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o PAIRWISE LINDELOF SPACES
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A B ST RA CT. In this paper we define p:rirwiseLindelof
spaces and study their properties and their relations
with other topological spaces. We also study certain
conditions by which a bitopological space will reduce to
a single topology. Several examples are discussed and
many well known theorems are generalized concerning Lin-
delof spaces.

RESUMEN. En este articulo se definen espacios p-Lin-
delof y se estudian sus propiedades y relaciones con
otros tipos de espacios topologicos. Tambien se estudian
ciertas condiciones bajo las cuales un espacio bitopologi-
co (con dos topologias) se reduce a uno con una sola topo-
logla. Se discuten varios ejemplos y se generalizan va-
rios teoremas sobre espacios d~ Lindelof.

1. I nt roduce ion. Kelly [6] introduced the notion of a bito-
pological space, i.e. a triple (X,T1,T2) where X is a set and
T1, T2 are two topologies on X, he also defined pairwise Haus-
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dorff, pairwise regular, pairwise normal spaces, and obtained
generalizations of several standard results such as Urysohn's
Lemma and the Tietze extension theorem. Several authors
have since considered the problem of defining compactness for
such spaces: see Kim [7], Fletcher, Hoyle and Patty [4], and Bir-
san [1]. Cooke and Reilly [2] have discussed the relations be-
tween these definitions.

In this paper we give a definition of pairwise Lindelof
bitopological spaces and derive some related results.

We will use p- , s- to denote painw~e and ~emi-, respect-
ively, e.g. p- compact, s- compact stand for pairwise compact
and semi-compact respectively.

The L.-closure, L.-interior of a set A will be denoted by
l l

and IntiA respectively. The product topology of L1 and L2
be denoted by L1xT2.

Let R, I, N denote the set of all real numbers, the inter-
val [0,1], and the natural numbers respectively. Let Ld, L , L ,u c
Ll' Lr denote the ~enete, U6ual, ~o~ountable, lent-~y and
kigth-~y topologies on R (or I).

Cl.A
l

will

,

2. Pairwise Linde15f Spaces. Let us recall known defini-
tions which are used in the sequel.

2.1 [4J. A cover ~of the bitopological space (X,L1,L2)
is called L1L2-0pen if 'U.. eLl U L2' If, in addition, u.. contains
at least one non-empty member of L1 and at least one non-empty
member of L2, it is_called p-open.

2.2 [4]. A bitopological space lS called p-~ompa~ if
every p-open cover of the space has a finite subcover.
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2.3 [3]. A bitopological space is calle s-~ompact if eve-
ry T1T2-open cover of the space has a finite subcover.

2.4 [1]. A bitopological space (X.T1.T2) is called T1 ~om-
pact with nehpect ~o T2 if for each T1-open cover of X there is
a finite T2-open subcover.

2.5 [1]. A bitopological space (X. T1.T2) is called
B-eompact if it is T1 compact with respect to T2 and T2 compact
with respecto to T1.

If we replace the word "finite" by the word "countable" in
definitions 2.2, 2.3 and 2.4, then we obtain the definition of
p-Lindelofi, s-Lindelofi, and (X,T1,T2) ~ T1 Lindelofi with ne-

~pect ~o T2, respectively.

2.6 A bitopological space (X,T1,T2) is called B-Lindelon
if it is T1 Lindelof with respecto to T2 and T2 Lindeloff with
respecto to T1.

It lS clear that (X,T1,T2) is s-Lindelof if and only if
(X,T)is Lindelof where T is the least-upper-bound topology
of T1 and T2. It is also clear that if (X,T1,T2) is B-Lindeloff
then each (X,T.) must be a Lindelof space for i = 1,2.

l

2.7 Wh~n we say that a bitopological space (X,T1,T2) has
a particular topological property, without referring specially
to T1 or T2, we shall then mean that both T1 and T2 have the
property; for instance, (X,T1,T2) is said to be Hausdoff if
both (X,T1) and (X,T2) are Hausdorff.

THEOREM 2.8. The bdopofogiea1. !.lpaee r x, T l' T 2) i!.l e-Lin-
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delCi6 -<-6 and only -<-6 d ~ Li.-nde1.o6 and p-Li.-ndelCi6·
P~oo6. Necessity follows inmediately from the observation

that any p-open,Ll-open or L2-open cover of (X,Ll,L2) is
pen. Conversely, if a L1L2-open cover of (X,Ll,L2) is
p-open, then it is Ll-open or L2-open.

L L -0-1 2
not

EXAMPLE 2.9. The bitopological space (IR,Ld,Lc) is p-Lin-
delof but is not s-Lindelof.

EXAMPLE 2.10. Consider the two topologies L l' L 2 on R
defined by the basis

~l = {(-ro,a):a > O} U {{x}:x > O} , and

~2 = {(a, ro):a < O} U {{x}:x < O} .

