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ON PAIRWISE LINDELOF SPACES

by

Al1i A. FORA and Hasan Z. HDEIB

ABSTRACT. In this paper we define pairwise Lindeldf

spaces and study their properties and their relations
with other topological spaces. We also study certain
conditions by which a bitopological space will reduce to

a

single topology. Several examples are discussed and

many well known theorems are generalized concerning Lin-
delof spaces.

RESUMEN. En este articulo se definen espacios p-Lin-

delof y se estudian sus propiedades y relaciones con
otros tipos de espacios topoldgicos. También se estudian

C

iertas condiciones bajo las cuales un espacio bitopoldgi-

co (con dos topologias) se reduce a uno con una sola topo-
logia. Se discuten varios ejemplos y se generalizan va-
rios teoremas sobre espacios de Lindelof.

Introduccidn. Kelly [GJ introduced the notion of a bito-

PR

1,T2) where X is a set and

, are two topologies on X, he also defined pairwise Haus-
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dorff, pairwise regular, pairwise normal spaces, and obtained
generalizations of several standard results such as Urysohn's
Lemma and the Tietze extension theorem. Several authors

have since considered the problem of defining compactness for
such spaces: see Kim [7], Fletcher, Hoyle and Patty [4], and Bir-
san [1]. Cooke and Reilly [2] have discussed the relations be-
tween these definitions.

In this paper we give a definition of pairwise Lindelof
bitopological spaces and derive some related results.

We will use p- , s- to denote pal/uwdise and semi-, respect-
ively, e.g. p- compact, s- compact stand for pairwise compact
and semi-compact respectively.

The Ti—closure, Ti—interior of a set A will be denoted by
CliA and IntiA respectively. The product topology of T and T,
will be denoted by T XT,-

Let R, I, N denote the set of all real numbers, the inter-
val.[O,l], and the natural numbers respectively. Let Tg» Tu’ Tes
Tg» T, denote the discnete, usuak, cocountable, Left-ray  and

rigth-ray topologies on R (or I).

2. Pairwise Lindelof Spaces. Let us recall known defini-

tions which are used in the sequel.

2.1 [4]. A cover U of the bitopological space (X,Tl,Tz)
is called Tlrz—open if U.Cirl U Ty If, in addition,-u.contains
at least one non-empty member of Ty and at least one non-empty
member of Tss it is called p-open.

2.2 [4]. A bitopological space is called p-compact if

every p-open cover of the space has a finite subcover.
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2.3 [3]. A bitopological space is calle s-compact if eve-

ry TiTz—open cover of the space has a finite subcover.

2.4 [1]. A bitopological space (X,T,,T,) is called T, com-

1°7°2 b
pact with nespect to T, if for each T,-open cover of X there is

1

a finite T,-open subcover.

2

2.5 [1]. A bitopological space (X, T ) is called

1°T2

compact with respect to T, and T, compact

B-compact if it is T 5 9

1

with respecto to Ty~

If we replace the word "finite" by the word '"countable'" in
definitions 2.2, 2.3 and 2.4, then we obtain the definition of
p-Lindelif, s-Lindelidf, and (X’Tl’T2) A4 Ty Lindels § with re-
Lpect Lo Tys respectively.

2.6 A bitopological space (X,Tl,Tz) is called B-Lindels§

and T, Lindeloff with

if it is T, Lindelof with respecto to T, 5

1

respecto to Tl.

It is clear that (X,T,,T,) is s-Lindelof if and only if

1
(X,T) is Lindeldf where T is the least-upper-bound topology

of T, and T,. It is also clear that if (X,T ) is B-Lindeloff

1 2 922
then each (X,Ti) must be a Lindelof space for i = 1,2.

,T

2.7 When we say that a bitopological space (X,T T2) has

13
a particular topological property, without referring specially

1 and T2 have the

,12) is said to be Hausdoff if

to Tl or T2, we shall then mean that both T

property; for instance, (X,T1

both (X’Tl) and (X,TQ) are Hausdorff.

THEOREM 2.8. The bitopological space (X,Tl,TQ) A5 s-Lin-
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dels§ if and only if it is Lindeld§ and p-Lindeld§.

Proog. Necessity follows inmediately from the observation
that any p—open,Tl-open or T2—open cover of (X’Tl’T2) is T1T2—o—
pen. Conversely, if a T,T,-open cover of (X’TlaTg) is not

p-open, then it is T,-open or T,-open.

