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UNITE ET SEMI-NORMES DANS LES

ALGEBRES LOCALEMENT CONVEXES
par

Mohamed OUDADESS™

RESUMEN. Se demuestra que el problema siguiente pro-
puesto por W. Zelazko tiene una respuesta negativa. {Puede
definirse la topologia de un &lgebra (topoldgica) localmen-
te convexa con identidad por medio de una familia de semi-
normas (pé)XGA tales que pj(e) = 1 para todo A, donde e es
la identidad ? ("Selected topics in topological alge-
bras'", Lec. Notes Series N2 31 (1971) Aarhus Universitat).
Por otra parte, se demuestra que la respuesta es positiva
para las algebras localmente A-convexas.

Introduction. L'objet de cet article est de montrer que

la réponse a un probléme de Zelazko est en général négative.
W. Zelazko a posé dans [8], page 78, le probléme suivant:

"est-ce que la topologie d'une algébre (topologique) localement

* Boursier du projet '"centres pédagogiques régionaux, Maroc".
Project conjoint M.A.I.Q. - A.C.D.I.

141



convexe unitaire peut €tre définie par une famille de semi-normes
(py)y¢p telle que p(e) = 1, pour tout A (ol e est l'unité de 1l'al-
gebre)'"?

Par définition la multiplication dans une algébre topologi-
que est globalement continue.

Nous examinons d'abord le "probléme de Zelazko" dans le cas
des algébres localement A-convexes (ol la multiplication est
seulment séparément continue). La réponse est positive et on en
déduit que toute algebre localement A-convexe dont la topologie
est la topologie localement A-convexe la plus fine est une alge-
bre localement multiplicativement convexe.

Ensuite nous donnons une réponse négative au probléme de
Zelazko.

Nous rappelons maintenant les définitions dont nous aurons
besoin. Une algeébre topologique est une algeébre E (sur R ou C)
qui est en méme temps un espace vectoriel topologique (e.v.t.)
telle que la multiplication est (globalement) continue.

Si U est une base de voisinages de 0, dans A, (x,y)v* xy
continue signifie que pour tout UelV, il existe Vel tel que

VZCJJ(C@st la continuité en (0,0), qui est &quivalente a la con-

tinuité partout).

Une algébre topologique localement convexe (a.l.c.) est
une algébre topologique qui est en méme temps un espace vecto-
riel topologique localment convexe (e.l.c.). On sait que danscecas
la topologie peut &tre défine par une famille de semi-normes
(pA)A€A‘ Le fait que la multiplication est continue s'écrit ici:
pour tout A, il existe A' telle que px(x'y) < px,(x)'px,(y),
pour tout x et tout y.

Une algébre localement A-convexe (a.l.A-convexe) est une

algébre qui est en méme temps un e.l.c. tel que la multiplica-

tion est séparément continue. Dans ce cas sa topologie peut
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8tre définie par une famille de semi-normes (pA)AEA telle que:
pour tout x et tout A, il existe un nombre M(A,x) > 0 tel que
px(x'y) < M(A,x)°pk(y), pour tout y. On dit que E est unifor-
mément A-convexe si pour tout x il existe M(x) > 0 tel que
pA(xvy) < M(x)°px(y) pour tout y et tout A. Elle est dite lo-
calement multiplicativement convexe (l.m.c.) si px(x°y) L
px(x)°pk(y) pour tout x,y et tout A. Dans ce cas la multipli-
cation est continue. Si (E;“'I)est une algébre normée unitaire,
il existe une norme “-ﬂ' équivalente 3 "'I telle que "el' = 1.
Si (E;(pl)l) est une a.o.m.c. ou une a.l.u.A-convexe on peut
considérer que px(e) = 1, pour tout A.

Je remercie M. le Professeur José& I. Nieto pour ses en-

couragements et pour de nombreuses et stimulantes discussions.

1. Algébres localement A-convexes. Cochran, Akkar

et d'autres chercheurs qui se sont intéressés aux a.l.A-convexes
ne disent rien sur les valeurs des Py en e. Comme nous allons
le voir cette question est importante pour la nature topologique

de 1'algébre.

PROPOSITION 1. So4ft (E,T) une a.l.A-convexe unitaire
alons T peut etre définie par une famille de semi-normes,
(p)‘)>\€A , telle que p)\(e) = 1, pour tout .

Preuve. Soit (pi)x une famille de semi-normes définissant
T. Il suffit de remarquer que pi(e) # 0, pour tout A et de po-

! -2, ! e N Ly
ser Px:z[PA(e)] *Py + Par définition:

YA, ¥x, IM(A,x) > 0 : p;\(x'y) < M(A,x)-p;\(y), Yy .
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Fixant A et prenant y = e, on s'apergoit que si p'(e) = 0 alors
A

L
px(x) = 0, pour tout x. On exclut un tel p,.
Nous obtenons maintenant un théoréme sur la topologie de E.