Then (IR,Ll,L2) is p-Lindelof but is not Lindelof. It is also
clear that (R,Ll,L2) is not B-Lindelof, for the Ll-open cover

.{(-ro,l)} U {{x}:x ~ l} of R has no countable L2-open subcover.

2.11 [8J. A bitopological space (X,Ll,L2) is called
p-Qountably 'Qompact if every countably p-open cover of X pas a
finite subcover.

2.12 A bitopological space (X,Ll,L2) is called S-Qount-
able Qompact if every countably L1L2-open cover of X has a fin-
ite subcover.

2.13 A bitopological space (X,Ll,L2) is called Ll-Qount-
ably Qompact with ~~pect to L2 if for each countably Ll-open
cover of X there is a finite L2-open subcover.

2.14 A bitopological space (X,Ll,L2) is called B-QOunt-
albtj Qompact if it is L1 countably compact with respect to L2
and L2 countably compact with respecto to Ll.

The following fact is obvious:
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THEOREM 2.15. (i) EvVty p(Jte-6p. s ,B)-compact -6pace J.A

p(Jte-6p. s B)-c.ountably compact and p(Jte-6p. s B)-Lindelon.
(ii) EveJty p(Jte-6p. s,B)-countably compact p(Jte-6p. s,B)-Linde-

lo n -6pace J.A p (Jte-6P. s, B) - compact.

EXAMPLE 2.16. The bitopological space (R,Ld,L
C

) is a
p-Lindelof space which is neither p-countably compact nor p-com-
pact.

EXAMPLE 2.17. Let Ls denotes the Sorgenfrey topology
on R. Then the bitopological space (R,L ,L ) is s-Lindelofu s
but is not B-Lindelof, because the L -open cover {[-n,n):n EN}s
of R has no L -open countable subcover. It is also clear that

u
the space (R,L ,L ) is neither s-countably compact nor s-compact.u s

EXAMPLE 2.18. It is clear that the bitopological space
(N,Ld,Ld) is B-Lindelof but is neither B-countably compact nor
B-compact.

THEOREM 2.19. In (x ,L l' T 2) J.A a hVteciUaJty Lindelo n

-6pace -then d i-6 s- Lindelo n .
PftO06. Let <e = {Ua: a E i\} U {VS:S e; I"] be a L1L2-open

cover of X, where Ua e: L1 for each a e: I\. and VS e: L 2 for each
BE f. Since U = U{Ua a e: I\.} is L1-Lindelof, there exists a
countable set 1\.1c I\. such that U = U{ua:a e: 1\.1}' Similarly,
since V = U{VS:S E r} is L2-Lindelof, there exists a countable
set f1 c f such that V = U{VS:S e: f1}.,It is clear that
{U :a € I\. } U {VS:S e: f } is a countable subcover of ~ for X.a 1 1

COROLLARY 2.20. EvVty sesiond countable bdopologic.al
-6pace J.A s - Undelo 6 .
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EXAMPLE 2.21. Let X = RXI and < be the lexicographical
order on X. Let

~1 = {[x,y):x < y ; x,y E X} and ~2 = {(x,y]:x < y ; x,y EX}.

Let T1,T2 be the topologies on X which generated by the basis ~1
and ~2' respectively. Then (X,T1,T2) is a Lindelof space which
is not p-Linde16f, because the p-open cover

{ [( a ,x ) , (1,x )) , ( (a ,x ) , O,x)] :x E Id

of X has no countable subcover. It is clear that (X,T1,T2) is
neither s-Lindelof nor B-Lindelof.

EXAMPLE 2.22. Let X and T1 be the same as in example
2.21. Then the bitopological space (X,T1,T2) is not hereditary
Lindelof but it is s-Lindelof.

EXAMPLE 2.23. Let X = R, '81 = {X,{x}:x E X-{O}} and
~2 = {X,{x}:x E X-{l}}. Let T1,T2 be the topologies on X which are
generated by the bases ~1 and '82' respectively. Then (X,T1,T2)
is B-Linde16f, for any T1-open cover of X or any T2-open.cover
of X must contain X as a member. However, (X,T1,T2) is not p-Lin-
de16f, for the p-open cover {{x}:x E X} of X has no countable
subcover ,

We may summarize some of the above examples and theorems
by the diagram on tre nextpage (T stands for theorem while E stands
for example).

