Revista Colombiana de Matemáticas Vol. XVII (1983), págs. 105 - 116

I3-7 ALGEBRAS

bу

Aldo V. FIGALLO

§ 1. Introducción. In this note we present an algebraic study of a fragment of the three-valued propositional calculus of Lukasiewicz, that is, we study from an algebraic standpoint the three-valued calculus where the characteristic matrix is given by the chain $T = \{0,1/2,1\}$ and the connectives \rightarrow (Lukasiewicz implication) and ∇ (possibility operator are given by the tables:

Q.	>>	0	1/2	1	ro-war b	х	∇x
	0	1	1	1		0	0
	1/2	1/2	1	1		1/2	1
	1	0	1/2	1		1	1

These algebras, called I_3 - ∇ algebras, play an analogous role to that of Boolean algebras for two-valued propositional calculus.

In 1968, A.Monteiro [16] introduced the notion of I_3

algebra as a system $(A, \rightarrow, 1)$ where A is a non empty set, 1 is an element of A, and \rightarrow is a binary operation defined on A fulfilling the following conditions for all $x,y,z \in A$:

I1
$$x \rightarrow (y \rightarrow x) = 1$$

I2
$$(x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z)) = 1$$

I3
$$(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x$$

I4
$$((x \Rightarrow y) \Rightarrow (y \Rightarrow x)) \Rightarrow (y \Rightarrow x) = 1$$

IS
$$((x \Rightarrow (x \Rightarrow y)) \Rightarrow x) \Rightarrow x = 1$$

I6
$$1 \rightarrow x = x$$
.

The same author has proved that the following properties are true in any ${\rm I}_{\rm Q}$ algebra:

I7
$$x \rightarrow 1 = 1$$

I8
$$x \rightarrow x = 1$$

I9
$$(x \rightarrow y) \rightarrow ((z \rightarrow x) \rightarrow (z \rightarrow y)) = 1$$

I10
$$x \rightarrow (x \rightarrow (x \rightarrow y)) = x \rightarrow (x \rightarrow y)$$

I11
$$x \mapsto (y \Rightarrow z) = y \mapsto (x \Rightarrow z)$$

- I12 The relation $x \le y$ if and only if $x \Rightarrow y = 1$ is a partial ordering on A, and 1 is the greatest element of A.
- I13 The element $x \ v \ y = (x \rightarrow y) \rightarrow y$ is the least upper bound of the elements x and y.

In addition, if we define a new binary operation → , called weak implication, as follows [22]:

$$x \rightarrow y = x \rightarrow (x \rightarrow y)$$

this operation has the following properties:

C1
$$x \rightarrow (y \rightarrow x) = 1$$
 and als Val belies esale as seed?

C2
$$(x \rightarrow (y \rightarrow z)) \rightarrow ((x \rightarrow y) \rightarrow (x \rightarrow z)) = 1$$

C3
$$((x \rightarrow y) \rightarrow x) \rightarrow x = 1$$

C4 (Modus Ponens) If x = 1 and $x \rightarrow y = 1$, then x = 1.

1.1. DEFINITION. An I_3 - ∇ algebra is a system $(A, \Rightarrow, \nabla, 1)$ such that $(A, \Rightarrow, 1)$ is an I_3 algebra and ∇ is a unary operation defined on A fulfilling the conditions:

$$\nabla 1 \quad x \rightarrow (x \rightarrow \nabla y) = \nabla (x \rightarrow y)$$

$$\nabla 2 \quad \nabla (\nabla x \rightarrow \nabla y) = \nabla x \rightarrow \nabla y$$

$$\nabla 3 \quad (x \Rightarrow y) \Rightarrow x = (\nabla x \Rightarrow \nabla y) \Rightarrow x.$$

As usual, the $I_3-\nabla$ algebra (A, \rightarrow , ∇ ,1) will be denote by the underlying set A.

The following result is a consequence of I1 to I13, $\nabla 1$. $\nabla 2$, and $\nabla 3$.