EXAMPLE 2.9. The bitopological space (R,Td,‘rc) is p-Lin-
deldf but is not s-Lindelof.

EXAMPLE 2.10. Consider the two topologies T,,T, on R
defined by the basis

B

1 {(-»,a):a > 0} U {{x}:x > 0} , and

%

il

{(a, ©):a <0} U {{x}:x <o} .

Then (R,Tl,r2) is p-Lindeldf but is not Lindelof. It is also
clear that (RsTl’Tg) is not B-Lindelof, for the T,-open cover
{(-=,1)} U {{x}:x > 1} of R has no countable T,-open subcover.

2.11 [8]. A bitopological space (X,Tl,T2) is called
p-countably compact if every countably p-open cover of X has a
finite subcover.

2.12 A bitopological space (X’Tl’TQ) is called s-count-
dable compact if every countably T,T,-open cover of X has a fin-
ite subcover.

2.13 A bitopological space (X,T1,12) is called Tl—count-
ably compact with respect %o T, if for each countably T,-open

cover of X there is a finite T,-open subcover.

2.14 A bitopological space (X,Tl,Tz) is called B-count-

alby compact if it is T, countably compact with respect to T,

1

and Ty countably compact with respecto to Ty-

The following fact is obvious:
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THEOREM 2.15. (i) Every p(resp. s,B)-compact space A4
p(resp. s.B)-countably compact and p(resp. s.B)-Lindeldf.
(ii) Eveny p(nesp. s,B)-countably compact p(resp. s,B)-Linde-
L4 space 45 p(resp. s,B)-compact.

EXAMPLE 2.16. The bitopological space (R,Td,l’c) is a
p-Lindeldf space which is neither p-countably compact nor p-com-

pact.

EXAMPLE 2.17. Let te denotes the Sorgenfrey topology
on R. Then the bitopological space (R,TU,TS) is s-Lindelof
but 1is not B-Lindeldf, because the Ts—open cover {[—n,n):n eN}
of R has no Tu-open countable subcover. It is also clear that

the space (R,Tu,TS) is neither s-countably compact nor s-compact.

EXAMPLE 2.18. It is clear that the bitopological space

(N,Td,Td) is B-Lindelof but is neither B-countably compact nor

B-compact.

THEOREM 2.19. I (X,7,,7,) 45 a hereditarny Lindeld
space then £t is s-Lindeldf.

Proog. Let € ={UOL: a<sA U {VB:B eTl} be a T,T,~open

for each oo A and V8 T, for each

-Lindeldf, there exists a

cover of X, where Uoc e Tl
BeTI. Since U = U{Uaonel\.} is T,
countable set 1\1 < N such that U = U{Ua:a < A1}° Similarly,
since V = U{VB:B e T} is T,

set Fl c T such that V = U{VB:B == Fl}. It is clear that

-Lindelof, there exists a countable
{Ua:OL €A1} U {VB:B < 1"1} is a countable subcover of € for X.

COROLLARY 2.20. Eveny second countable bitopological
space L5 s-Lindelif.
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EXAMPLE 2.21. Let X = RXI and < be the lexicographical

order on X. Let
%1 = {[x,y):x <y ; x,y= X} and '32 7 {(x,y]:x <y x,ye X}.

Let T be the topologies on X which generated by the basis ﬁl

)

and %2, respectively. Then (X,T T2) is a Lindeldf space which

15
is not p-Lindeldf, because the p-open cover

{[(o,x),(l,x)),((o,x),(lgo]:x e R}

of X has no countable subcover. It is clear that (X’T1’T2) is

neither s-Lindelof nor B-Lindelof.

EXAMPLE 2.22. Let X and £ be the same as in example
2.21. Then the bitopological space (X’Tl’TQ) is not hereditary

Lindelof but it is s-Lindelof.

EXAMPLE 2.23. Let X = R, 'Bl = {X,{x}:x e x-{0}} and
32 = {X,{x}:x « X-{1}}. Let Tys
generated by the bases‘B1 and 32, respectively. Then (X’Tl’T2)

T, be the topologies on X which are

is B-Lindeldsf, for any T,-open cover of X or any T,-open cover
of X must contain X as a member. However, (X,Tl,T2) is not p-Lin-
delsf, for the p-open cover {{x}:x € X} of X has no countable

subcover.