THEOREME 1. Toute a.f.A-convexe unitaine (E,T) peut Stre
munie d'une topologie d'a.L.m.c. T' plus fine que T.
Preuve. Soit (p))ygp une famille de semi-normes définissant

A et telle que px(e) = 1 pour tout A. On a

PX(X'Y) < M(A,X)'pk(y) , pour tout y. (1)

Posons

qk(x) inf{M(\,x) : pl(x'y) < M(A,x)-px(y), pour tout y}

ry(x) = sup{pA(X°y) : Py (y) < 5 N

Montrons que :

qA(X) = PX(X)'

Si px(y) <1, on a d'aprés £1 )y pA(x-y) < M(A,x) d'oh rx(x) <
ql(x). Pour montrer 1l'inégalité dans l'autre sens, il suffit de

montrer que :
px(x'y) & rx(x)°pk(y) , pour tout y.
Si px(y) = 0, on a d'apres (1), px(x°y) = 0 et 1'inégalité est
vérifiée.
Si pk(y) # 0, on a px(x°5i%§70 < rx(x), d'ou 1'inédgalité.
Il est clair que q) est une semi-norme d'espace vectoriel; c'est

en fait une semi-norme d'algebre. En effet:

qk(x°z) = sup{px(x°2°y) : px(y) < 1}
< M(K,x)°qx(z).
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D'ou
qx(x°z) £ qk(x)°qx(z).
Par ailleurs
Py (x) € q,(x), pour tout x et tout A. (2)

Soit T' la topologie sur E définie par (qA)AEA' T' est une topo-

logie d'a.l.m.c. et d'aprés (2) on a TcCT .

On constate que si T est séparée alors T' l'est aussi.

COROLLAIRE 1. (Théoréme de Gelfand-Mazur). Toute a.Zf.
A-covexe (complexe) unitaite séparée qui est aussi un conps est
Lsomorphe 2 C.

Preuve. Car le résultat est vrai pour les a.l.m.c. sépa-

COROLLAIRE 2. Toute a.f.A-convexe unitaire munie da sa
topologie d'a.L.A-convexe La plus gine est en failt une a.f.m.c.

Preuve. Car une a.l.m.c. est une a.l.A-convexe.

2. Algébres topologiques localement convexes.

THEOREME 2. Soit (E,T) wie a.l.c. unitaire dont La fopo-
Logie T peut etre définie par une famille de semi-normes,
(pA)MA’ Zelle que py(e) =1, pour fout \. Alons E peut Ctre mu-
nie d'une topologie d'a.L.m.c. T' plus gine que T.

Preuve. Par la définition méme d'une a.l.c.; pour tout

A€N il existe A' €A tel que
px(x°y) < pA,(x) pk,(y) , pour tout x et tout y. (1)
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Par hypothése py:(e) = 1 et done
px(x) = px,(x) , pour tout X.

Etant donné que A' dépend de A, posons pA,(x) = M(A,x)salors (1)

devient

py(x°y) < M(X,x)*p,,(y) , pour tout y.

Pour chaque x, posons

Qy A'(X) = inf{M(X,x) : pA(X'y) < M(A,x)*py,(y), pour tout y}.

Comme dans le Théoréme 1, on vérifie que

qk’x,(x) = sup{pk(x'y) : pA,(y) <1}

et que QY x est une semi-norme d'algébre. De plus Py < Q yre
b 9
Soit T' la topologie définie par la famille de semi-normes (q, At
b
ou A' = A'"(A) est l'une des semi-normes vérifiant (1); T' est

localement multiplicativement convexe et TcT'.

COROLLAIRE. (Réponse au probléme de éelazko). Soit (E,T)
we a.L.c. unitaine séparnée qui ne peut etre muwiie d'aucune Lopo-
Logie séparée d'a.L.m.c. SL (p>\))\€A est La gamille de semi-nor-
mes définissant T, alorns AL existe au moins A €L tel que
pxo(e) A L

EXEMPLE 1. Soit €(X) le corps des fractions rationnelles
3 une indéterminée. Williamson a montré (cf.[6]) qu'il existe
sur €(X) une topologie localement convexe métrisable (non complé-
te) compatible avec la structure algébrique (i.e. on a une a.l.
c.). Mais il ne peut exister sur C(X) aucune topologie d'a.l.m.
c. séparée 3 cause du Théoréme de Gelfand-Mazur (cf [6] ou [8]).
Donc C(X) est une a.l.c. dont la topologie ne peut €tre définie
par aucune famille (p)\)>\€A de semi-normes telle que pA(e) *1,
pour tout A.
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EXEMPLE 2. La topologie de €(X) dans l'exemple 1 n'est
pas compléte. Nous donnons maintenant un exemple de corps muni
d'une topologie d'a.l.c. compléte. Soit 0 < p < 1 et soit Z(p)
l'ensemplekdes suites positives décroissantes a = (ak)f: telles
que Oy =" p pour tout k > 0. On notera par wp l'espace des sé-

ries

‘a0 < ® , pour tout o €)(p).

e

-00

On montre (cf [8], Lemme 10.10) que pour tout a CZ(p),

il existe B€)(p) tel que O, € Bk'Bi’ pour tout k et tout i;
>t 1'on a alors [[x° < Ixt,e
e I==vl, < Ixlg-lvl,

WP est une a.l.c. pour la multiplication (de Cauchy) des
séries. En fait W_ consiste en les fonctions méromorphes n'ayant
aucun pdle dans le disque {t : [tl < p}, sauf en 0. De plus
WpC‘_Wq si q < p, et c'est une injection continue.

