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A GENERALIZATION OF FUBINI'S THEOREM
FOR BANACH ALGEBRA-VALUED MEASURES

by

Di6medes BARCENAS and T.V. PANCHAPAGESAN*

RESUMEN. Se demuestra una generalizacion del teore-
rnade Fubini para medidas vectoriales en algebras de Ba-
nach, en el caso en que la funcion a integrar toma tambien
valores en el algebra.

ABSTRACT. The present paper gives a generalization
of Fubini's theorem when the function f and the vector
measures W1 and W2 of bounded variation assume values in
a Banach algebra.

Fubini's theorem for Bochner integrals with values in a
Banach space has been known fora long time (see Hille and
Phillips [5]). The object of the present work is to treat a
generalization of this theorem when the function f and the

* Supported by C.D.C.H. Projects C-80-149 and 150 of Universi-
dad de los Andes, Merida, Venezuela.
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vector measures ~1 and ~2 of bounded variation assume values
in a Banach algebra. When the Banach algebra is commutative
and the range of f is bounded, this generalization reduces to
the theorem of Fubini for this case.

§1. Pre) iminaries. In this section we give some definitions
and results from the literature on the theory of integration
with respect to Banach algebra-valued measures of bounded var-
iation.

x i {o} will denote in the sequel a Banach algebra (real
or complex) with norm II-II, which is not assumed to have an l-

dentity. Unless otherwise mentioned, X is not commutative.
Let L be a a-ring of subsets of a set ~ ~ ¢. ~:L + X is

called a mea6une if ~ is countably additive in L with respect
to the norm topology of X. ~ is called a measure 06 bounded
v~aXion when supl~I(E) < 00, where I~I denotes the variation

. I Eo:of~. As I~ is countably additive in the a-ring L, ~ lS of
bounded variation if and only if I~I(E) < 00 for all EEL.

If V:L + [O,ooJ is a positive measure, v*(E) =
inf{v(F):E c F e: L} is an outer measure on the hereditary

.-.
a-ring H(L) generated by L. Let Mv = {E e:H(L): E is v"-mea-
surable}. Let T(V) = {E c~: EnA E:Mv for every A E::MvL
The members of T(V) are called V-mea6unable sets. It is known
that T(V) is a a-algebra containing Mv and hence containing L

(v ide p. 70 [2 J ) .
The set function V*:T(V) + [0;00], defined by

sup
AcE
AE:Mv

10



,;':is a positive measure and extends V from Mv to T(V). The sets
E ET(V) with V*(E) = 0 are called v-negligible. The notion of
afmo~teve~he~e with respect to V is defined en terms of
v-negligible. Also we shall denote v* by v on T(V).

A function f:Q ~ X is called E-~imple if it admits a rep-
resentation of the form

f(w) =
n
I X,XE.(W)

i=1 1 1

where x. LX, E. L E, i = 1,2, ...,n. It is true that
1 1

N(f) = {w: f (w) i O} LEo

(Vide Remarks p.83, [2]).

DEFINITION 1.1. A function f:Q ~ X is called Illl-me.a.-
~una.ble, where ll:E ~ X is a measure of bounded variation, if
there exists N ~ T(llll), Nllll-negligible, such that there
exists a sequence (s ) of E-simple X-valued functions converg-

n
ing to f pointwise in Q'N, i.e. s ~ f llll-a.e.in Q.n

As II is of bounded variation, Illl*is bounded in H(E) and,
hence, Illl*is bounded in T(llll). Therefore, Q is Illl-inte-
grable in the sense of Definition 6, p.75 of [2]. Consequently,
by Theorem 2, p.99 of [2], a function f:Q ~ X which is Illl-mea-
surable ln the sense of Definition 4, p.89 of [2} is Illl-mea-
surable in the sense of our Definition 1.1. Conversely, as a
E-simple X-valued function s is clearly Illl-measurable in the
sense of [2], by Theorem 1, p.94,of [2J, we obtain that a func-
tion f:Q ~ X which is Illl-measurable in the sense of Defini-
tion 1.1 is Illl-measurable in the sense of [2]. Thus we have:
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PROPOSITION 1. 2. Let 1l:L: -+ X be a meMWte 0-6 bounded
vaJlJ.-a;t.{on, f:rt-+ X J/., Il-Il-meMwr.a.bie in the -6en6e 0-6 VeMru:.-
tioY!. 1.1 i-6 and oniy i6 it J/., Il-Il-meMWtabie in the -6en6e 06