2.24 [7J. If T is a topology on X and A is a non-empty
subset of X then the adjoint topology (denoted by T(A)) is the
topology on X defined by T(A) = {¢,X} U {AUB: BET}.
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NO E2.23

B-Lindelofs-Lindelof o:;:----------------.~

YE

T2 8 E

NO E2.17

I
p-Lindelof ----------------~NO E2.10

o

2.21

Lindelof

2.25 A family 7of nonvoid subsets of X is T1T2-closed if
every member of Y is T1-closed or T2-closed.

2.26 [8]. A family 1of nonvoid T1- or T2-closed sets
in X is p-cto~ed if 1contains members F1 and F2 such that F1
is a T1-closed proper subset of X and F2 is a T2-closed proper
subset of X.

2.27 [6]. A set U in a topological space (X,T) lS called
weakly ope~ if for any p E U there exists an open set V contain-
ing p such that V~U is a countable set. A set F is called weak-
ly arosed if X-F is weakly open. If A is a subset of X and p EX,
then p is called a weak-~ntenio~ po~ of A if there exists a
weakly open set V containing p such that V cA. The set of all
weak-interior points of a set A is denoted by WInt A.

It is clear that WInt A is the largest weakly open set
contained in A. It is also clear that WInt A = A if and only if
A is weakly open, and Int B cWInt B for any set B eX.

LEMMA 2.28. Let (X, T1,T2) be a p-L~~de1.o6 -6pac.e.a~d c

be a weakly crosed p~op~ .6ub~et i~ r x, T1)' The~ c ~ T 2-L~~-

de1.°n·
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P~o06. Let C be a nonempty L1-weakly closed proper subset
of X and let ~ = {va:a E A} be a L2-open cover for C. For each
x E X-C there exists a L1-open set H(x) such that x e: H(x) and
H(x) n C is a countable set. Since C ~ ~ and C f. X, the n
{V :a EA} U {H(x):x E X-C} is a p-open cover for the p-Lindelofa -
space X. Thus, there exists a countable set A1 c A and a count-
able set {x1,x2, ...} c X-C such that {va:a E A1} U {H(x1),H(x2),··}
is a countable cover for X. Since H(x. )n C is countable for all

00 l 00

ie: lN, the set Cn(UH(x.)) is countable, say CO(UH(x.)) =i=1 l i=1 l

{Y1'Y2, ...L Since Yi e: C, there exists ai e: A such that Yi e:

Vai' It is clear now that {va:a e: A1} U {Va.:i e: W} is a count-
l

able subcover for C. Hence C is L2-Lindelof.

COROLLARY 2.29.

delCi 6 -6pac.e £6 L j- LLndelCi 6
A L i-uo-6ed p~op~ -6ub-6eX. 06 a p-L{.n-

(i f. j; i,j = 1,2).

Since every closed set is weakly closed, we have the fol-
lowing corollary to Lemma 2.28.

Using a similar technique as above, we obtain the following;;;

COROLLARY 2.30. A Li-uo-6ed pftOP~ -6ub-6eX. 06 a p-c.ompact~~~

~pac.e i6 Lj-c.ompact (i f. j; i,j = 1,2).

It is important to note that the word "proper" in Lemma
2.28 can not be removed. For example, R is L -closed but R isc
not Ld-Lindelof in example 2.16.

We now obtain four alternative characterizations of p-Lin-
delof spaces.
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OoUowing Me. e.qLUVa£e.ru:.:

(a) (X,11,12) ~ p-Lindel0n.
(b) Ev~y p-clo~e.d oamity with the. countable. int~eetion p~op~-

ty ha6 nonempty iru:.~ eetio n,

(c) Fo~ each non-empty ~et V in 11, the topology T2(V) ~ Lin-
delao, and oo~ each non-empy ~et v in T2, the topology

11(V) ~ Lindeloo·
(e) Each 11-weak1.y clo~e'd p~op~ ~u.b~et 00 X cs T2-Lindelein,

and each 12 -we.ak1.y clo~ ed p~op~ .6u.b~et: 0 -6 X ~ T1- Lindelo -6.
P~006. The fact that (a) is equivalent to (b) is obvious.

The equivalence of (a), (c) and (d) can be obtained in an anal-
ogous way to the proof of [2,Theorem 2]. The fact that (a) im-
plies (e) is due to Lemma 2.28. The fact that (e) implies (e)
is obvious.

An easy characterization of s-Lindelof spaces can be
found in the following theorem.

THEOREM 2.32. A bitopologiea£ ~pace (X, 1 l' T2) ~ s-Lin-
delan io and only io e.v~y T112-clo~ed oamity w..{;ththe count-
able inteM e.etio n pM p~y hiu. nonempty iru:.~ eetio n.

THEOREM

be B- Lindela O.

, ,
2.33. Let (X,T1,12) be B-compaet and (Y,T1,12)
Then (Xxy,11x1~,12X1;) ~ B-Lindela6.

