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LOCAL LIMIT THEOREMS FOR THE CRITICAL

GALTON-WATSON PROCESS WITH IMMIGRATION

by

*Bernhard MELL.EIN

ABSTRACT. This paper considers a critical Galton-
Watson branching process with immigration, in which
the aperiodic offspring distributi~n {PO,P1" ..} sat-
isfies a j2 log j-condition (i.e. L p.j2log j < 00)
and the immigration distribution ~=1 tog j-condition.
The asymptotic behavior of the n-step transition prob-
abilities Pn(i,j) ad n + ~ j + 00, and i/n and j/n
remain bounded, is established. As an application of
this result the asymptotic behavior of the invariant
measure of the process is obtained.

RESUMEN. Este articulo considera un proceso de ra-
mificacion critico de Galton-Watson con inmigracion,
en el cual la distribucion aperi6dica de nacimientos
{PO,P1""} satisface una condicion de tipo j2 log j,
0Ci.L p.j2 log j < 00, Y la distribucion de inmigracion
]=1 ]
satisface una condicion de tipo j log j. Se establece
el comportamiento asintotico de las probabilidades de

* Research carried out at Johannes Gutenberg-Universitat,
Mainz, Federal Republic of Germany.
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transicion en el paso n cuando n ~ 00. j ~ 00 • y i/n.
j/n permanecen acotadas. Como aplicacion. se obtiene
el comportamiento asintotico de la medida invariante
del proceso.

§1. Introduction. Let {xU)} be a Galton-Watson branching
n

process allowing immigration (GWI) initiated by i ancestors
(X(i) _.) . h' h b h' . d . ho = l • In w lC ranc lng occurs In accor ance Wlt
the offspring distribution {PO'Pl •...}. and which, at each
generation, is augmented by an independent immigration com-
ponent with probability measure {Qo,Ql""}' In terms of
the respective probability generating functions (p.g.f. IS)
f and hits n-step transition probabilities P (i,j) are

n
given by (see e.g. Athreya & Ney (1972) p.263):

.n-l
= (f (S»l II hCf (s»,

n r=O r

I s] ~ 1,,
where
-1
II (.)
r='O r
tive integers).

The GWI {XU)}
n

= s, f (s) = f(f 1(s)), n c IN, andn n-
(N denotes the positive and Wo the nonnega-

may be written as

where X(O) and Z(i) are
n n

an ordinary Galton-Watson
independent and {Z(i)} constitutes

n
process (GW) initiated by i par-

ent particles with p.g.f .. f and whose n-step transition
probabilities Q (i.j) have the representation

n
00

I Q Ci.j)s\
-i -0 n
.J-

I s I ~ 1.
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In this paper we ~e conc~ned only w~h the c~ca£

ape4iodic ~~on, that is when
00

(1.1) f'(1-) = L kPk = 1 and g.c.d.{kE:JN1pk> a} = 1,
. k=l

and M-6ume .tYvwu.ghou.:t that

(1. 2)

(1. 3)

00

and
f"(l-) = L k(k-l)Pk < 00

k=2
00

h'(l-) = Lkq < 00

k =1 k
1Furthermore, let a = "2f"(l-) and y = 41(1-).a.

Under the additional hypotheses
00

(1.4) L Pkk2l0gk < 00

k=2

and
ClO

(1.5) L qkklogk < 00

k=2

we shall obtain a fairly complete description of the asymto-
tic behavior of the transition probabilities P (i,j) asn

(1. 6) n + 00, j + 00, j/n remains bounded CiE:. INa fixed)
and
(1.7) n + 00, i + 00, j + 00 i/n and j/n remain bounded.

Referring to these situations, which are examined in sections
2 and 3 respectively, we introduce the following notations.
Let us agree that

lim
(j,n)

or -....,;
(j ,n)
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and
lim or

(i,j,n)
~(i,j .n)

will indicate that we evaluate a limit or assert asympto-
tic equivalence under conditions (1.6) and (1.7),respecti-
vely. If it is convenient to specify the upper bound C
for j/n in (1.6) and the common upper bound D for i/n and
j/n in (1.7),we will write more distinctly (j,n,C) and
(i,j,n,D) instead of (j,n) and (i,j,n) respectively.

For future reference we summarize some well-known re-
sults. Here and in the sequel M1,M2, ...,M,M' ,M", ...,A,C,L, ..
denote suitable positive constants.