We may summarize some of the above examples and theorems

by the diagram on the next page (T stands for theorem while E stands

for example).

2.24 [7]. If T is a topology on X and A is a non-empty
subset of X then the adjodnt topology (denoted by T(A)) is the
topology on X defined by T(A) = {¢,x} U {aUB: B  T}.
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NO E2.23

s-Lindelof NO B7.17 _ B-Lindelof
1\
e yo
T2 E2.21
y
p-Lindelof NO E2.10 Lindelof

2.25 A family F of nonvoid subsets of X is TlTQ—closed if

every member of F is Tl—closed or T2-closed.

2.26 [8]. A family ¥ of nonvoid T,- or T,-closed sets

in X is p-closed if F contains members F, and F, such that F,

is a T,-closed proper subset of X and I, is a T2-closed proper

i
subset of X.

2.41 [6]. A set U in a topological space (X,T) is called

2

weakly open if for any p € U there exists an open set V contain-
ing p such that V-U is a countable set. A set F is called weak-
Ly closed if X-F is weakly open. If A is a subset of X and p X,
then p is called a weak-interiorn point of A if there exists a
weakly open set V containing p such that V € A. The set of all

weak-interior points of a set A is denoted by WInt A.

It is clear that WInt A is the largest weakly open set
contained in A. It is also clear that WInt A = A if and only if

A is weakly open, and Int B <« WInt B for any set B « X.

LEMMA 2.28. Let (X, Tl,’f2) be a p-Lindelig space and C
be a weakly closed proper subset in (X,1,). Then C is To-Lin-
deld4 -
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Proof. Let C be a nonempty T,-weakly closed proper subset
of X and let B = {Va:a e A} be a T,-open cover for C. For each
x € X-C there exists a T,-open set H(x) such that x € H(x) and
H(x)NC is acountable set. Since C # ¢ and C # X, then
{Va:a e A} U {H(x):x € X-C} is a p-open cover for the p-Lindelsf
space X. Thus, there exists a countable set A1 < A and a count-

able set {xi,x ..} € X-C such that {Va:a (S Al} u {H(xl),H(Xz),-.}

5
is a countable2covermfor X. Since H(xi)n C is countgble for all
ie N, the set C[](%;QH(xi)) is countable, say Cl](%zéH(xi)) =

{yl’y2”"}' Since y; € C, there exists a, e A such that y; €
Vai' It is clear now that {Va:a & Al} U {Vd”:i.e N} is a count-

able subcover for C. Hence C is T2—Linde15f.

Since every closed set is weakly closed, we have the fol-

lowing corollary to Lemma 2.28.

COROLLARY 2.29. A Ti-c‘,@(med proper subset of a p-Lin-
delif space Ais rj—LLndeﬁié i1 £ 35 343 = 1.2).

Using a similar technique as above, we obtain the following::;:

COROLLARY 2.30. A Ti—derd propen subset o4 a p-compact !
Apace A8 Tj-compaot 1 F s 1,3 0,05

It is important to note that the word "proper'" in Lemma
2.28 can not be removed. For example, R is Tc—closed but R is

not Td—Lindele in example 2.16.

We now obtain four alternative characterizations of p-Lin-

delof spaces.

THEOREM 2.31. For the bitopological space (X,T,,T,) the
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following are equivalent:
(a) (X’T1’T2) L5 p-Lindeld.
(b) Every p-closed family with the countable intersection prope/t-
ty has nonemply Aintersection.
(c) For each non-empty set V in T, , the topology T o (V) & Lin-
delid, and gorn each non-empy Ae/t Vin T, , the Jtopoi_ogy
T, (V) s Lindeld .
(e) Each Tl-weakky closed proper subset of X Ab TQ—LLnde,P.()'é,
and each 12—weauy closed propen subset of X 4is rl-LLnde,Kb'ﬁ.
Proog. The fact that (a) is equivalent to (b) is obvious.
The equivalence of (a), (c) and (d) can be obtained in an anal-
ogous way to the proof of [2,Theorem 2]. The fact that (a) im-
plies (e) is due to Lemma 2.28. The fact that (e) implies (e)

is obvious.

An easy characterization of s-Lindeldf spaces can be

found in the following theorem.

THEOREM 2.32. A bitopological space (X,Tl,T2) L5 s-Lin-
delig 4§ and only if every T,T,-closed family with the count-
able intersection property has nonempty internsection.