EXAMPLE 2.34. Let 1f denote the cofinite topology on
R. Then (R,lf'ld) is p-compact. Howeve·r, the space
(R2,lfX1f' ldX1d) is not even p-Lindelof, for the p-open cover
{R x(lR- {O})} U {( x, 0) :x e::: IR} of jR2 has no countable subcover.

2.35 [9]. A space (X,11,12) is said to be p-Ha~do~oi
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if, for any distinct points x and y, there is a l1-neighbour-
hood U of x and a l2-neighbourhood V of y such that·U n V = ~.

We observe that if (X,ll,l2) is p-Hausdorff, then both l1
and l2 are T1-topologies. The following theorem characterizes
p-Hausdorff spaces.

THEOREM 2.36. The. ooUow-lng ptwpeJLtie.J.> aJte. e.qtU.val.e.n-t:
(a) The. b,[topofog-lQal. ~paQe. (X,l1,l2) ~ p-Ha~do~oO'
(b) Fo~ e.a~ x g X,

{x} = n{ci U : U
a. Et:. 1 a. a.

lS a l2 neighbourhood of x}

and

{x} = n {Cl U:U is a l1 neighbourhood of x}.
a. ez I: 2 a a

(c) The. diagonal. D = {(x,x):x g x} ~ a elo~e.d ~ub~e.t ,[n e.ach On
the. ptwduct topofog-le.J.> (XXX,l1Xl2) and (XXX,l2Xl1)'

P~oo6. (a) implies (b). Let x E X and y E X such that y i- x ,
By (a) there exists a l1-open set V1 and a l2-open set V2 such
that y e: Vl' X E V2 and V1 n V2 = 4>. This implies that y e: C11 ~2'
This proves the first part of (b). The proof of the second part
of (b) is similar to the one we just proved.

(b) implies (c). Let (x,y) e: XXX-D. Then x,y e: X and x i-
y. By the second part of (b), there exists al1-open set U1
containing x such that y e: X-C12U1· Let U2 = X-C12U1· Then U2
is a l2-open set and it is easy to check that (x,y) e: U1xU2 c

XXX-D. Hence D is a closed set in the topological space
(XxX, l1Xl2)' In a similar way we can prove that D is l2xl1-
closed subset of XxX.

(c) implies (a). Let x,y e: X such that x i- y. Then (x,y)
EXXX-D. Since D is a l{l2-closed set, there exists a l1-open
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set U
1

and a T2-open set U2 such that (x,y) E U1xU2 e XXX-D. It
is clear now that x e:: U

1
, Y e::U2 and U

1
n U2 = <jJ •

Recall that a space (X,T) in which every countable inter-
section of open sets is open, is called a p-~paQe.

Then ev~y T.-Lindelo6
l

P~006. Let A be a
Theorem 2.36 we have

.s uiis et: M T. - eros ed (i ~ j; i ,j = 1, 2 ) .
]

T.-Lindelof subset and x e::X-A. By
l

{x} = (\ {Cl.U:U is a T. neighbourhood of x}o,e::I::. l 0, 0, ]

(i ~ j; i,j = 1,2). Since A e X-{x}, therefore {X - Cl.U :0. e:: I::.}
l 0,

T.-Lindelof set A. Thus there exists
l

set 1::.1 el::.such that {X - CliUo,:a e:: 1::.1} is a cover
for A, i.e. A e U X-Cl.Uo," Let U = n U. Then U is aae::1::.1 l o,EI::.1a
T.-open set,contains x and U eX-A. Hence A is T.-closed.] ]

lS a T.-open cover of the
l

a countable

Using the same technique as above we obtain the following.

COROLLARY 2.38. Le;t (X,T1,T2) be p-Ha.u6doJz.66. Then eve-
f1.Y T. - Qompac.t -6 ub~ e;t M T. - ctM ed (i ~ j; i, j = 1,2).

l ]

2.39 [6] . In a space (X,T
1

,T2), T1 --L6 ~cu:.d to be Jz.egui.M
wUh Jz.e-6pea to T2 if, for each point x in X and each T1-closed
set P such that xl- P, there are a T1-open set U and a T2-open
set V such that x e::U, P e V and U n V = <jJ

(X,T1,T2) is p-Jz.egui.a.Jz.if T1 is regular with respect to
T2 and vice versa.

2.40 [9J. In a bitopological space (X,T1,T2), we say that
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It is interesting to note that if L1 is regular with re-
spect to L2 and L2 is coupled to L1, then L1 CL2. Thus, if
(X,L1,L2) is p-regular and Li is coupled to Lj (i I j, i,j =
1,2) then L1 = L2 and the resulting single topology is regular.

, r
It is also interesting to note that if L1 is coupled to L2 and

r r,
L1 is regular with respect to L2 then (X,L1) is regular.