THEOREM A. 16 (1.4) hold6, then

M1·i
2
n

(1.8) sup Q (i,j) ~
'~1 nJ--

i E: IN

(1. 9) iE:.1N fixed.

Theorem A is due to Kesten, Ney and Spitzer (1966).
Their local exponential law (1.9) corresponds to Yaglom's
famous global exponential law, while our main result (2.1)
is the local version of the limit theorem

lim E(exp{-e(an)-lX(i)}) = (1+e)-Y,
n

n-+<'O

which was obtained independently by Foster (1969), Pakes
(1971) and Seneta (1970). Due to Fakes (1972) is the exis-
tence proof of the following limit function

I s I < 1,

34



His precise result is

THEOREM B. 16 eonditio~ (1.4) and (1.5) ~e 6ul6itled,
.:then the eonveJl.genee in (1.10) i.A uni60Jtm OVeJl. eompae.:t. .6ub-
.6eU 06 .:the open u.M.:t. dcsc. and .:the .t.i.nU;t 6unelion r¢' .6a.:t.i.A-
6ie.6 .:the 6unelional equ.a.:t.-<.on~(s) = h(s) ~(f(s», lsi < 1.

As a consequence, the coefficients e. of the power series
]

representation of ~ ,
00

(1.11) ""(s) = L eksk,
k=O

Is I < 1,

are given by

(1.12) e. = lim nYP (i,j),
] ~ n

and satisfy
00

o ~ e. = I ekP(k ,j),
] k=O

Henceforth, we refer to {e. 1 jE::lNo}]

of (1.12» stationary measure of the
as the unique (because
GWI {XCi)} whose exis-

n '
constant multiple, is alreadytence and uniqueness, up to a

ensured by (1.1)-(1.3) (Seneta (1969».
The local limit theorems of this paper prove to be useful

in quite different contexts. In Buhler & Mellein (1980) they
provide answers to questions raised in connection with the
distribution of generations in critical GWI's (Schutzhold
(1975» and the so-called quasi-competition of independent
processes (Buhler (1967,1978». In Mellein (1979,1981) they
are used when deriving limiting diffusions for conditioned
critical GW and GWI. Finally they permit a detailed study
of the asymptotic behavior of'the Green function of the GWI
(Mellein (1979».
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To give an example of the results gotten we state the
following theorem which is a direct consequence of Theorem
2.1.

THEOREM 1.1. In (1.4) and (1.5) hotd, then lim 6,jl-Y
Y 1 J'-+oo J

= (a f(y»- .

§2. A local 1 imit theorem for the GWI -- fixed initial pop-
ulation. For fixed i and j, we saw in (1.12) that P (i,j)n
~ 6.n- Y as n ~ 00 Now we want to let j ~ 00 also.

J

THEOREM 2.1. 16 (1.4) and (1.5) hotd, then, 6o~ 6~xed

(2.1) lim
(j,n)

the proof. We shall show that the p.g.f.
Before entering into details we give a brief outline of

(0) ofgn
{pn (0,j) IjEo INo} may be represented as

( 2.2) g(O)(s) = [l+(N-l)aO-S)]Y 11.( )n,N,s ,
n .1+(n-l )a(1-s)

n > N,

with N a positive integer depending on the p ,g.f. 's f and
h, and A(n,N,s) a power series in s which converges abso-
lutely in s = 1. Just as in Kesten, Ney & Spitzer (1966)

a comparison of coefficients in (2.2) then reveals the (j,n)-
asymptotic behavior of P (O,j). Using the easily verified

n
relation

(2.3) P (i,j) =
n t

k=O
P (O,k)Q (i,j-k)
n n

we finally will find that
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(2.4) P (i. j) (':--) P (0. j ) •n J,n n i fixed. •