1.2. LEMMA. The following properties are true in any $\mathbf{I_3}\text{-}\nabla$ algebra:

$$\nabla 4 \quad \nabla 1 = 1$$

$$\nabla 5 \quad \nabla \nabla x = \nabla x$$

$$\nabla 6 \quad \nabla x \Rightarrow \nabla ((x \Rightarrow y) \Rightarrow y) = 1$$

$$\nabla 7 \quad \nabla x \rightarrow \nabla y = \nabla x \rightarrow (\nabla x \rightarrow \nabla y)$$

$$\nabla 8 \quad \nabla_X \Rightarrow \nabla y = \nabla(\nabla_X \Rightarrow y)$$

$$\nabla 9 \quad (x \rightarrow y) \rightarrow ((x \rightarrow y) \rightarrow (\nabla x \rightarrow \nabla y)) = 1$$

$$\nabla 10 \quad (\nabla x \rightarrow \nabla y) \rightarrow ((x \rightarrow (x \rightarrow y)) \rightarrow (x \rightarrow y)) = 1$$

 $\nabla 11 \quad x \leqslant \nabla x$.

- 1.3. EXAMPLE. Consider $T = \{0,1/2,1\}$ with the operation defined in the introductory paragraph, then it is easy to see that $(T,\rightarrow,\nabla,1)$ is an $I_3-\nabla$ algebra.
- §2. <u>Simple algebras</u>. If A, A' are $I_3 \nabla$ algebras, an $(I_3 \nabla)$ -homomorphism h from A into A' is a mapping h:A \rightarrow A' fulfilling the conditions:

$$h(x \rightarrow y) = h(x) \rightarrow h(y)$$

 $h(\nabla x) = \nabla h(x)$

The kernel of an (I_3-V) -homomorphism $h:A \to A'$ is the set Ker $h = \{x \in A: h(x) = 1\}$. It is easy to prove that if D = Ker h, then:

D1 1 € D

D2 If $x, x \rightarrow y \in D$, then $y \in D$.

2.1. DEFINITION. A deductive system is a part D of an I_3 -V algebra A that verifies D1 and D2.

It is well known that if D is a deductive system in an I_3 algebra A, then the relation Ξ defined as $x \equiv y \pmod{D}$ if and only if $x \Rightarrow y$, $y \Rightarrow x \in D$, concerning the operation \Rightarrow , defines a congruence in A [16]. Furthermore, from conditions $\nabla 9$ and D1, it is possible to conclude that Ξ is a congruence in an I_3 - ∇ algebra A. Let A/D be the quotient algebra and $q:A \Rightarrow A/D$ the canonical homomorphism, then D is the kernel of q. All the homomorphic images of A, up to isomorphisms, can be obtained in the above mentioned way.

Our next objective will be the determination of simple I_3 - ∇ algebras. To this end we shall need to study the maximal deductive systems.

- 2.2. DEFINITION. A deductive system D of an $I_3^{-\nabla}$ algebra A is called *maximal* if (1) D \neq A, and (2) if D \subseteq D' \subseteq A and D' is a deductive system, then D = D' or D' = A.
- 2.3. REMARK. It is well know that a part D of and I_3 algebra A is a deductive system if D1 holds and D'2: if x, $x \mapsto y \in D$ then $y \in D$. On the other hand, as the weak implication veri-

fies C1, C2, C3 and C4, after [17], we can state that every deductive system of an I_3 - ∇ algebra is a meet of maximal deductive systems. In particular, [1] is the meet of all maximal deductive systems, that is, every I_3 - ∇ algebra is deductively semisimple.

- 2.4. DEFINITION. An I_3 -V algebra A is said to be simple if:
- (1) A is non trivial.
- (2) The only homomorphic images of A are up to isomorphisms, the trivial ones, that is, A and the trivial algebra.

Taking into account that the homomorphic images of A are the algebras A/D, where D is a deductive system, we have that A/M is simple if and only if M is maximal. Also, 2.3 implies that every non trivial I_3 - ∇ algebra is a subdirect product of simple I_3 - ∇ algebras, and all the subdirectly irreducible I_3 - ∇ algebras are simple.

We have the following result which we shall need in the next theorem.

- 2.5. LEMMA. If M is a deductive system in an $\rm I_3\text{-}V$ algebra A, we have
- (1) If $m \in M$, then $x \to m \in M$ for every $x \in A$
- (2) M is maximal if and only if for every $x,y \notin M$, $x \mapsto (x \mapsto y)$ $\in M$.
- (3) If M is maximal and $\nabla x, \nabla y \notin M$, then $\nabla x \rightarrow \nabla y \in M$.

The proof of (1) and (2) can be found in [16], (3) is a consequence of (2) and $\nabla 7$.

It is clear that the algebra T of 1.3 is simple and B = $\{0,1\}$ and L = $\{1/2, 1\}$ are non isomorphic ($I_3-\nabla$)-subalge-

bras of T and therefore simple algebras. Moreover, the simple algebras are just the algebras T, B and L. Indeed:

2.6. THEOREM. If M is a maximal deductive system of an I $_3$ -V algebra A, then A/M \simeq T or A/M \simeq B or A/M \simeq L.