[2 J .
The theory of integration in §8 of [2] can be simplified

to some extent as we have }ldefined on the }l-ring L:.
n

For a L:-simple function f = Lx.XE., x. E X, E. E L:,
. l l l l
lwe definei = 1,2, ... ,n

f fdu =
E

n
L }l(E.nE)x.,

i=1 l l

E e: L:U W} .

It is clear that

Iffdl-ll~ nflldll-ll·
E

DEFINITION 1.3. Let }l:L: -+ X be a measure of bounded
variation. If f:rt-+ X is Il-II-measurable,then we say that f is
}l-integ~bie if there exists a sequence (s ) of L:-simple X-va-n
lued functions such that
i) Sn -+ f l}ll-a.e in rt
ii) fllsn-smlldll-ll-+oas n,m-+oo

rt
00

Then by (1), for E e: L: , {fsndl-l}n=1is a Cauchy sequence
in X and it is therefore convergent in X. By Proposition 8 and
9, §7 of [2J, ffdl-l= lim/s du is well defined for E e: L:U W}.

EnE n

!(l-I,X)will denote the collection of all X-valued }l-in-
tegrable functions. From (i) and (ii) in Definition 1.3, it
follows that IIfllin Il-II-integrable (in classical sense) if f
is so, and that
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II!fd}llls: IIIflld Iu]n n
< (J() ,

as (n,L,I}lI) is a finite measure space.

Using the equivalence relation f rv g if {x: f(x) -I g(x)}
is l}ll-negligible, one sees that L1(}l,X) = [(}l,X)/rv is a Ba-
nach space under the norm

II fl11 = JII fll d l}ll.
n

PROPOSITION 1.4. Let f:n -+ X be. 1}l1-me.a.oUfLa.bte.. 16
II til c t(I}l1,R), the.n f e:!(}l,X) and

II Ifd}lll~ JII flld l}ll.
Q n

Proof. It is obvious that II fll lS I }ll-measurable. By Prop-
osition 1.2 and by Theorem 2, p.99 of [2J, there exists a se-
quence (s ) of L-simple X-valued functions such that

n

i) II sn(w ) II~ II f(w) II ,

ii} s -+ f l}ll-a.e.n

n e:JN ani we: n

Then by Theorem 3, p.136 of [2] (which applies here), fE::i(}l,X)
and II Ifd}lll~ III flld 1].11 •n n

§2. Product measures with values in X. Throughout this
section we shall assume that ].1.:L. -+ X are measures of bound-

l l

ed variation for i = 1,2, where L. are a-rings of subsets of
l

Q. 'I <P, i = 1,2. Then sUQ IjJ.I(E) = M. is finite for i =
l E(Li l l
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E1,2, In this section,using auxiliary functions hE and h ,
E e:L:1 XL:2, we prove the existence and uniqueness of the prod-

tuct measures ~lx~2 and (~lX~2) on L:1XL:2, such that

and

tfor A e:L:1 and B e: L:2, It is also true that ~lx~2 and (~lx~2)
are of bounded variation in L:1xL:2,

DEFINITION 2.1. Let E e: L:
1

xL:2, We define the functions
hE:D1 ~ X and hE:D2 ~ X as follows:

and

Since EW1 = {w2 e: D2: (wi ,w2) e: E}
(w1,w2) e:E} e:L:1 because E e: L:1XL:2, the
are well defined,

w2
EO: L: 2 and E = { w1 e:L:1 :
functions hE and hE

LEMMA 2.2. Let E e: L:1XL:2, Then. hE :D1 ~ x zs I~ll-me.a-
.6 uitab.i.e. and hE:D2 ~ x zs I ~21-me.a6Wtab.i.e. ,