THEOREM 2.33. let (X,T

be B-Lindelif. Then (XxY T1XT1,

15 T,) be B-compact and (Y Tl,T )
: XT2) 45 B-Lindelof.

EXAMPLE 2.34. Let Te denote the cofinite topology on
R. Then (R.T ) is p-compact. However, the space
(R TfXTf, d d) is not even p- Llndelof for the p-open cover
{Rx(R- {01} U {(%,0):xe R} of R’ has no Zountable subcover.

2.35 [9]. A space (X‘Tl’TQ) is said to be p-Hausdorff
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if, for any distinct points x and y, there is a Tl—neighbour-

hood U of x and a T.-neighbourhood V of y such that UN V = ¢.

2

We observe that if (X,T,,T,) is p-Hausdorff, then both T1

and T, are T,-topologies. The following theorem characterizes

2 1
p-Hausdorff spaces.

THEOREM 2.36. The following properties are equivalent:
(a) The bitopological space (X’T1’T2) 45 p-Hausdongg.
(b) For each x = X,

{x} = (ﬁ‘{Cl U :U_ is a T, neighbourhood of x}
o el 1o o 2
and
{x} = f\ {ClQUa:Ua is a Ty neighbourhood of x}.

oA
(c) The diagonal D = {(x,x):x e X} 48 a closed subset in each of
the product ftopologies (XXX,T,XT,) and (XXX, T, XT,).
Proog. (a) implies (b). Let x €X and y «X such that y # x.
-open set V., and a T,-open set V., such

1 1 2 2
, xeV, and V, n ¥: = ¢. This implies that y eCL,v,.

By (a) there exists a T
that y V1
This proves the first part of (b). The proof of the second part
of (b) is similar to the one we just proved.

(b) implies (c). Let (x,y) € XXX-D. Then x,y € X and x #
y. By the second part of (b), there exists a T,-open set U1
containing x such that y € X_C12U1' Let U2 = X—C12U1. Then U2
is a T,.-open set and it is easy to check that (x,y) U1XU2 =

2
XXX-D. Hence D is a closed set in the topological space

(XXX, T XT2). In a similar way we can prove that D is TXT, -

1
closed subset of XXX.

(c) implies (a). Let x,y « X such that x # y. Then (x,y)

eXxX-D. Since D is a TXT

X 2—closed set, there exists a Tl—open
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set U1 and a Tz—open set U2

such that (x,y) & U Ry, < XXX-D. It
is clear now that x €1U1, ye=u, and U1 n U =¢.

Recall that a space (X,T) in which every countable inter-

section of open sets is open, is called a P-space.

COROLLARY 2.37. Let (X,7,,T5)bea p-Hausdonrg§ P-space.
Then every Ti—unddb'é subset s Tj-oKOAed (i # 35 1.7 =1,2).
Proof. Let A be a Ti—Lindele subset and x € X-A. By

Theorem 2.36 we have

{x}

C:k{Clan:Da is a Tj neighbourhood of x}

(i # 93 i,j = 1,2). Since A = X-{x}, therefore {X - Cl;U,:0 A}
is a T,-open cover of the Ti-LindelSE set A. Thus there exists
a countable set A < A such that {X - Cl. U 0 e Al} is a cover

for ~ite . TAE k,/ X-Cl. U Let™HG = (N\ U . Then U is a
oA, aeh;

Tj~open set,contains x and U < X-A. Hence A is Tj—closed.

Using the same technique as above we obtain the following.

COROLLARY 2.38. Let (X,7,,7,) be p-Hausdorff. Then eve-
ny T.-compact subset 45 Tj—dOAQd % 953,90 =9,2)

2.39 [6]. In a space (X’T1’T2)’ T, 45 sadd to be regulan
with nespect Zo T, if, for each point x in X and each T,-closed
set P such that x7£ P, there are a T,-open set U and a T,-open
set V such that x e U, Pc Vand UNV = ¢ .

(X’T1’T2) is p-tegulan if T, is regular with respect to

T2 and vice versa.

2.40 [9]. In a bitopological space (X,T , we say that

1:To)
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T, A4 coupled to T, iff for all Ue T,» C1,U =CL,U.

