavior of An(i,j),



A(i,3) = —lexp{-iéﬁi/i/jka%JZ? + 037D )

an
D e R BY; (an)-ziexpf-—i} s
a - an
3”’ Os (]:n)

and, by (1.9), that of Qn(i,j) coincide. This proves the

remark.

3.2. THE GWI-CASE. We introduce
. (Y-1)/2

C oy 14 i+ 2 e
H (4,3) = Eﬁ{i} exp} an}Iy_1(an Yif)

to state the local limit theorem for the GWI as follows.
THEOREM 3.2. Let 0 < K < =, T4 (1.4) and (1.5) hotd,

Zhen

(3.8) P(i,5) o~ H (i,1)
(iajansK)

Defining Rn(i,j,k) = Pn(O,k)Qn(i,j—k), 0 k< J,

we note that equation (2.3) may be reproduced in the form

(3.9) PL(4,4):= kioRn(i,j,k)

For 0 < € < %-we decompose the sum in (3.9) into the three

summands

(1-€)3

s (i,3,€) = R (i,3,3) + 1 R (i,3.k)
k=gj

s
T (53,60 = ) R (4,3.K) 4
: k=0 "
j-1
U (i5,6) = 1 RU(i,3.k),

k=(1-€)3

o

[0



which we will compare with Hn(i,j) (For simplicity we dror
the square brackets, but €j etc. will always be understocod

to mean [ej] etc.).

LEMMA 3.2. 1§ the conditions of Theorem 3.2. are ful-
§<lLed, then there ane constants M and M' such that, forn all
1 -
0 <eg«< —2-a.nd (i,j,n)eJg, .,
(a) Un(i,j,s)/Hn(i,j) < M
(b) Tn(i,j,e)/Hn(i,j) < Me
Proo4. An application of (1.8) and Theorem 2.1. provides
the estimate Un(i,j,e) < M'K%(j/n)Y for all (i,j,n)€ JK’
while for all i,j,n€N an(i,j) > M"(j/n)Y-l. Put
M= M'K2/M” to complete the proof of part (a). The proof
of part (b) is similar. Q.E.D.

Proog o4 Theorem 3.2. It follows from Theorem 2.1. that,

for all (i,j,n)CJK and each 0 < g < %3 uniformly for

xke{[ej], [ei]+1,...,[(21-€)],3} ,

1 ¥-1 k
P.(0,k) . o== 4 (1+0(13xat— k' exp{~—3}
" (i,j,n) [uYP(Y)nY an }

and from Theorem 3.1, that

& i L 1 _1+3-k 2. 177 &
Qn(l,J-k)(i ; i (1+o(1))[a—n-exp{ < }Il(—v’Om i(3 k)')/j_k ]
Combining these facts and

Q (i,0) = (1+O(1))exp{'a%}
(i,n)
one obtains
Sl 1 1 4,71 iti
S.(is3,€) = -41+0(1))P—————{-4 GXPL"‘% +
= (i,j,n) ° a'T(y) © A8



(1-€)7
+

L (2 e g
wobi oY V3% 1l TR an}]

Now by a tedious but straightforward analysis it is seen

that for all REN

S (i,j,C) =
. (1,3.)
sa4t IRFE] — 2r+y-1
1 1, = Y-1 _i+j A(r-1,e) [vij)
;ﬁ1+0(1))&§(fj/1) exp{ = rZOr!F(Y+r) { 2
¢ el e
aY F(Y)nY an
where
oy P+l 2r+1(1'€)3
.o _ i [_1_ Y-1,.: 4T
Vn(l’j’R’E) B _z r!(r+1)! an} _Z. k™ (3-k)
r=R+1 k=¢j
and where for 0 K € < %y A is such that
1-€
{ o PORALE SQP T(y)T'(k+1) "
{ x' “(1-x)dx = X(k,E)TT§:F;TT—— . k =50,1L4%,0
A(-1,e) =1

This permits a comparison of Sn(i,j,e) and Hn(i,j).

; 1 i+] Y ek
(1) _— exp{————JV (d,j5Rsed)/nH: (d532
o (y)nY S 1 E
£ Q1L of e i
< M z ETTF:IST(Q) for all (1,3,n)€.JK.

k=R+1

2r+y-1

Bk B
(1) (AT -tk Arti el
i A Plmom rzorlf(y+r)1 on

/&an(i,j)
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i) §x<r-1,s) L5y Y-

2 = & r!'T(y+r) ‘an
Iy_l(ﬁh‘f) r=0

Thus, by (3.9) and Lemma 3.2, the theorem follows. Q.E.D.

Considering the behavior of I (z) as z + O+, one finds

Y-1
with the aid of Theorem 2.1 that Remark 3.1 has an analogue.

REMARK 3.2. The conclusion of Theorem 3.2 is valid with-
out the assumption i + «®, When j,n+®, j/ng K, i/j -+ 0,

then Pn(i,j) behaves as described in Theorem 2.1.
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