Proof, We shall prove the result for hE' In a similar
manner the result for hE can be proved,

Let E = AXB, A e: L:
1
, Be: L:2, Then, in this case, hE =

~2(B)XA which is clearly l~ll-measurable, Consequently, if

n
E = UA.xB"

i=l l l

(A .xB .) n (A.XB .) = ¢,
l l ] ]

for i ,.j,
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then it is clear that

which is a ~1-simple X-valued function and hence is 1~11-mea-
sureble. Therefore, if R is the ring generated by {AxB: AE~1'
B E~2}' then hE is I~11-measurable for each E E R.

Let M = {E E E1XE2: hE is 1~11-measurable}. Then by the
foregoing argument, ReM. Let {E } be a monotonic sequence in

n
Then {(E )w } is monotonic with Ew =

n 1 1
lim (E )w .
n n 1

additive in E2, it

M with E = lim E .
n n

Since ~2 is a
follows

vector measure, which is countably
that

lim hE .
n n

As En E M, then hEn is 1~11-measurable for n EN. Now by Prop-
osition 1.2 and by Theorem 1, p.94 of [2], lim hE = hE is

n n
1~11-measurable. Hence E E M and consequently, by Theorem B,
§S of [4J, we have that M = S(R) = E1XE2. That is, hE is
l~ll-measurable for each E E E1x~2.

COROLLARY 2.3. Let{Ei}~=l cE1XL2· In {xi}~cx and
s:n1 + X ~ given by

n
l: hE (w.) x .
. 1 ill1=
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Proof· Let fi(wi) = hEi(wi)xi, wi e n1· As hEi is
l~ll-measurable, by Lemma 2.2, exists a sequence (sn) of X-va-
lued L1-simple functions which converges to hEi l~ll-a.e. in
n1. As snxi is also an X-valued L1-simple function and as
s x , + f. l~ll-a.e. in n1, it follows that f. is lu,i-measurable.n l .i l ~l.

Now by Proposition 1.2 and by corollary 1, p.l01 of [2], s is
l~ll-measurable. By a similar argument we also have that t is
I ~21-measurable .

LEMMA 2.4. FoftEeLlx62'

16 we. de.M-I1e.

EhE E:: t:~1 ,X) and h et( ~2 ,X).

60ft A E:: L1 and B e 62"

Proof. For E E:: L1xL2, by Lemma 2.2., hE is l~ll-mea-
surable and hE is 1~21- measurable. For wi E:: n1

and hence hE :n1 + X is bounded. As II hEll is I ~ll-measurable and
bounded and (~l,Ll,l~ll) is a finite measure space it follows
that II hEll is l~ll-integrable and, consequently, by Proposition
1.4, hE is ~l-integrable. Similarly, hE is ~2-integrable.

Because of the similarity it is enough to prove that L100 00

is countably additive in L1xL2. Let {E'}l C L1xL2, E = ~E.,
l l=l l

Ein Ej = ¢, i t j. Then it is obvious that for wi e n1,
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00

{([i)W1} is a disjoint sequence In L2 and that EW1
further, for w1 e: Sl1

00 n

hE(w1) = ~2(Ewl) = i~1~2«Ei)Wl) = l~m i~1~2«Ei)wl)
(1)

= lim h [n ] (w 1) .
n UE.

. ll=l
Also we have that for w1 e: Sl1

( 2)

If hE:Sl1 + R is given by hE(w1) = 1~21(Ewl)' then from the
theory of product measures in the case of positive measures
(vide Berberian [1]), we have that hE is 1~21-measurable and
bounded by M2. Therefore hE is 1~21-integrable, as_I~21 lS

a finite measure in L2• We rewrite (2) in terms of hE as

C2' )

From (1), (2') and the fact that hE e: i (I u11 ,IR) , we ob-
tain by Theorem 3, p.136 of [2], that