Proof. Consider the sets $M_0 = \{x \notin M: \nabla x \notin M\}$ and $M_{1/2} = \{x \notin M: \nabla x \in M\}$. Then the mapping $h: A \to T$ defined by

$$h(x) = \begin{cases} 1 & \text{if } x \in M \\ 1/2 & \text{if } x \in M_{1/2} \\ 0 & \text{if } x \in M_0 \end{cases}$$

is an $(I_3-\nabla)$ -homomorphism such that M = Ker h by Lemma 2.5. The theorem is proved if we observe that h(A) is an $(I_3-\nabla)$ -subalgebra of T and A/M \simeq h(A).

From this theorem it follows that every non trivial I_3 -V algebra is a subdirect product of copies of the algebras T, B and L.

§3. I_3 - ∇ algebras with a finite set of free generators. The aim of this section is to determine the structure of the I_3 - ∇ algebras with n free generators L(n), where n is a finite positive cardinal number. Let $G = \{g_1, g_2, ..., g_n\}$ be the set of free generators of L(n). If we note by T^G the set of all functions from G into T and Hom(L(n),T) the set of all homomorphisms from L(n) into T, it is clear that the application which maps each homomorphism $h:L(n) \to T$ into its restriction to G establishes a one-to-one correspondence between the sets Hom(L(n),T) and T^G . Hence, Hom(L(n),T) is finite.

3.1. LEMMA. If M is the family of all maximal deductive systems of L(n), then the application $\Psi: Hom(L(n), T) \to M$ defined by $\Psi(h) = Ker h$, is a bijection.

Proof. Let M∈ M, q:L(n) → L(n)/M the canonical (I_3-V) -homomorphism, i:L(n)/M → T an (I_3-V) -monomorphism, which exists by Theorem 2.6, then h = ioq ∈ Hom(L(n),T) and $\Psi(h) = M$, therefore Ψ is onto. On the other hand, there exists only one automorphism in T, B or L, the automorphism $\alpha(x) = x$ for all x, and then, if M ∈ M, $\Psi^{-1}(M)$ has exactly one element and so Ψ is one-to-one.

Since L(n) is a subdirect product of the finite algebras L(n)/M with $M \subseteq \mathfrak{M}$, then from the above results it follows that:

3.2. COROLLARY. The free I_3 - ∇ algebra L(n), where n is a finite positive cardinal number, is finite. We shall need the following result:

3.3. LEMMA. The generators g_i , $1 \le i \le n$, are the minimal elements of L(n).

Proof. Analogous to that of [10].

Consider the sets $G_i = \{x \in L(n) : g_1 \leqslant x\}, 1 \leqslant i \leqslant n$, then $L(n) = \bigcup_{i=1}^n G_i$ and so $|L(n)| = |\bigcup_{i=1}^n G_i|$. Let $B_i^{(n)} = G_{i_1} \cap G_{i_2} \cap \ldots \cap G_{i_k}$, $1 \leqslant i_1 \leqslant i_2 \leqslant \ldots \leqslant i_k \leqslant n$, where $i = (i_1, i_2, \ldots, i_k)$. It is well known that $|L(n)| = \sum_{i} (-1)^{k+1} |B_i^{(n)}|$. Clearly, by symmetry, it is sufficient to determine $B_k = G_1 \cap G_2 \cap \ldots \cap G_k$, and then we will have

(1)
$$|L(n)| = \sum_{k=1}^{n} (-1)^{k+1} {n \choose k} |B_k|.$$

3.4. LEMMA. Let $g_0 = g_1 \vee g_2 \vee ... \vee g_k$. Then

- (1) $B_L = \{x \in L(n) : g_0 \le x\}.$
- (2) B_k is a tree-valued Lukasiewicz algebra.

Proof. (1) is obvious since g_0 is the least upper bound of g_1, g_2, \ldots, g_k ; (2) is a consequence of the fact that B_k has least element g_0 .

Let \mathfrak{M}_k be the family of all maximal deductive systems of \mathbf{B}_k . Since \mathbf{B}_k is finite, from the theory of three-valued Lukasiewicz algebras we know that

$$B_k \simeq \prod_{D \in \mathcal{M}} B_k/D$$
.

