Revista Colombiana de Matemáticas Vol. XVI (1982) págs. 57 - 63

A NOTE ON SPECTRAL AND PRESPECTRAL OPERATORS

bу

T.V. PANCHAPAGESAN

ABSTRACT. Results known for spectral and prespectral operators in weakly complete Banach spaces are extended to Banach spaces with the Bessaga-Pelczyński property.

1. <u>Preliminaries</u>. In this note, by a Banach space we mean a non-zero complex Banach space. Because of varying terminology in literature, we give the following definition.

DEFINITION 1.1. Let Σ be a σ -algebra of subsets of a nonempty set S and X a Banach space. If Γ is a total set of X^{*}, the dual of X, and E(•) is a Boolean homomorphism of Σ on a boolean algebra of projections on X, we say that E(•) is a spectral measure of class (Σ,Γ) when E(Σ) is norm bounded in the Banach algebra B(X) of all bounded operators in X and

^{*} Supported by C.D.C.H. projects C-80-149,150 of the Universidad de los Andes, Mérida, Venezuela.

when $X^{*}E(\cdot)x$ is countably additive on Σ , for each $x \in X$ and $X^{*} \in \Gamma$.

When $E(\cdot)$ is a spectral measure of class (Σ, X^*) , by Orlicz-Pettis' theorem, $E(\cdot)$ is countably additive on Σ in the strong operator topology, and in this case $E(\cdot)$ is called a spectral measure on Σ .

An operator $T \in B(X)$ is called a prespectral operator of class Γ if there is a spectral measure $E(\cdot)$ of class (Σ_p, Γ) where Γ is total in X^* and Σ_p is the σ -algebra of all Borel sets in \mathbb{C} , such that for each δ in Σ_p , $E(\delta)T = TE(\delta)$ and the spectrum of T restricted to $E(\delta)X$ is contained in the closure of δ . Then $E(\cdot)$ is called a resolution of the identity of class Γ for T.

A prespectral operator T of class X^* is called a *spectral operator*. In this case, T has a unique resolution of the identity.

DEFINITION 1.2. A Banach space X is said to have the Bessaga-Pelczyhski (B-P) property if every weakly unconditionally convergent series in X is strongly unconditionally convergent.

LEMMA 1.3. Let Ω be a compact T_2 space and X a Banach space with the B-P property. Then every bounded linear transformation $T:C(\Omega) \rightarrow X$ is weakly compact, where $C(\Omega)$ is the Banach algebra of all complex continuous functions on Ω .

<u>Proof</u>. By theorem 5 of Bessaga and Pelczyński [1], the hypothesis on X is equivalent to the fact that X does not contain an isomorphic copy of c_0 . Now the lemma follows from Theorem 15, p.160 of Diestel and Uhl [2].

2. <u>Main results</u>. In what follows X will denote a complex Banach space with the B-P property. Since a weakly complete Banach space has the B-P property (see [1]), all the results in this section hold for weakly complete Banach spaces also.

THEOREM 2.1. Let A be an algebra of operators in X and let it be the image under a continuous homomorphism ϕ of the Banach algebra $C(\Omega)$ of all complex functions on a compact Hausdorff space Ω . Then there exists a uniquely determined spectral measure $E(\cdot)$ in X on the Borel sets of Ω , for which.

 $\phi(f) = \int_{\Omega} f(\lambda) E(d\lambda), \qquad f \in C(\Omega).$

<u>Proof</u>. For a fixed $x \in X$, consider the map $T_{X}:C(\Omega) \rightarrow X$, defined by $T_{X}f = \phi(f)x$. Since T_{X} is a continuous linear transformation and X has the B-P property, by Lemma 1.3 we have that T_{X} is weakly compact. Now following the same argument as in the proof of Theorem 2.5 of Chapter XVII of Dunford and Schwartz [4], the present theorem is established.

We use the terms complete and σ -complete boolean algebra of projections on X in the sense of Definition 3.1 of Chapter XVII of Dunford and Schwartz [4].

LEMMA 2.2. A strongly closed bounded boolean algebra of projections in X is complete.

<u>Proof</u>. The proof of Lemma 3.5 of Chapter XVII of Dunford and Schwartz [4] holds here, excepto that we appeal to Theorem 2.1. above, instead of Theorem 2.5 of Chapter XVII of [4].

THEOREM 2.3. A bounded boolean algebra of projections on 59

x is complete if and only if it is strongly closed.

<u>Proof</u>. The theorem follows from Lemma 2.2. above and from Corollary 3.7 of Chapter XVII of [4].

COROLLARY 2.4. Every bounded boolean algebra of projections B on X can be embedded in a σ -complete boolean algebra of projections on X, contained in \overline{B}^S (the closure in the strong operator topology).

<u>Proof</u>. When B is norm bounded by a finite positive number M, then it is easily verified that \overline{B}^S is a boolean algebra of projections and that $||E|| \leq M$, $E \in \overline{B}^S$. Now the corollary follows from Theorem 2.3.

The above corollary leads to the following interesting result about prespectral operators.

THEOREM 2.5. Every prespectral operator T on X is a spectral operator.