We start by introducing the following notations. Let
gn ::g~0) D be the unit disc. and define for a complex power
series a. a(z) = Iakzk, which converge absolutely in 1.k=O co
a £1 norm II a I ::II a(z)I = L I ak I which obviously satisfies

k=O

(2.5) sup la(z)1 ~ Iial and lIall-llbll~ Ilabll.
zE:D

A first step to arrive at the product representation (2.2)
is

LEMMA 2.1. M.6ume. (1. 5), tne» theJte. J..1:, a. P0.6,,[Uve. .w:te.-
geJt N .6u.c.h ,tha.:t, 601t s £ D a.nd aJ.1.. n > N ,

n-l n-l
gn(s) = gN(s) IT {l-h'(l)(l-fk(s»} IT (l+ak(s» •

k=N k=N

wheJte. a
N
(;), aN+1(s)' •••• Me. c.eJt.ta.-i.n poweJt .6eJUe..6, .60.Li..6-

6y-ing l: II ak (s ) II < co.
k=N

P1t006. (i) Cho-ic.e. 06 N. Remembering that the right-hand
side of

tends to zero as k + co, we may choose N1CN in such a way
that

(2.6)
1
2 for all

Now let N
2
E:. IN such that

2h' (1) 1
1 ~-;:;-+N2CX L

and put N = max(N1,N2,4), 6-ixed 601t the 1t~a.,(.ndeJt 06 ,th-U:,
.6e.cU.o n,
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(ii) Ve6i~on. on aN(s),aNt1(s), .... It is easily
seen that

h(s) = lth'(l)(s-l)to(s), s £. D,

where
00 r-l

o(s) = (s-L) l: (~ l: (sm_1».
r=2 m=l

We use this relation to obtain, for n > N,
n-l

g (s) = II h ( f
k
( s ) =

n k=O
n-l

= gN(s) II {l-h'(l)(l-fk(s»to(fk(s»}
k=N
n-l n-l

= gN(s) II {l-h'(l)(l-fk(s»} II (ltak(s»
k=N k=N

n-l
gN(s ) II h( f k ( s ) )

k=N

with ak(s) defined by
o(fk(s»

~(s) = 1-h'(1)(1-f (s» ,
k

k = N,Ntl, ... ,

which is justified for all s ~D by (2.5) and (2.6).
(iii) Boundin.g the ak. We first state two inequali-

ties. The obvious one

(2.7) IIf~(S)-lll ~ 2, k,mCN

and
(2.8) k,mClN,

the latter one following from
m-l .

II f~ (s )-1 II = II (fk(s )-1).1: f ~(s )II ~ m II f k ( s )-1 ~ = 2m 11-fk ( 0 ) I
J=O

Now we turn to the estimation of ak. Observing that
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� j
ak(s) = Mfk(s».I {h'(l){l-fk(s»} ,

] =0

then (2.5)-(2.8)-yiel~

k ~ N,

00 00 eo
1 1 .
"2 I II ak(s )" ~ "2 I ~<5 ( fk(s» I I 2-]

k=N k=N j=O
� 00 00 r-l

= I I'6(fk(s»11~ I IIfk(s)-lllI (qr I ~f~(S)-lll)
k=N k=l r=2 m=l
00 r-l eo

= I~L I Ilfk(s)-:lllllf~(s)-l'l
r=2 m=l k=l

00 r-l m 00 2
~I qr I {2 I II f k ( S )-1/1+ L mM2 }

r=2 m=l k=l k=m k

which is easily seen to be convergent using once more (2.8)
and (1.5). Q.E.D.

Up to a slight modification, the following lemma is Kes-
ten, Ney & Spitzer's (1966,p.528) Lemma 8. It is worth noting
that this statement is the only part of their proof of the
local limit theorem (1.9) where the hypothesis (1.4) enters
explicitly .

LEMMA 2.2. 16 (1.4) hol~, then
00

I ~l-fk(s) - 1 -1~ < 00

k=l ka+(l-s)

LEMMA 2.3. Suppo~e that (1.4) and (1.5) hold. Then, 6o~
ate. n > Nand s €.D,

(2.9) g (s)
n

and

(2.10 )
n-l

II{1- h'(1) }
-1k=N ka+(l-s)

n-l= {l+(N-l)a(l-s)}Y II {l+c (s)}
l+(n-l)a(l-s) k=N k
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whe~e bN(s),bN+1(S), ...,CN(S),CN+1(S), ... ~e e~n POw~
.6 eJU.U w.ah

00 00

I II bk ( s ) II < 00

k=N
I II ck ( s ) 'I < 00 •

k=N

P~OOn. For k q N, we define bk(s) as error term by

{l-h'(l)(l-fk(s»}(l+ak(s» = {1- h'(l) _l}(l+bk(s» ,
ka+(l-s)

where the ak(s) are the power series as defined in Lemma 2.1.
Now observe that

(2.11) 2
l+ka

to conclude that, in view of the choice of N, that

Therefore, with the aid of (2.6), we may estimate the norm,
of

bk(s)