We say that D is three-valued if $B_k/D \simeq T$, B-two-valued if $B_k/D \simeq B$ and L-two-valued if $B_k/D \simeq L$. Then, if we wish to determine $|B_k|$ we must compute the number of three-valued, B-two-valued and L-two-valued deductive systems of B_k .

The following result gives a characterization of the maximal deductive systems of B_k by means of the maximal deductive systems of L(n).

3.5. LEMMA. If D is a deductive system of B_k , then D is maximal in B_k if and only if there exists a maximal deductive system of L(n) such that $D = B_k \cap M$.

Proof. Suppose M a maximal deductive system of L(n) and consider D = $B_k \cap M$. Assume D $\neq B_k$. Since it is clear that D is a deductive system of B_k , we are going to prove that D is maximal. From 2.5 (2) it is sufficient to prove that $x \mapsto (x \mapsto y) \in D$ for all $x,y \in B_k$ -D. Since $x,y \notin M$ and M is maximal, we get $x \mapsto (x \mapsto y) \in M$. But $x \mapsto (x \mapsto y) \in B_k$, so $x \mapsto (x \mapsto y) \in D$.

Comversely, let D be a maximal deductive system of B_k . Since B_k is finite, there exists a \in B_k such that

$$D = D(a) = \{x \in B_k : a \rightarrow x = 1\}$$
 ([16],[10]).

Consider D' = D'(a) = $\{x \in L(n) : a \rightarrow x = 1\}$. Then $g_0 \notin D'$, because otherwise we would have $a \leqslant g_0$ and $g_0 \in D(a)$, which contradicts the fact that D(a) is proper. From 2.3 we can state that there exists a maximal deductive system M of L(n) such that $g_0 \notin M$ and D'(a) $\subseteq M$. Let us now prove that $M \cap B_k = D$. Clearly $D \subseteq M \cap B_k$ and $M \cap B_k$ is a proper deductive system of B_k and D is maximal, therefore $D = M \cap B_k$. The proof is now complete.

Since every $f \in T^G$ can be extended to a unique homorphism $h \in Hom(L(n),T)$ such that Ker h = M is a maximal deductive system of L(n), then $B_k \subseteq M$ or $B_k \cap M$ is a maximal deductive system of B_k .

Thus we must to determine the set $\text{Hom}^*(L(n),T)$ of all homomorphisms h from L(n) into T such that $B_k \not\subseteq \text{Ker h}$.

- 3.6. LEMMA. For every function f from G into T, the following conditions are equivalents:
- (1) The extension h of f is an element of $Hom^*(L(n),T)$.
- (2) $f(g_i) \in \{0,1/2\}, 1 \le i \le k$.

Proof. $B_k \subseteq Ker h if and only if <math>h(g_0) = 1$, but $h(g_0) = f(g_1) \cdot f(g_2) \cdot ... \cdot f(g_k) = 1$ if and only if $f(g_i) = 1$ for some i since the ordering of T is total.

Let f a function from G into T, h its extension and M = Ker h, then M \cap B_k is B-two-valued if and only if $f(g_i) = 0$ for all i, $1 \le i \le k$, and $f(g_i) \in \{0,1\}$ for all k+1 $\le j \le n$.

Since there exist 2^{n-k} such functions, then there exist 2^{n-k} B-two-valued deductive systems of B_{ν} .

If there exists g_i , $1 \le i \le k$, such that $f(g_i) = 1/2$, then $h(g_0) = 1/2$ and therefore $h(B_k) = \{1/2, 1\}$ and in that case M \bigcap B_k is L-two-valued, and there exist $(2^k-1)3^{n-k}$ L-two-valued deductive systems of B_k .

On the other hand, M is three-valued if and only if $f(g_{\underline{i}}) = 0 \text{ for all } \underline{i}, \ 1 \leqslant \underline{i} \leqslant \underline{k}, \text{ and there exists } \underline{g}, \text{ such that } f(g_{\underline{j}}) = 1/2, \ \underline{k+1} \leqslant \underline{j} \leqslant \underline{n}. \text{ Therefore, we have } 3^{n-k} - 2^{n-k} \text{ three-valued deductive systems of } B_{\underline{k}}.$

With the above results in hand we can write:

$$B_{k} \simeq \begin{bmatrix} 2^{n-k} \\ \vdots \\ i=1 \end{bmatrix} \times \begin{bmatrix} (2^{k}-1)3^{n-k} \\ 1 \end{bmatrix} \times \begin{bmatrix} 3^{n-k}-2^{n-k} \\ 1 \end{bmatrix}$$