It is interesting to note that if 1% is regular with re-

spect to T, and T, is coupled to Ty» then Ty =Ty Thus, if

2
(X’Tl’TQ) is p-regular and T, is coupled to Tj (1 #£3, 1.3 =
1,2) then T, 5T, ' '
It is also interesting to note that if T, is coupled to T, and
1

1

and the resulting single topology is regular.

1 1
T, is regular with respect to T, then (X,Tl) is regular.
2.41 [6]. A space (X,Tl,Tz) is said to be p-norumal if,
given a Tl—closed set C and a T2—closed set F such that CNF = ¢,
there are a T,-open set G and a T,-open set V such that F < G,

Cc Vand V NG = ¢,

THEOREM 2.42. Everny p-reguwlar, p-Lindelif bitopological
space (X, Tl,‘l.'z) A5 p-noumal.

Bﬁggﬁ, Let A be a nonempty Tl—closed set and B be a non-
empty T2—closed set with AN B = ¢. Since (X,Tl,T2) is p-regular
for each a € A, there exist a T,-open set Ga and a Tl—closed set
Pa with a « Ga c Fa < X-B. Also, for each b « B, there exist a
T,-open set Cb and a T2—closed set Mb with b e::Cb < Mb = X-A.

Let €2 {Cb:b e B} U {X-B} and & = {Ga:a A} U {x-A}. Since €
and € are p-open covers for the p-Lindeldf space X, there
exist countable subcollectlons {Cl’ s ..} of € and {Gl’G2’°"}

of € such that A « \,)G and B \,}C Let V1 = C, and, for

=1 i’ n=1
each positive 1nteger o APl AR U i BN Cn - \_}Fi . For each
i=1
p051?ive integer n, let H =G - L;{Mi' Let V = k,ivn and
= k“)Hn' Then V = Tl’ He 12, A< H and B < V. Furthermore,

x e«H NV, then x é Hm N Vn for some m and n, and so
m n-1
x< (6 - UM, N (c_ - \F.). Considering separately the
m 4=11 o= 4
cases m > n and m € n yields a contradiction and so Hn V = ¢.
Thus (X,Ti, ) is p-normal. g
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Let X be a fixed nonempty set, and
BX = {(X,T,T"):Tand ' are topologies on X} .
Define the partial ordering < on BX by:

] ] 3 ] 1
(X,Tl,TQ) < (X,Tl,rz) iff ,eT and T, < T, -

Then we have the following theorem.

THEOREM 2.43. Let £ = {(x,1,1") =B, :(X,T,1') 48 a
pLlindeli§ P-space} and #={(x,t,t") € By: (X,T,T') 44 a p-Haus-
dongg p-space}. If (x,1,,1,) «dn ¥, then (X,T,5T,) 48 a mi-
nimal elLement of ¥ and a mxﬂm@ element of 1.

6. Suppose (X, Tl’T ) e # such that (X, T ;)-s (X,Tl,T2

Therefore Tl C:’L'1 and T2c:T2. Let G = Tl—{¢} Then X-G is a

Tl—closed proper subset of X. Since (X, Ti,T ) is p-Lindelof, by

Corollary 2.29, X-G is T2—Linde13f. But r2 ©1,. Therefore X-G

is T;—Lindelsf. Since (X,Tf,Tg) is p-Hausdorff P-space, by corol-
lary 2.37, X-G is Ti-closed. Hence G EITI. Consequently T, = TI.
In a similar way we can show that I3 " Tg.
Now, let (x,r & ) e? such that (X,1,,T,) < (X, T T )

Then T, c'ri and T, C:T2 Let U T —{¢} Then X U is a Tl—closed
proper subset of X. Since (X, T 4T ) is p-Lindelof, by Corollary
2.29, X-Uois*T —Llndelof But T2 C‘Tz. Therefore X-U is 12—L1nde—
1of. Since (X, Ty5T5 ) is p-Hausdorff P-space, by corollary 2.37,
X-U is Tl—closed. Hence U e:“r1 Consequently T =Ty In a simi-
1

lar way we can show that Ty = Ty
Using the same technique as above we obtain the following

theorem.

THEOREM 2.44. Let @ = {(X,1,7') =B,:(X,T,T ) 44 p-com-
pact}, and #H = {(x,7,7) eZ‘BX:(X,T,T') 45 p-Hausdonggl. 14
(X,7007,) = €N H, then (x,7 .1, & a mindmal element of ¥ and
a maximal elLement of €.