= {1- hl(l)_l}-l{{l-h'(l)(l-fk(s»}ak(s)+ h'(l)
kO*(l-s) ka+(l-s)-l

for all k ~ N, by

Ilbk(S)~~ 2{211~(s)l+h'(1)11 1 -1 - (1-fk(s»11}
ka+(l-s)

and (2.9) follows from Lemma's 2.1 and 2.2. Now notice
that h'(l) = ay to check that

40



ay(l-s) { a(l-S)}y
1- - 1-----l+ka(l-s) l+ka(l-s)

ck(S) = ------------
{1+(k-1)a( l-S)}y

l+kaO-s)

k = N ,N+1,...

satisfy (2.10). Using (2.11) we find that

II
ay (1-s) { (1-s )a }Y II - II I Y {a (1-s) }j IIl-l+ka(l-s) - l-l+ka(l-s) - j=2(j) -l+ka(l-s)

_I{a(l-S) }2 ~ Y { a(1-s) }j 1\- II 1+ka (1-s ) .~ (j +2) - 1+ka0-s)J-O '

{ 2a }2 ~ {2a }j 2-2~ l+ka r(Y+1).t~ 1+ka ~ Sf(y+1)a (l+ka) ,k ~ N.
J=O

But this together with

1\{1+(k-1)a(1-S)}YII ~
l+ka(1-s)

> 2-Y > 0, k ~ N,

completes the proof. Q.E.D.

We are now in a position to validify the product repre-
sentation (2.2).

LEM1A 2.4. M-6ume thtLt (1. 4) an.d (1. 5) hold. Then theJte

,(A a C.OYl.-6tant M and a bounded poweJt .6eJU.u A(n,N,s), will

IIA( n ,N ,s )11 < M < 00 60Jt aU. n > N, wJUc.h.6tLt-<A 6-i.e..6

(2.2) 60Jt aU. s c D.
PJtOon. Let bk(s), ck(s), k ~ N, the power series as

defined in Lemma 2.3 and set
n-l

A(n,N,s) = gN(s) IT (l+bk(s»(l+ck(s».
k=N

The result follows from the cited lemma. Q.E.D.
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To detect the asymptotic behavior of P (O~j) by compar-n
ing coefficients in (2.2) we need some more results.

LEMMA 2.5. Let ~(s) be the g.f. (1.11) 06 the ¢tatio~any
meMWte 06 the GWI a.~dA( n~N ~s) M deM~ed i~ Lemna. 2.4 a.~d
put

I 1jJN .sj ::1jJ(n~N~s)= A(n~N~s) {1+(N-l)CX(l-s)}Y.
j=O n , ~J

16 (1.4) a.~d(1.5) hold, the~

00

lim w(n~N~s) = ~(s){CX(l-s)}Y ,
n+oo

the c.o~veJtge~c.e bu~g U~60M1 oveJt c.ompa.c;t¢ub¢w 06 the
ope~ u~ di¢c..FWttheJtmo~e,

(2.12) I s I < 1 ,

(2.13) ""(s ) tV {CX(l-s)}-Y M s -+ 1 wah Is I < 1,
00

(2.14 ) I /1jJnN k/ <~1'<00, n > N~ M' a.pp~op~ety
k=O ~,

chosen,
00

(2.15) L k1jJ = h'(1)~ n > N,k=O n,N,k
(2.16) lim 1jJ N k = :Wk , k E: NO ~ n > N~

n+oo n, ~
00

(2.17) L Wk = 1
k=O

a.~d
00

(2.18) I Iwk' < 00

k=O
P~006. To conclude (2.12) we write 1jJ(n~N~s)as

and apply Theorem B. By (2.2), 1jJ(n,N,l)= 1 for all n > N,
so that use of Lemma 2.4 and (2.12) yields (2.13). (2.14)
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follows from (2.5), Lemma 2.4 and the obvious fact that
~(1+(N-1)a(1-s»Y~ < 00. (2.16) is a consequence (see e.g.
R~nyi (1966) p.121) of Cauchy's generalized integration for-
mula and the uniform convergence in (2.12). (2.17) and
(2.18) are immediate from (2.14) and (2.16). By differen-
tiating

g (s) = ~(n,N,s)(1+(n-1)a(1-s»-Y ,
n

n > N,

we get
g'(s) - ~(n,N,s)aY(n-1)(1+(n-1)a(1-s»-Y-1
n

= ~'(n,N,s)(1+(n-1)a(1-S»-Y n > N, lsi < 1.