2.41 [6] . A space (X,L1,L2) is said to be p-no!U11l:Lt if,
given a L1-closed set C and a L2-closed set F such that en F = ¢,

there are a L1-open set G and a L2-open set V such that F c G,
Cc V and V n G = <jJ.

positive integer n, let H
n

THEOREM 2.42. EveJty p-Jtegu1.aJt, p- Li.Yl.deio6 bdopologic.a1.
~pac.e (X, L1,L2) ~ p-no!U11l:Lt.

PJtoon. Let A be a nonempty L1-closed set and B be a non-
empty L2-closed set with An B = <jJ. Since (X,L1,L2) is p-regular
for each a E A, there exist a L2-open set Ga and a L1-closed set
F with a L G c F c X-B. Also, for each b E B, there exist aa a a
L1-open set- eband a L2-closed set Mb with b e: Cb c Mb eX-A.
Let e = {Cb:b E B} U {X-B} and ~ = {Ga:a EA} U {X-A}. Since e
and ~ are p-open covers for the p-e Li.ndeLof space X, there
exist countable subcollections {C1,C2, ...} of ~ and {G1,G2, ...}

00 00

of g such that A c; UG. and B c Ve .. Let V1 = C1 and, fori=1 l l=1 l n-1
each positive integer n > 1, let Vn = e - UF.. For eachn n i=1 l 00

UM.. Let V = Uvi=1 l n=1 n
Then VEL l' H liE L2 ' A cHand B c V. Furthermore,

= Gn
and

co

H = UH .n=1 n
-x E H n V, then x E H n Vn for some m and n, and somm n-1

x e: (G - U M.) n (C - U F .). Considering separately them i=1 l n i=1 l
cases m > nand m ~ n yields a contradiction and so H n V = <jJ.

Thus (X,L1,L2) is p-normal. •
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Let X be a fixed non empty set, and

'BX = {( X,T ,T '):T and T I are topologies on X} .

Define the partial ordering ~ on 'BX by:

Then we have the following theorem.

THEOREM 2.43. Let f = {( X,T ,T') E <EX:(X,T ,T ') b, a
p.LLnde1.on P-.6pac.eJ and jf = {( X,T ,T') e: 'Ex: r x, T ,T') b, a p-HalL6-
don66 p-.6pac.e}. 16 (X,T1,T2) E in 1/, then (X,T1',T2) b, a rni-

iU.ma1. e1.eme.nt 06 !f and a mlx.Una1. e1.emerz,t 06 i..
Pnoon. Suppose (X,T~,T~) Elf such that (X,T~,T~) ~ (X,T1,T2).

Therefore T~ c: T1 and T~ c:T 2' Let G e: T1-H}. Then X·-G is a
T1-closed proper subset of X. Since (X,T1,T2) is p-Lindelof, by

.-.Corollary 2.29, X-G is T2-Lindelof. But T; C:T2" Therefore X-G
is T~-Lindelof. Since (X,T~,T~) is p-Hausdorff P-space, by corol-
lary 2.37, X-G is T~-closed. Hence G e::T~. Consequently T1 = T~.
In a similar way we can show that T2 = T~.

Now, let (X,T~,T~) e::£ such that (X,T1,T2) ~ (X,T~,T;)., , ,
Then TiC: T1 and T 2 c: T2' Let U e:: Ti-a}. Then X-U is a T i-closed
proper subset of X. Since (X,T~,T~) is p-Lindelof, by Corollary
2.29, X-U is T~-Lindelof. But T2 c: T;. Therefore X-U is T2-Linde-
lof. Since (X,T1,T2) is p-Hausdorff P-space, by corollary 2.37,,
X-U is T i-closed. Hence U E: Tl' Consequently T1 = T t ' In a simi-

Ilar way we can show that T2 = T2.

Using the same technique as above we obtain the following
theorem.

, I

THEOREM 2.44. Let .re = {(X,T,T ) E'13X:(X,T,T ) b, p-c.om-
pad}, and Jf = {(X,T,T') E<EX:(X,T,T') Jv6 p-HalL6don66}. 16
(X ,T1 'T2) E e n Jf, then (X,T1 'T2) b, a mLvUmal. e.1emerz,t a 6 jf and
a maximal. e1.emerz,ta n ~.

2.45
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(p-op~n, p-cto~~d, p-hom~omo~phUm,respectively) iff f:(X,L1) +

(Y,01) and f:(X,L2) + (Y,02) are continuous(open, closed, homeo-
morphism, respectively).