W = W_ est complet pour la topologie limite inducti-

0<Lp%1p plet p polog i
ve. W est une a.l.c. commutative unitaire qui est aussi un

corps. D'aprés le Théoréme de Gelfand-Mazur, elle ne peut &tre

munie d'aucune topologie l.m.c. séparée.

3. Bo— Igébres . Nous allons maintenant donner un exem-
ple de Bo-algébre (i.e. une a.l.c. métrisable compléte) qui ne
peut €tre munie d'aucune topologie d'a.l.m.c. séparée, ce qui
montrera, compte tenu du Theoréme 2, qu'une affirmation dans [7]
est inexacte a savoir que la topologie d'une Bo-algébre unitaire
peut &tre défine par une famille de semi-normes (pn)nEN telle

que pn(e) = 1, pour tout n.

Pour les détails de cet exemple voir [8]. Soit (an k)’
3
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1€&n<w®, -®»<k-<® une matrice infinie 3 termes réels posi-

tifs. Supposons que pour tout n il existe n' > n tel que
> 5
30 % %, 2 3 keg POUT tout k et tout £ (1)

Désignons par K(an k) 1'algébre des séries formelles de Laurent
b

5l 400
X = wakt telle que "xﬂn = Zman’k’

xkl < ® , pour tout n.

C'est une alg@bre pour la multiplication de Cauchy. En effet on

vérifie que:

Ixeyl < U=l eyl (2)

ol n' est l'entier vérifiant (1).
K(an k) est une Bo—alg;bre. C'est une a.l.m.c. si n' = n
2
dans (2). Soit W = K(an k) avec

b

n(1-k)

(1-k) pour k £ -1
an,k = 1 14k pour k =1
(14k) n pour k > 1
On montre que (1) est vérifiée avec n' = 4n. On montre aussi

que W contient une sous-algeébre W1 isomorphe au corps de toute
les fonctions rationnelles €(X) considéré 3 1l'exemple 1.

S'il existait une topologie l.m.c. T' telle que TCT',
alors W, munie de la topologie induite par T' serait une a.l.m.

1
c. séparée (complexe) et donc w1 = ¢, alors C(X) = C.

L. Algébres non unitaires. Soit E une algébre non

unitaire et E = EXC 1l'algébre unitaire obtenue 3 partir de E par

adjonction d'une unité.
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Si (pk)X est une famille de semi-normes définissant la to-
pologie E, alors la topologie de E peut etre définie par (ﬁk)A
telle que ﬁx((x,a)) = PA(X) + |a|; e = (0,1) est 1'élément uni-

té de E et on a:

ﬁk((o’l)) = 1, pour tout A.

Si (E;(py))) est une a.l.A-convexe (resp. une a.l.c.) alors il
en est de méme de (E,(py)y)-

Comme corollaire du Théoreme 2 on a que si (E,T) est une
a.l.c. unitaire telle que pk(e) = 1, pour tout A, ou (p)\))\€A dé-
finit T, alors E ne contient aucune sous-algébre, autre que Ce,

qui soit un corps: et c'est effectivement le cas pour E.

PROPOSITION 2. E ne contient aucune sous-algebre, autre
que Ce, qui 404t un corps.

Preuve. D'abord gucun x = (x,0) €E nést inversible dans E,
car E est un idéal de E. Si K &tait un corps, qui soit en méme
temps une sous-algébre de ﬁ, il existerait (x,a), x # 0 et
o # 0 tel que (x,0) €K, on aurait a—l(x,a)eK; or (0,1)€EK et
donc (a-lx,l) . £0. 4 2 a-lxczK; Mgl (aﬁlx,o) # 0, serait

donc inversible. Contradiction.

5. Finesse de la Topologie T'., Soit (E,T) une a.l.

A-convexe unitaire. Au Théoréme 1, nous avons mis en &vidence

une topologie l.m.c. T' plus fine que T. Nous noterons T' par

M(T).

PROPOSITION 3. M(T) est La moins fine parmi Les topolo-
gies L.m.c. plus fines que T.
Preuve. Soit (py), une famille de semi-normes définissant T.
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M(T) est défine par (qA)X telle que qx(x)= sup{px(x'y):px(y)s 1}.
Soit (r‘u)u définissant une topologie T" l.m.c. plus fine que T.
Pour tout p,, il existe ru et kU > 0 tels que Py RS ku'ru. Alors

s K,* : €139 ..
qy S ku Sup{ru(y) px(y) 1} ¥y

REMARQUE. La topologie M(T) l.m.c. plus fine que T est
en un sens duale de la toplogie m(T) de A.C. Cochran (cf [4]);
m(T) est la plus fine parmi les toplogies l.m.c. moins fine que

T; M(t) a l'avantage d'€tre séparée si T l'est.

b
w
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