But g'(l) = nh'(l) < 00 so that the formerrelation guaran-
n

tees the existence of ~'(n,N,l). More precisely it gives
~'(n,N,l) = nh'(1) - (n-1)ay = h'(1), proving (2.15). Q.E.D.

REMARK 2.1. In the proof of Theorem 2 of Pakes (1972, p.
282), which is stated with an error, appears (after the ob-
vious correction) the relation (2.13) with s~l.

LEMMA 2.6. Le:t

The.n

Sk . = (y+j-k-1)
,J j-k' k ~ j.

(2.19) o~ (3 •• ,J
-UtcJte.M es [ .} .6deenea» es on io ,1, ... ,J .{.

y < 1
Y ~ 1 ,

(2.20) S '\,jY-1(f(y»-1 a.6 j -+ 00 kE:.INO'k ,j
j

(2.21) IS k . '\, jY([(Y+1»-1 ~ j -+ 00

k=O ,J

P~o6. Observe that
00-Y \ k -Y k(l-s) = L (-1) ( )s =

k=O k

00

I (Y+~-l)sk,
k=O

I s I < 1.
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Hence (2.20) and (2.21) follow from (to get (2.20) one has
to use (2.19) which is easily checked) the Tauberian theo-
rem for power series (see e.g. Feller (1971)). Q.E.D.

We are now prepared to complete the proof of Theorem
2.1.

PROOF OF THEOREM 2.1. FOR i = O. We use the notations
introduced in the previous lemmas. A comparison of coef-
ficients in

g (s )
n

1 Y= ~(n,N,s){1+(n_1)a(1_S)} n > N

gives

(2.22) P (O,j)
n

= ~ {l}Y y+j-k-1 { (n-1)a }j-k
k~O~n,N,k 1+(n-1)a ( j-k ) 1+(n-1)a '

n > N, j E: INa

Z dk .k=O ,J ,n,N
,

where dk,j,n,N = a bk ,ck . ~ N kn ,J ,J,n n, ,

with
= { na }yan l+(n-l)a

and
C _ {j} { (n-l)a}j-k

k,j,n - expo:n l+(n-l)a .

It is easily seen that, for'fixed k E::INO'

lim a =n
n-+<x>

lim c .
C
• ) k,J,n] ,n

= lim bk . = 1
jo+oo ' J
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which in turn implies

(2.23) lim d .
(

0 )k'J,n,NJ,n = IJik '

Now let £ > 0 and C < 00. We will show that there exists a
constant L = L(£,C) such that

j
lim Lid. I < e .(j,n,C) k=L k,J,n,N

(2.24)

But then, in view of (2.23) and (2.18), we deduce for suffi-
ciently large L' ~ L

lim ltd. -(j,n,C) k=O k,J,n,N

00

L'-l ~ 00

~ lim I L (dk· N-lJik) I + lim L dk . 'N- L IJikl(j,n,C) k=O ,J,n, (j,n,C) k=L' ,J,n, k=L'
j 00

~ lim Lid. I + L IIJiI < 2£
(i n C)k=L' k,J,n,N k=L' k~, ,

which, by (2.17), is the desired result.
To prove (2.24) we argue as follows, beginning with the
C~e y ~ 1. From (2.19) and (2.20) it is seen that there

is a constant L1 such that

o .:;: k ~ j.

The existence of a constant L2 = L2(C) such that

Ick· I ~ L2,,J ,n
j/n':;:C

is obvious. Thus, by (2.14),

lim t Idk· NI ~ L1L2lim IIIJiN kl =(j,n,C)k=L ,J,n, ~k=L n, ,
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Henceforth (2.18) permits to choose L satjsfying (2.24).
Ca6e y < 1. We notice that b[j/2] ,j is bounded (it

converges to 21-y as j + 00; [xl means the largets integer
~ x) and we may therefore deduce from (2.19) the existence
of a constant L3 such that

o ~ k ~ j/2.