THEOREM 2.46. Let f:(X,L1,L2) + (Y,01,02) be. a P-c.on..t.in-
uo lL6 0 VLtornp .
(a) Ifi (X,L1,L2) ~ p-Lindelofi (s-Lindelo6, B-Lindelo6, ~~p~c.-
tivefy), (Y,01,02) ~ p-Lindelo6 (s-Lindefo6, B-Lindelo6, ~~-
p~c.tivefy) .
(b) 16 (X,L1,L2) ~ p-c.ompact (s-c.ompac.t, B-c.ompac.t, ~~p~c.tiv~-
fy), then (Y,01,02) ~ p-c.ompac.t (s-c.ompac.t, B-c.ompac.t, ~~pec.-
tivefy) .
(c) 16 f ~ one-to-one., (Y, 01'02) ~ p-HaU6do~fi6 P-~pac.e. and
(X,L1 ,L2) ~ p-Lindefo6, then. f u a home.omo~pYU~m.
(d) Ifi f ~ one.-to-one., (Y,01,02) ~ p-HalL6do~6fi and (X,L1,L2)
~ p-c.ompac.t, the.n f ~ a homeomo~p~m.

PMo6. (a) let e= {va:a e:: Ll} U {ua:a e:: Ll} be a p-open cover
of V such that "« e:: 01 and Ua e:: 02 (a e::Ll). Then
-1 } {-1 }{f (V ):0'. e::.6. U f (U ):0'. e:: Ll is a p-open cover of X becausea a

f is p-continuous and onto. Since (X,L1,L2) is p-Lindelof, there
exists a countable set Ll1 C Ll such that
-1 } {-1 }{f (Va) :ae::Ll1 U f (Ua) :ae::Ll1 is a cover for X. Thus

{va:a e: Ll1} U {ua:a e:: Ll1} is a countable subcover of <e for X.
The remaining parts of the statement (a) are similarly proved.
(b) The proof is similar to that in (a).
(c) It suffices to show that f is p-closed. Let A be aLl-closed
proper subset of X. Then, by Corollary 2.29, A is L2-Lindelof.
Hence f(A) is O2-Lindelof because f:(X,L2) + (Y,02) is continuous.
By Corollary 2.37, f(A) is 01-closed. Similarly, it can be shown
that the image of every L2-closed subset of X is a O2-closed
subset of Y. Hence f is p-closed.
(d) The proof is similar to that in (c).
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3. Conditions under which a bitopological space is

reduced to a single topdldgy.

THEOREM 3.1. Let (X,L1,T2) be. a HaU6do!l.66 p-Undelo6

p-~pace.. The.n T1 = L2.
P!l.oofi. Let G E L1-{~}. Then X-G is a T1-closed proper sub-

set of X. By Corollary 2.29, X-G is T2-Lindelof. By Corollary
2.37 we have: "every Lindelof subset of a Hausdorff P-space
(X,T) is closed". Thus X-G is L2-closed, i.e. G E T2. Hence
L1 C L2· Similarly we have T2 CL1· Consequently T1 = L2.

THEOREM 3.2. Let (X,T1,T2) be. a compact p-HaU6do!l.66

~pace.. The.n T1 = T2.
P!l.oo6. Let G E T1. Then X-G is a T1-closed subset of the

compact space (X,T1). Therefore X-G is T1-compact. By Corollary
2.38, X-G is L2-closed, i.e. G E T2. Hence T1 C T2. Similarly
we have T2 C T1· Thus T1 = T2.

LE~1A 3. 3. Let (X, L l' L2) be. a p- Undelo fi ~ pace. and .f..e.:t
F be. a T1-we.aQty eio~e.d ~et ~uch that WInt2(X-F) 1 ~. The.n F ~
T 1-Unde..f..o6 .

P!l.oo6. Let q E WInt2(X-F). Then there exists a T2-open set
G containing q such that G n F is a countable set. Let ~ =

{Ca:a E 6} be a T1-open cover for F. For each x E X-F there
exists a T1-open set H(x) containi?g x such that H(x) n F is a
countable set. Since {Ca:a E 6} U {G} U {H(x):x E x-rI is p-open
cover for the p-Lindelof space X, there exist two countable sets
61 C 6 and {x1x2' ...} C X-F such that

{ca:a E61} U {G} U {H(X1), H(x2), ...} is a cover for X.
00

Since H( x.) n F is countable, the set F n (U H( x ,» is countable,
l i=1 l
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say {Y1'Y2' ... }. Let ui
{Cu:u e:61} U {CU{ie: N}

L1-Lindelof.

e 6 such that y. e::Cu. (i e:IN). Then
l l

is a countable subcover of e, i.e. F is

We can use the same technique as above to conclude the fol-
lowing theorem (We replace the word "countable" by the word
"empty" in the proof of Lemma 3.3).

THEOREM 3.4. Let (X, L l' L 2) be a p-e.ompact .opae.eand let

F be a L1-c..fo.oed.oet .oue.h that Int2(X-F) 1 ~. Then F ~ L1-e.om-
pact.