2.45 A function f:(X,Tl,TQ)‘*(Y,Ol,OQ) is p-continuous
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(p-open, p-closed, p-homeomorphigmrespectively) iff £:(X,T,) =
(Y,Ol) and f:(X,T2) > (Y,Gz) are continuous (open, closed, homeo-

morphism, respectively).

THEOREM 2.46. Llet f:(x,rl,r2) > (Y,01,02) be a p-contin-
uows onto map.
(a) I§ (X,T4,T,) 44 p-Lindelif (s-Lindelif, B-Lindelif, respec-
tiveky), (Y,0,,0,) 44 p-Lindelif (s-Lindeliq, B-Lindelif, res-
pectively) .
(b) 14 (X,Tl.,TQ) L5 p-compact (s-compact, B-compact, respective-
Ly), then (Y,01,02) L8 p-compact (s-compackt, B-compact, hrespec-
tively).
(c) 14 £ 48 one-to-one, (Y, 01,02) 48 p-Hausdorng§ P-space and
(X,7,,1,) 44 p-Lindeld§, then £ is a homeomornphism.
(d) 1§ £ 45 one-to-one, (Y,01,02) 45 p-Hausdorg4 and (X,Tl,T2)
45 p-compact, then £ 4is a homeomornphism.

Egg_ﬁ.(a)ha:§’={vd:a e A} U {Ua:a e A} be a p-open cover
of V such that V, 0y 9 (a€A). Then
{fl(Vu):a.E A} U {fl(Ua):a e A} is a p-open cover of X because

and Ua ==}

f is p-continuous and onto. Since (X’Tl’TQ) is p-Lindelof, there
exists a countable set A1 < A such that

{fl(Va):OtEAl} U {fl(Ua):aEAl} is a cover for X. Thus

{Va:aiE Al} U {Ua:a s Al} is a countable subcover of € for X.

The remaining parts of the statement (a) are similarly proved.
(b) The proof is similar to that in (a).

(¢c) It suffices to show that f is p-closed. Let A be a Tl—closed
proper subset of X. Then, by Corollary 2.29, A is T2—Linde15f.
Hence f(A) is 0,
By Corollary 2.37, f(A) is o,
that the image of every T2—closed subset of X is a Oz—closed

-Lindelof because f:(X,TQ) > (Y,02) is continuous.

-closed. Similarly, it can be shown

subset of Y. Hence f is p-closed.

(d) The proof is similar to that in (c).

50



3. Conditions under which a bitopological space is

reduced to a single topology.

THEOREM 3.1. Let (X.T7,,7,) be a Hausdorfg p-Lindelf
p-space. Then T ity
Proog. Let G €;11-{4>}. Then X-G is a T

set of X. By Corollary 2.29, X-G is T

l—closed proper sub-

2—Linde15f. By Corollary

2.37 we have: "every Lindelof subset of a Hausdorff P-space
(X,T) is closed". Thus X-G is T2—closed, i.e. G = T,. Hence

Tl - T2. Similarly we have T2 <1 Consequently Ty = Ty

THEOREM 3.2. Let (X,T1,12) be a compact p-Hausdords
space. Then T, = T

1 2

Proog. Let G = T,- Then X-G is a T,-closed subset of the
compact space (X’Tl)' Therefore X-G is Tl—compact. By Corollary
2.38, X-G is Tz—closed, i.e. G Tye Hence Ty < T, Similarly
we have Ty =Ty Thus Ty = Ty

LEMMA 3.3. let (X,T,,T,) be a p-Lindelof space and Let
F be a Tl-weak/@y closed set such that Wint,(X-F) # $. Then F 44
Tl—Linde£56.

Proog. Let qe WIntQ(X—F). Then there exists a T,-open set

2
G containing q such that G N F is a countable set. Let € =
{Ca:u.z A} be a Ty

exists a T,-open set H(x) containing x such that H(x) N F is a

countable set. Since {Ca:a«z A} U {6} U {H(x):x e X-F} is p-open

-open cover for F. For each x € X-F there

cover for the p-Lindeldf space X, there exist two countable sets

Al c A and {xlx ...} € X-F such that

2’
{Ca:a €:A1} ud{et U {H(xl), H(xg),".}is a cover for X.