Proceeding as in the previous case we find that there is a

(2.25)

= L(e:,C) with
[j/2]

lim L Id. I(j,n,C) k=L k,J,n,N
< e: .

constant L

To estimate j

L Id. Ik=[j/2J k,J,n,N

we observe that there is a constant L4 = L4(C) such that

Ia ck· I ~ L4,n ,J ,n o ~ k ~ j, j/n ~ C •.

Setting

J N . = max {11II N k II k £ {[j /2] , ... ,j}}n , ,J n, ,

we therefore get (j/n ~ C)
j

L Id. I ~k=(j/2] k,J,n,N

j

L J N' L Ibk·1
4 n, ,Jk = [j/2] ' J

I

L4jJ N .n, ,J
by (2.21).

Finally, to assure that lim jJ . = 0 , which in com-(j,n,C) n,N,]
bination with (2.25) proves (2.24), it suffices to show
that lim k1llN k = 0 , uniformly for n > N. But the latter

k+oo n ,



relation is a consequence of (2.15). This completes the
proof of Theorem 2.1 for i = 0.

PROOF OF THEOREM 2.1. FOR i ~ 1. We first examine the
case y > 1. Using (1.12) and the previously found (j,n)-be-
havior of P(O,j) we obtain for an integervalued functionn
k(j)

Pn(O,k(j» A
~

P (O,j)
n

for all sufficiently large j,n with
jIn -s A' and k(j) ~ j, A = A( A' ) ,

and hence for all sufficiently large j,n:
j -1

L P (O,k)Q (i,j-k) ~
k=O n n

AjP (O,j)supQ (i,r)
n r~l n

by Cl. 8)

j-1
In the c~e y ~ 1 we observe that I P (O,k) ~ 1 and get

k=O nsimilarly
j-1L P (O,k)Q Ci,j-k) ~ All1n-2•
k=.On n

These estimates together with (2.3) and limQ (i,O) = 1n~ n
prove (2.4) and hence the theorem. Q.E.D.

§3. Local Iimit theorems - large initial population. The ob-
jective of this section is to study the (i,j,n)-behavior of
P Ci,j).n
the relation (2.3).

The analysis consists of a careful examination of
Theorem 2.1 and Theorem 3.1, the latter
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one giving the (i,j,n)-behavior of Q (i,j), will be applied.n

3.1. THE GW-CASE. Kesten, Ney & Spitzer (1966) have
been concerned with Q (i,j) when all three variables are

n
large. In their description of the asymptotic behavior of
Q (i,j) they impose no restriction on i. We use their re-
n

sult, which we restate as Lemma 3.1, to develop the (i,j,n)-
behavior of Q (i,j). The more restrictive assumption on i

n
results in a more manageable formula.

To fascilitate the statements of the results, we intro-
duce the following notations, where as usual Ip denotes the
Bessel function of order p with imaginary argument.

A (i,j)
n

= (an)-lexp{ _i+j}!i/j'I1(~) ,an an i,j,neJN

B (i,r)
n

C Ci,j,r)n

.. r-1. {J}J -r= Bn(~,r)exp -an (r_1)!(an) , j,r,n€..JN.

, 3' j
JK= {Ci,j,n)E:1N !*~K'n~K},

LEMMA 3.1. Let R ~ 1. 16 (1.4) hold¢, then
R
I C (i,j,r) + O.(~)min(l,~) + G (i,R) ,r=l n ] n n n(3.2)

wah
i
I B U,r)) ,n

r=R+1
a..6 j an.d n behave aJ.l .<.n (1.6) and i VcvUe6 aJtb~y ex-

c.ept 60lt the 1te6tJt.<.c.tions~R.

THEOREM 3.1. Let 0 < K < 00 16 c.ondil.<.on (1.4) ~ 6ul-
6illed, then
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�/

U,j,n,K)
A U,j).
n

P~oo6. Let £ > 0 be given. We first compare A (i,j) andn
the last term of the right-hand side in (3.2) .