EXAMPLE 3.5. In the p-Lindelof space (IR,Ld,Lc)' 1R is a
Ld-closed set which is not Ld-Lindelof. This shows that
rrWInt2(X-F) 1 ~" is a necessary condition in Lemma 3.3.

THEOREM 3.6.

.opae.e,and let u be a

p. Then

( a) thvr.e.

that

Let (X,L1,L2) be. a p-Hau.odo~66 p-L~de.fo6

Li-weaU!! open .0 et: e.on.t.cUru.ng a 6-ixed po-<.nt

ewt
oo

L1-open sets

p e::nc. e Fe U;i=1 l

(b) ecthe»: p e::C12(X-U), on, thvr.e. ewt J,2-open.ow Gi Ci e::lN)
and a L 1-c..fo.oed set: F .oue.h that p e::QGi e FeU.

P~oo6. (a) Since p e: U and U is L1-weakly open set, there
exists a Li-open set A such that p e: A and A-U is a countable set.
For each x e: X-U there exist a L1-open set B(x) and a L2-open set
G(x) such that x e: G(x), p e: B(x) and B(x) n G(x) = ~. Let D(x) =
An B(x). Then Pe: D(x), D(x) e::Ll, D( x ) n G(x) = <f>, and
D(x)-U is a countable set. Since X-U is a L1-weakly closed proper
subset of the p-Lindelof space X, by Lemma 2.28, X-U is L2-Linde-
lof. Therefore the L2-open cover {G(x):x e: X-U} has a countable
subcover {G(x1),G(x2), ... } . Since D(xi)-U (i e: N) is a count-

Ci(i e: N) and a Ll-c..fo.oed.oet F .oue.h

and;
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00

able set, the set UD( x .)-U lS countable, say {Yl ,Y2, ...}. Leti=1 l

Ci = D(xi)-{yi} (i e: IN). Then Ci (ie:~) is a T1-open set
be~ause (X, T 1) is a T1-space. Let F = nX-G( x. ). Theni=1 00 l 00

((1C .) n G(x .) = ¢ for all j e: IN. Hence (n C .) n (U G(x . » = ¢
i=1 loo J i=1 l i=l J

i.e. (lC. e: F. Since {G(x.):j e: lfr} is a cover for X-U, then
i=1 l 00 J

F e: U. Hence p e: nC. e: F e: U.
i=l l

(b) If P e: C12(X-U), then we are done. Suppose p ~ C12(X-U).
Therefore p e: Int2U, i.e. Int2(U) ~ ¢. By Lemma 3.3, X-U lS

T1-Lindelof. For each x e: X-U there exist a T1-open set C(X)
and a T2-open set G(x) such that p e: G(x), x e: C(x) and
C(x) n G(x) = ~. The T1-open cover {C(x):x e: X-U} has a count-
able subcover {C(x1),C(X2), ...} . Let G. = G(x.) and F =

00 00 l l

(lx-C(x.). Then p e: (lG. e: Fe: U.
i=1 l i=1 l

Using the same technique as in the proof of Theorem 3.6,
we get the following theorem.

THEOREM 3.7. Let (X,T1,T2) be. a p-HalL6doJtoo p-c.ompact
~pac.e. and, let U be. a T1-ope.n ~et c.ontaining a oixe.d point p.
The.n
(a) the.Jte. e.~t a T1-ope.n se: C and a T2-uMe.d se: F such. that

p e: C e: F e: u, and
(b) eithe.Jt p e: C12(X-U) on: the.Jte. exist: a T2-ope.n sei: G and a

T 1- UM e.d ~et: F /.)uc.h that p e: G e: F C:: u.

COROLLARY 3.8. A p-HalL6doJt6o p-c.ompac.t ~pac.e. ~ p-Jte.-
gutaJt (and he.nc.e.~ by The.oJte.m 2.42, ~ p-noJtmal).

PJtooO' Use Theorem 3.7 (a).

COROLLARY 3.9. A p-HalL6doJtoo p-Linde.ioo p-~pac.e. ~
p-Jte.guiaJt (and he.nc.e., by The.oJte.m 2.42~ ~ p-noJtmal).
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P~oo6. Use Theorem 3.7 (a).

COROLLARY 3.10. Let (x;r1,L2) be. a p-Ha£L6do~66 p-c.ompae.t
~pac.e.. I6 Int2U 1 ¢ 6o~ all U E L1-{x}, then L1 C L2.

P~o6. Let U E L1-{X}. Then X-U is a L1-closed set with
Int2U 1 ~ . By Theorem 3.4 X-U is L1-compact. Hence, by Corolla-
ry 2.38, X-U is L2-closed, i.e. U E L2.