[o o]
Since H(xi) N F is countable, the set FN (ku}H(xi)) is countable,
i=%
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say {yl,yQ,...}. Let 0, < A such that ' e:Cai (i €N). Then
{Ca;a G:Al} U {Ca_;LEIN} is a countable subcover of @, Jeses F is
i

Tl—Lindele.

We can use the same technique as above to conclude the fol-
lowing theorem (We replace the word "countable'" by the word

"empty" in the proof of Lemma 3.3).

THEOREM 3.4. Let (X,Tl,'l'z) be a p-compact space and Let
F be a 1 -closed set such that Int,(X-F) # ¢. Then F is 1 -com-
pact.

EXAMPLE 3.5. In the p-Lindeldf space (R,Td,rc), R is a
Td—closed set which is not Td—Lindele. This shows that
"WInt,(X-F) # $" is a necessary condition in Lemma 3.3.

THEOREM 3.6. Let (x,rl,-rQ) be a p-Hausdornff p-Lindeldf
space, and Let U be a rl—wwk,l’_y open set containing a gixed point
p. Then
(a) there em/tmrl-open sets C.(i € N) and a Tl—d_ozsed set F such

Zhat p e:OCic F < U; and;
(b) either p ela}.Q(X—U), on, there exist T,-open sets G, (1<m
and a Tl-c&med set F such that p éGi eF ol

Proog. (a) Since pe U and U is Tl—weakly open set, there
exists a T,-open set A such that p e A and A-U is a countable set.
For each x & X-U there exist a T,-open set B(x) and a T,-open set
G(x) such that x € G(x), p € B(x) and B(x) N G(x) = ¢. Let D(x) =
A B(x). Then pe D(x), D(x) = Ty D(x) N G(x) = ¢ , and

D(x)-U is a countable set. Since X-U is a Tl—weakly closed proper

subset of the p-Lindeldf space X, by Lemma 2.28, X-U is T2—Linde—
18f. Therefore the T,-open cover {6(x):x = X-U} has a countable
subcover {G(X1)’G(x2)3"'} . Since D(xi)—U (i =N) is a count-
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able set, the set \,)D(x )-U is countable, say {yl,yQ,...}. Let
C; = D(x )- {y;} (1 c N) Then C, (ie N) is a T,
because (X ;T ) Ty T ,-space. Let F = (ﬁ\X G(x ) Then

(ﬂlcmc;(x) beorall]ew Hence(f\c)n(UG(x)) ¢
1=

-open set

e}

(\(2 < :E. . Sirce {G(x ):je li} is a cover for X-U, then

FcU. Hencepemc crECH:
i=1

(b) If p = ClQ(X—U), then we are done. Suppose p ﬁ:ClQ(X—U).

Therefore p & Int U, i.e. Int2(U) # . By Lemma 3.3, X-U is

Tl—Lindele. For2each x € X-U there exist a T,-open set C(x)
and a T,-open set G(x) such that p € G(x), x € C(x) and

Cf{x) A Glx) = ¢ .. The T,-open cover {C(x):x € X-U} has a count-
able subcover {C(x ) C(xg),...} . Let G G(xi) and F =

(\1x C(x;). Then pe r‘\G PR,
1=

Using the same technique as in the proof of Theorem 3.6,

we get the following theorem.

THEOREM 3.7. Let (X,T,,T,) be a p-Hausdorf4 p-compact

Adpace and, Let U be a T,-open set containing a fixed point p.

Then

(a) there exist a T -open et C and a T -closed set F such that
peCcFcU, and

(b) either p e C1,(X-U) orn there exist a T,-open set G and a

Tl-doéed set F Auch that pe G Fc U.

COROLLARY 3.8. A p-Hausdorfq p-compact space 45 p-ne-
gular (and hence, by Theorem 2.42, 45 p-nowmal).
Proog. Use Theorem 3.7 (a).

COROLLARY 3.9. A p-Hausdorff p-Lindelif p-space 4is
p-tegularn (and hence, by Theorem 2.42, s p-nommal).
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Proog. Use Theorem 3.7 (a).

COROLLARY 3.10. Let (X,T,,T,) be a p-Hausdorfg p-compact
dpace. I Int,U # $ forn all U e 11-{X}, then 1, < 1,.

Proog. Let U e:Tl-{X}. Then X-U is a T,-closed set with
Int2U £ o . By Theorem 3.4 X-U is T
ry 2.38, X-U is T

1—compact. Hence, by Corolla-

2—closed, i.e. U e‘r2.