(i) Define 0 1= 1 + a and observe that, with N1 suffi-
ciently large, for all n ~ N1 and i >-- R >-- 1

i R
I B (i,r) = 1 - I BnU,r)nr=R+1 r=O

~ 1 - B (i,O) = 1 (f (O))in n
0 i oi.~ 1 - (1--) ~n n

Under the further assumptions (i,j,n)£JK, n ~ N1,
we find the estimates

i r;-:\\ B (;,r) i ~ {2K i+j}vij ~/.l. ... ~ 0- < uaexp - - -- -- V~/Jr=R+l n n " a an an

i ~R,

(3.3) ~ an(1+a)exp{2K}A (i,j)
a n

Next observe that Lemma 3.1. provides constants N2 and M
such that

IG U,R) InlR'n
i
L B (i,r)

r=R+l n

M,

This leads, together with
IG (i ,R)In

(3.3), to

A (i,j)
n

{2K} 1~ Ma(1+Ct)expa ~'

for all R ~ 1 and (i,j,n)£JK with n ~ N' = max(N1,N2) and
i ~R.
Now we choose R" such that
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e IR" ~ Ma(1+a)exp{2~1 ,

and turn to the comparison of A (i,j) and the first summandn
in (3.2).

1+£ ,(3.4) 1-£ ~

with i,n ~ N3 '

proceding as follows. It is not difficult to see that

B (i,r)
n

1 i r i
~ r0(ii11 exp{-an} ,
(i,n,K)

and inspection of (3.1) shows that there exists a R' > R"
such that

(3.5) 1-% ~

Combining these facts one finds that there is a N3 = N3(£)
such that, for all (i,j,n)E:JK with i,n ~ N3 and all
r c {1 ,2, ... ,R ,} ,

(3.6)

where
D (i,j,r) = (anr:(r_1)!)-1{...i{{i(-\xp{_i+j}n an an an

r = 1,2, ... ,R'
sum up to

R'
I D Ci,j,r)nr=l

(3.7)
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Now use (3.7) and the left-hand inequality in (3.6) to verify
R'
L Cn(i,j,r) R'-l ~ 2k+l

_r=~~l~ ~ (1~~/2) L (k!(k+1)!)-1{~}
A (i,j) I1(2/f:f/an) k=O an
n

for all (i,j,n)<JK with i,n ~ N3. This, together with the
first estimate in (3.5), yields the first part of (3.4). The
second inequality of (3.4) is obtained similarly, using the
upper bounds in (3.5) and (3.6).

Ciii) For (i,j,n)t:JK we have

min(l,i)/A (i,j) ~
n n

2 {2K}. i nCt. nexp - mJ.n(1,-)~a n J.
2 {2K}Ct. nexp- a

Consequently, there exists a N4 so that

Imiddle summand in (3.2)I/A (i,j) ~ £ ,n

for all Ci,j,n)E:J
K

with n ~ N4 and j sufficiently large.
Finally, in view of the choice of R", (i), (ii), (iii)

and Lemma 3.1 it is clear, that

1-3£ ~ Q (i,j)/A (i,j) ~ 1+3£ ,n n

for all Ci,j,n)£ JK with
and j sufficiently large.

n > max(N' ,N3,N4), i ~ maxf R' ,N3)
This completes the proof. Q.E.D.

REMARK 3.1. The assumption i ~ 00 in Theorem 3.1 may be
dropped. This follows from (1.9) and the behavior of the
Bessel function at 0+.

ij/n ~ K, ~ ~ 0 (Le.
J

asymptotic behavior of

More precisely, when j,n ~ 00 ,

especially for i fixed), then the
AnCi,j) ,
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A (' ') 1 {i+j} ~/' 1 r:-;l O(/J'/;')n ~,J = anexp -~ Y~/J\an(~J + ~

,~1+ 0, (j,n)
and, by (1.9), that of Q (i,j) coincide. This proves the

n

-2 '(an) iexp{-~} ,an

remark.

3.2. THE GWI-cASE. We introduce
1 ,(y-l)/2 " 2

H (i,j) = ~+} exp{-~}I (- li])n an ~ an Y-l an

to state the local limit theorem for the GWI as follows.

THEOREM 3.2. Let ° < K < 00. 16 (1.4) and (1.5) hold,
-then
(3.8) P Ci,j)

n ~
Ci,j ,n,K)

H (i,j)
n

(3.9)

R (i,j,k) = P (O,k)Q (i,j-k),
n n n

equation (2,3) may be reproduced

P (i,j) = ~ R (i,j,k)
n k=O n

° ~ k ~ j,
in the form

Defin'ng
we note that

1For ° < E < 2 we decompose the sum in (3.9) into the three
summands

S (i,j,E)
n

(l-E)j
= R (i,j,j) + L R (i,j,k)

n k=Ej n

= Er R (i,j,k)
k=O n .