<u>Proof</u>. Let T be a prespectral operator of class Γ on X, with E(•) a resolution of the identity of class Γ . Then by Definition 1.1 and by Corollary 2.4 there exists a σ -complete boolean algebra B of projections on X, which contains the range of E(•) on Σ_p . If $\{\delta_n\}$ is a sequence of mutually disjoint sets in Σ_p , then $F_n = \sum_{k=1}^{n} E(\delta_k)$ is in B and $\{F_n\}$ is a non-decreasing sequence of projections in B. Therefore, by Lemma 3.4 of Chapter XVII of [4], for each $x \in X$

$$\lim_{n} F_n x = (\bigvee_{n}^{\infty} F_n) x.$$

In other words,

(1)
$$(\bigvee_{1}^{\infty})_{n} x = \lim_{n \to \infty} \sum_{1}^{n} E(\delta_{k})_{n}, \quad x \in X.$$

60

But, $x^*E(\cdot)x$ is countably additive for each $x \in X$ and $x^* \in \Gamma$ and therefore from (1), we have

(2)
$$x^{*}(\bigvee_{\Gamma_{n}})_{x} = \sum_{k=1}^{\infty} x^{*}E(\delta_{k})_{x} = x^{*}E(\bigcup_{k})_{k}, x \in X, x^{*} \in \Gamma.$$

Because Γ is total, (1) and (2) give that

(3)
$$(\overset{\infty}{VF}_{n})_{x} = E(\overset{\infty}{U\delta}_{k})_{x}, \quad x \in X.$$

From (1) and (3) it, follows that $E(\cdot)$ is countably additive in the strong operator topology. Hence T is spectral.

THEOREM 2.6. Let T_1 and T_2 be two commuting spectral operators on X, with $E_1(\cdot)$ and $E_2(\cdot)$ as their respective resolutions of the identity and S_1 and S_2 as their respective scalar parts. If the boolean algebra of projections B determined by $E_1(\cdot)$ and $E_2(\cdot)$ is bounded, then T_1+T_2 and T_1T_2 are spectral with S_1+S_2 and S_1S_2 as their respective scalar parts and $G_1(\cdot)$ and $G_2(\cdot)$ as their respective resolutions of the identity, where

> $G_{1}(\delta)x = \int E_{2}(\delta-\lambda)E_{1}(d\lambda)x ,$ $G_{2}(\delta)x = \int E_{2}(\delta/\lambda)E_{1}(d\lambda)x$

for each $x \in X$ and $\delta \in \Sigma_p$.

<u>Proof</u>. Let $T_1 = S_1 + N_1$ and $T_2 = S_2 + N_2$ be the canonical decompositions of T_1 and T_2 . Then by the generalized Fugledes theorem theorem (Corollary 3.7, Chapter XV of [4]) S_1 , S_2 , N_1 and N_2 commute with each other and hence $N_1 + N_2$ and $N_1 S_2 + N_2 S_1 + N_1 N_2$ are quasi-nilpotent. Now the theorem follows from Theorem 4.5 of Chapter XV of [4], Corollary 2.4 above

and Theorem 10 of Panchapagesan [5].

REMARK 1. In view of theorems 2.1 and 2.3 and corollary 2.4 of this paper, then theorems 6.10, 6.12, 6.14, 6.21, 6.22, and note 6.15 of Dowson [3], and corollaries 2.12, 2.13, 2.14, theorems 3.18, 3.19, 3.20, and corollary 3.28 of Chapter XVII of Dunford and Schwartz [4], which are known to be true for weakly complete Banach spaces, continue to be valid for Banach spaces with the B-P property.

It is also possible to extend the theorems of characterisations of spectral operators in weakly complete Banach spaces to operators in Banach spaces with the B-P property. To this end we need the following theorem.

THEOREM 2.7. Let $E(\cdot): \mathbb{R} \to B(X)$ be a Boolean homomorphism of the algebra of sets R on a boolean algebra of projections on X and let $E(\cdot)$ be countably additive in the strong operator topology on R, in the sense that whenever $\{\delta_n\}$ is a pairwise disjoint sequence of members of R with $\bigcup_{n=1}^{\infty} \delta_n \in \mathbb{R}$, then

 $E(\bigcup_{1}^{\infty} \delta_{n})x = \sum_{1}^{\infty} E(\delta_{n})x, \qquad x \in X.$

Then a necessary and sufficient condition so that $E(\cdot)$ can be extended uniquely to a spectral measure $\overline{E}(\cdot)$ on S(R), the σ -algebra generated by R, is that the range of $E(\cdot)$ is norm bounded in B(X).

<u>Proof</u>. If such an extension $\overline{E}(\cdot)$ on S(R) exists, then as in the second part of the proof of Corollary 3.10 of Chapter XVII of [4] we see that $\overline{E}(S(R))$ is a σ -complete boolean algebra of projections on X and hence is norm bounded by Lemma 3.3 of Chapter XVII of [4]. Conversely, if

62

E(R) is norm bounded in B(X), then E(R) is bounded boolean algebra of projections on X. Hence from Theorem 8 of Panchapagesan [5] and Corollary 2.4 above, the sufficiency of the condition follows.

REMARK 2. As a consecuence of the above theorem, then theorems 3.14, 4.5, 5.2, and 5.15 of Chapter XVI of Dunford and Schwartz [4], which are known to be true for weakly complete Banach spaces, continue to be valid for Banach spaces with the B-P property.

*

REFERENCES

- [1] C. Bessaga and A. Pelczyński, "On bases and unconditional convergence of series in Banach spaces", Studia Math. 17 (1958) 151-164.
- [2] J. Diestel and J.J. Uhl, Vector Measures, Amer. Math. Soc. Survey 15 (1977).
- [3] H.R. Dowson, Spectral theory of linear operators, academic Press, New York, 1978.
- [4] N. Dunford and J.T. Schwartz, Linear operators, Part III, Spectral operators, Interscience, New York, 1971.
- [5] T.V. Panchapagesan, "Extension of spectral measures", Illinois J. Math. 16 (1972) 130-142.

Departamento de Matemática Facultad de Ciencias Universidad de los Andes Mérida, VENEZUELA.

(Recibido en junio de 1981).