COROLLARY 3.11. Let (x,rl,rz) be a p-Hausdonrdg p-compact
space. 1§ Int,U # ¢ for all U €1,-{x}, and Int,V # ¢ for all
Ve 12-—{X}. Then Ty = Toe

Proog. Use corollary 3.10.

It is interesting to note that Cooke and Reilly [2] obtain-
ed a theorem [2, Theorem 4] for B-compact, s-compact and bicompact
spaces but did not get any analogous result for p-compact spaces.
For this reason, Corollary 3.11 is an extension of the result [2,

Theorem u]

COROLLARY 3.12. let (X,T,,T,) be a p-Hausdonfg p-Linde-
L6 P-space. If Int,U # ¢ for all U et1,-{X}, and Int,V # ¢
for all v e 1,-{x}, then 1, = T,.

1
Phro 6. Let U e:Tl—{X}. Then X-U is a Tl—closed set with
Int,U # ¢. By Lemma 3.3 X-U is Tl—Lindele. Hence by Corollary

2.37, X-U is a T,-closed set, i.e. U EZT2. Thus T, = T2. Similar-

2
ly we can prove T, =Ty Thus Ty = Tye

THEOREM 3.13. Let (X,Tl,TQ) be a p-Hausdorfq space and
(X’T1) a Lindelig space. Let U be a rl-weak,@g open set and
p « U. Then there are T,-open sets G, (ieN) and a I‘l—o@OAed
set F such that p e éGi cF cU.
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Proof. For each x € X-U there exist a T,-open set G(x)
and a T,-open set H(x) such that x « H(x), pe G(x) and
G(x) N H(x) = ¢ . Since X-U is a T,-weakly closed set in the

1
Lindelof space (X,T,), therefore X-U is T,-Lindelof. Thus the

1
T,-open cover {H(%):x « x-U} has a countable subcover
{H(Xl)’H(XQ)""}’ Let F = (ﬂ\X H(x ). Then F is T,-closed and
F = U. Take Gi = G(xi) Then p e fﬁ\G cF cU.
i=1
Using a similar technique as above we can prove the fol-

lowing theorem.

THEOREM 3.14. Let (X,Tl,TQ) be a p-Hausdorgq space and
(x,74) a compact space. Let U be a T,-open set and pe U. Then
there are a T,-open set G and a T -closed set F such that
p €6 & Fic U,

COROLLARY 3.15. If (X,7,,7,) 44 a Lindelif p-Hausdorfs
P-space, then Ty =1 T
Proof. Use Theorem 3.13.

Since every B-Lindeld8f (s-Lindel®8f) space is Lindeldf, we

have the following corollary.

COROLLARY 3.16. I (X,‘l‘l,T2) 45 p-Hausdornfg P-space
and either B-Lindelof on s-Lindelif, then T, = T,.

As a corollary to Theorem 3.14 we have the following re-

sult (see [2, Theorem 4]).

COROLLARY 3.17. 1f (X,T,,T,) 44 p-Hausdonff and either

B-compact orn s-compact, then T 1.5 oy
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4, Conclusion. As we noted , our results in this paper are

generalizations of well-known classical theorems as well as ex-
tension of some theorems in the literature.

Naturally, any result stated in terms of T, and T, has a
'dual' in terms of T, and Ty The definitions of separation and
covering properties of two topologies T, and Tss such as p-Haus-
dorff and p-Lindelof, of course reduce to the usual separation
and covering properties of one topology Tl, such as Hausdorff
when we take Ty = Ty and the theorems quoted above then yield
as corollaries the classical results of which they are generali-
zations.

As an example of theorems which yield well known classical
results are theorems 2.15, 2.33, 2.36, 2.42, 2.43, 2.44 and 2.46.

Theorem 2.8 is an analogue to [2, Theorem 1] while Theorem
2.3 (a,c,d) is an analogue to [2, Theorem 2]. We notice also
that Corollary 3.11 is an extension of [2, Theorem 4]. Theorem
3.7 (a) implies the results in [4, Theorem 12 and 13] and [7,
Theorem 2.18]. It is also clear that Corollary 2.30 is an anal-
ogue to [7, Theorem 2.9] and Corollary 2.38 is an analogue to

[7, Lemma 2.11]. It is clear too that Theorems 2.8, 2.42 and
Corollary 2.20 imply the result in [6, Lemma 3.2].
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