Where $B_{i} = B$, $L_{i} = L$ and $T_{i} = T$, and taking into account (1)

$$|L(n)| = \sum_{k=1}^{n} (-1)^{k+1} {n \choose k} 2^{(2^{n-k}+(2^k-1)3^{n-k})} 3^{(3^{n-k}-2^{n-k})}.$$

Particular cases of this formula had been obtained by A. Monteiro and L. Iturrioz [9] for Tarski algebras, and by L. Iturrioz and O. Rueda [10] for I_3 algebras. In addition, we can state that the notion of I_3 - ∇ algebra is a generalization of the notion of I_3 - Δ algebra ([6],[7]). In fact, if in an I_3 - Δ algebra (A, \rightarrow , Δ ,1) we define ∇ by means of $\nabla x = (x \rightarrow \Delta x) \rightarrow x$ the system (A, \rightarrow , ∇ ,1) is an I_3 - ∇ algebra.

*

REFERENCES

[1] Abad, M. and Monteiro, L., Free symmetric Boolean algebras, Revista de la Unión Matemática Argentina 27 (1976).

[2] Birkhoff, G., On the structure of abstract algebras, Proc. Camb. Phil. Soc. 31 (1935).

[3] -, Lattice theory, Amer. Math. Soc. Coll. Pub., 25, Providence, 1967.

[4] Cignoli, R., Boolean elements in Lukasiewicz algebras I. Proc. Japan Acad. 41 (1965).

—, Moisil algebras, Notas de Lógica Matemática. [5] Nº 27, Univ. Nac. del Sur, Bahia Blanca, 1970.

[6] Figallo, A., Las álgebras I3-A, Revista de la Unión Matemática Argentina 30 (1981).

[7] —, El operador de necesidad en las álgebras I3. To appear.

[8] Gastaminza, M.L. and Gastaminza, S., Characterization of a De Morgan lattice in terms of implication and negation, Proc. Japan Acad. 44, Nº 7 (1968).

[9] Iturrioz, L. and Monteiro, A., Cálculo proposicional implicativo clásico con n variables proposicionales, Revista de la Unión Matemática Argentina 23, № 3 (1965).

[10] Iturrioz, L. and Rueda, O., Algèbres implicativas trivalentes de Lukasiewicz libres, Discrete Mathematics 18 (1977).

[11] Mc Call, S. and Meyer, R.K., Pure three-valued Lukasiewiczian implication, Jour. Symb. Logic 31 (1966).

[12] Moisil, G.C., Sur les ideaux des algebres Lukasiewicziennes trivalentes, Analele Universitatii C.I. Parhon. Seria Acta logica 3 (1960).

[13] ______, Essais sur les logiques non-chrysippiennes,

Ed. Academiei Bucarest, 1972.

[14] Monteiro, A., Sur la définition des algèbras de Lukasiewez trivalentes, Bull Maht. Soc. Sc. Math. Phys., R.P. Roum. 7 (55) Nº1-2 (1963).

[15] - , Seminario sobre las Algebras de Lukasiewicz trivalentes, Lectures given al the Univ. Nac. del Sur, Bahia Blanca, Argentina, 1968.

[16] ______, Algebras implicativas trivalentes de Lukasiewicz, Lectures given at the Univ. Na. del Sur,

Bahía Blanca, Argentina, 1968.

[17] ____, La semi-simplicité des algèbres de Boole topologiques et les systemes deductifs, Revista de la Unión Matemática Argentina 25 (1971).

[18] Monteiro, L., Axiomes independants pour les algèbres de Lukasiewicz trivalentes, Bull. Math. de la Soc. Sci. Math. Phys. de la R.S. Roum. Tome 7 (55) N3 1-2.

[19] _____. Sur les Algèbres de Heyting trivalentes. Notas de Lógica Matemática, Nº 19, Univ. Nac. del Sur, Bahía Blanca, 1964.

[20] ______, Les algèbres de Heyting et de Lukasiewicz trivalentes, Notre Dame Journal of Formal Logic 11 (1970).

[21] ______, Algèbres de Boole Monadiques libres, Algebra Universalis 8 (1978).

[22] Rose, A., Formalization du calcul propositionnel implicatif à m valeurs de Lukasiewicz, C.R. Acad. Sci.

tentinated Lead Coster insay S. Characterization of

Universidad Nacional de San Juan Mitre № 235 (Oeste) 5400 San Juan, ARGENTINA

Paris (1956).

(Recibido en Octubre de 1981, versión revisada en Noviembre de 1983).