COROLLARY 3.11. Let (X, L l' L2) be. a p-Ha£L6do~6 6 p-c.ompae.t
~pac.e.. I6 Int2U 1 ¢ 6o~ all U EL1-{x}, and Int1V 1 ¢ 6o~ all
v « L2-{xL The.n. L

1
= L2.

P~oll' Use corollary 3.10.

It is interesting to note that Cooke and Reilly [2J obtain-
ed a theorem [2, Theorem 4J for B-compact, s-compact and bicompact
spaces but did not get any analogous result for p-compact spaces.
For this reason, Corollary 3.11 is an extension of the result [2,
Theorem 4] .

COROLLARY 3.12. Let (X,L1,L2) be. a p-Ha£L6do~66 p-Unde.-
106 p-~pac.e.. I6 Int2U 1 ~ 6o~ all U e: L1-{x}, and Int1V 1- t .
6o~ all V E L2-{X}, the.n. L1 = L2.

P~o6. Let U EL1-{xL Then X-U is a L1-closed set with
Int2U 1~. By Lemma 3.3 X-U is Ll-Lindel~f. Hence by Corollary
2.37, X-U is a L2-closed set, i.e. U EL2. Thus L1 C L2. Similar-
ly we can prove T2 c T1· Thus T1 = T2.

THEOREM 3. 13. Let (X, L l' L2) be. a p-Ha£L6do~6 6 ~ pac.e. an.d
( X,Ll)a Unde.lo 6 ~pac.e.. Let u be. aLl -we.ak£y 0pe.n. ~et: and
p e:: u. The.n. th~e CUte L2-OPe.n. ~W Gi Ci E IN) and a T1-c.lMed

- 00

~et F Midl that P E: (\ G. C FeU.
i=l l
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Pnno6. For each x E X-U there exist a T2-open set G(x)
and a T1-open set H(x) such that x E H(x). p E G(x) and
G(x) n H(x) = ~. Since X-U is a 11-weakly closed set in the
Lindelof space (X,T1), therefore X-U is 11-Lindelof. Thus the
T1-open cover {H(x):x ~ X-U}oohas a countable subcover
{H(x1),H(x2), ... L Let F = (lX-H(x.). Then F is T1-closed and

l=l ool
FeU. Take G. = G(x . ). Then p E (1G. c FeU.

l l i=l l

Using a similar technique as above we can prove the fol-
lowing theorem.

THEOREM 3.14. Let (X,T1,T2) be a p-HalL6doftnn .6pac.e and

(X,11) a c.ompact .6pac.e. Let u be a T1-open. sei: and p E u. Then

tit eJte a.Jte a T 2 - apen .6et: G an.d all - c.1.0.6 ed .6e;t F .6uc.h that

pEG c FeU.

COROLLARY 3. 15. In (x,« l' T 2) -i.J.> a Lin.de1..o6 p-HalL6doft6 n
p-.6pac.e, then 11 = T2.

Pftoo6. Use Theorem 3.13.

Since every B-Lindelof (s-Lindel~f) space is Lindelof, we
have the following corollary.

COROLLARY 3. 16. 16 (X, 11,12) -i.J.> p-Ha.lL6doft66 P-.6pac.e

and UtheJt B- Lindelo 6 Oft s- Unde1..o6, then. T1 = 12,

As a corollary to Theorem 3.14 we have the following re-
sult (see [2, Theorem 4J).

COROLLARY 3. 17. 16 (x , T 1' T 2) -i.J.> p-HalL6doft6 nand WheJt

B-c.ompact Oft s-c.ompact, then 11 = T2.
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4 • Con c 1 us ion. As we noted , our results in this paper are
generalizations of well-known classical theorems as well as ex-
tension of some theorems in the literature.

Naturally, any result stated in terms of T1 and T2 has a
'dual' in terms of T2 and T1. The definitions of separation and
covering properties of two topologies T1 and T2, such as p-Haus-
dorff and p-Lindelof, of course reduce to the usual separation
and covering properties of one topology T1, such as Hausdorff
when we take T1 = T2; and the theorems quoted above then yield
as corollaries the classical results of which they are generali-
zations.

As an example of theorems which yield well known classical
results are theorems 2.15, 2.33, 2.36, 2.42, 2.43, 2.44 and 2.46.

Theorem 2.8 is an analogue to [2, Theorem 1J while Theorem
2.3 (a,c,d) is an analogue to [2, Theorem 2]. We notice also
that Corollary 3.11 is an extension of [2, Theorem 4J. Theorem
3.7 (a) implies the results in [4, Theorem 12 and 13J and [7,
Theorem 2.18J. It is also clear that Corollary 2.30 is an anal-
ogue to [7, Theorem 2.9J and Corollary 2.38 is an analogue to
[7, Lemma 2.11J. It is clear too that Theorems 2.8, 2.42 and
Corollary 2.20 imply the result in [6, Lemma 3.2].
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