T (i,j,E)
n

U (i,j,£) =
n

j-l
I R (i,j,k)

k=(l-E)j n
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which we will compare with Hn(i,j) (For simplicity we dr ~
the square brackets, but ~j etc. will always be understcod
to mean [e:j]etc.).

LEMMA 3.2. 16 the. c.on.cL<:tiovL6 06 The.oltern 3.2. Me. nLd-
6ille.d, the.n. tnene. Me. c.OVL6tan.t6 M an.d M' -6uc.h that, 601t aLe..
° < c < ~ an.d (i,j ,n ) £. J K '

(a) U (i,j ,c )/H (i,j ) .:!:
n n

Me:

(b) T (i,j ,c )/H (i, j ) ~ M I cY
n n

Pltoon. An application of (1.8) and Theorem 2.1. provides
the estimate U (i,j,e:) .:!: M'K£(j/n)Y for all Ci,j,

n n
while for all i,j,nE:1N nH (i,j) ~ M"(j/n)Y-l,

n
M = M'K2/M" to complete the proof of part (a). The proof
of part (b) is similar. Q.E.D.

Pltoon 06 The.oltern 3.2. It follows from Theorem 2.1. that,
1for all (i,j,n)CJK and each 0< e:< 2' uniformly for

ke:{[e:j], [e:j]+l,...,[(1-e:)j],j} ,

P (O,k) = (1+0(1» [Y 1 kY-lexp{~}J
n (i,j,n) a f(y)nY an

and from Theorem 3.1, that

( ) (1+0(1»[~vP{ l+j-kJ I (-.2J1.'( '_k)i)/1: JQn i,j-k (' ~ ) an~~ an I 1 an J J-k
1.,J ,n

Combining these facts and

Q (i,O) = (1+0(1»exp{--i}n ( . ) an1.,n

one obtains
1 fl' y-l ..S (i,j,e:) = =-(1+0(1» y {-nJ} exp{_l.+J} +

n (i,j,n) n a fey) an
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C1-E) j lilT' 2 . . ]
+ I . kY-";~ I (-/iCj-knexp{_HJ}

k . r ( ) y+1 Y J -Klan an=EJ Y a n

Nowby a tedious but straightiDrward analysis it is seen

that for all RE:..JN

S (i ~j ~E)n =
(i~j,n)

1
[1

1 .. R+l,( ) {r:""':\J.'J.}2r+Y-l~1+0(1» 4A7I')Y- ex {-~ '\ II. r-1~E yJ.l'
n a J p an L r!f(y+r) an

r=O

where

v Ci,j,R,£) =
n

00 .r+l 1 2r+l(1-E)j 1
'\ J. {} '\ v-r.. r
L rl(r+l)! an L. k (J-k)

r=R+1 k=EJ

1and where for 0 ~ c < 2" ~ A is such that

1-E
J xY-1(1_x)kdx =
c

A(k E/(y)f(k+l)
, r(y+l<+l) I< = O~l, ....

A(-l,E) == 1 .

This permits a comparison of S (i~j~e:) and H (i~j).n n

(i) / exp{_i+j}v (i,j~R~e:)/nH (i~j)
Y+ r ( ) y ann na y n

for all (i ~j , n ) E:. JK •

(ii)
. . R '() 2r+y-l

(.!Di)y-lex {_l+J} '\ II. r-l,E }o{.1:m} lanH (i ')
J p an L rlf(y+r) an J II n ~Jr=O
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R
= 1 L ).(r-1,e:) {~l 2r+y-1

I (~) r=orlr(y+r) an lJJ .
y-1 an J

Thus, by (3.9) and Lemma 3.2, the theorem follows. Q.E.D.

Considering the behavior of I l(z) as z ~ 0+, one findsy-
with the aid of Theorem 2.1 that Remark 3.1 has an analogue.

REMARK 3.2. The conclusion of Theorem 3.2 is valid with-
out the assumption i ~ 00. When j,n ~ 00, jln ~ K, ilj ~ 0,
then P (i,j) behaves as described in Theorem 2.1.

n
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