00

f hEd~1 = lim f h n d]J1 = I f hE.d~l·
Sl1

n
Sl1 ~Ei] 1 SI l1

i.e.
00

= I L1(E.).
1 l
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Fur-ther , for A e::L
1

and B e:: L2, by the definition of the

integral of an X-valued simple function, we have that

and similarly

DEFINITION 2.5. Let R be the ring generated by the

semi-ring {AXB: A CL1, B CL2}. We define

and
t t

( )11X)12) : R ..... X by ()11 X)12) ( E )

where

n
E = U(A.xB.), (A.xB.)n (A.XB.)=¢ for i ~j,Al· e:: L1,

i~1 l l l l J J
B
i

e::L2
, i = 1,2, ... ,n.

t
THEOREM 2.6. )11x)12 aYl.d ()11X)12) Me. weLt de.6-ine.d -in R.

Mone.oveJL, '[1 A.4 the. UYl.ique. e.:a:e.Y1J.>'£OYl.06 )11x)12 a.6 aYI. x-value.d
me.a6Me. t» L 1 XL 2 . (The. e.:a:e.Y1J.>.£0YI. A.4 a..t6 a de.YI.O.te.d by )11x)12 aYl.d
A.4 c.alte.d .the. pnoduc..t me.a.6 Me. on )11 aYl.d )12)' A .6.£m.UM ne..6uU
hotd.6 non ()11X)12)t aYl.d.£.t.6 e.:a:e.Y1J.>'£oYl.'[2 (which A.4 a..t60 de.-
nored by ()11 X)12)t Md c.alte.d the. .tJL.aY1J.>p0.6e.pMduc..t me.a.6u.JL.e. 06
)11 al1d )12)' FUlLtheJL, )11x)12 aYl.d ()11X)12)t Me. 06 oounded vaJL..£a-
UOI1 -in L1 XL2 al1d .6a.tA.4 nY:
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and

bOlt E €: L1 XL2•

Proof. By Lemma 2.4, we have that 11(AxB) = (~1x~2)(AXB)
and 12(AXB) = (~1X~2)t(AXB). If R is the ring generated by
{AxB: A cL1, B E:L2 ' then ~1 = l11R and ~2 = 12~R are count-
ably additive in R and hence are finitely additive. Hence, if

n
E = U(A.xB.), (A.xB.)n (A.XB.) = cjJ for it j,

i=l l l l l ] ]

i = 1,2, ...,n,

then

As 11 is well defined on E and is independent of the represen-
tation as a finite disjoint union of measurable rectangles, it
follows that (~lX~2)(E) is well defined for E E: R and further,
as ~lx~2 = T1 in R, ~lx~2 is countably additive on R. Similarly
(~lX~2)t is well defined in R and (~1X~2)t = T2 in R.

From Lemma 2.4, it follows that ~lx~2 has a countably
additive extension 11 and (~1X~2)t has a countably additive
extension 12 in L1xL2. We shall prove the uniqueness of 11,

I

Similar arguments will prove the uniqueness of 12, If 11 is
another countably additive X-valued extension of ~1x~2 in
L1xL2, then for x* E: X*, X*11(E) = X*l~(E), E E L1xL2.

In fact, for
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n
E = U(A .XB .), (A .XB .) n (A .xB .) = <P,i=l l l l l ] ]

i .J. •r J,

we have
n

= I I ].11 ( A .)].l2(B .)Ii=l l l

n
:::it II "i (Ai)~II ].l2(Bi) II

(1)

From the classical theory of product measures of finite posi-
tive measures, 1].l1IXI].l21:r1xr2 + [0,00) is count ably additive
and finite (see Theorem 2, p.126 of [1]). As r1xr2 is a a-ring,
it follows that

( 2)

Therefore, from (1) and (2) we obtain that

II L 1(E) II .::: M for all E e:R.

;t~Consequently, x L1 is a bounded scalar measure in R and hence
by the uniqueness of the Caratheodory-Hahn extension of bounded

.'. .t. ,
scalar measures, we have that (X"L1)(E) = X"L1(E), E e:r1xr2·

~ ~
As x" lS arbitrary in X", by the Hahn-Banach theorem

,
L1 (E) = L 1(E) , E e: r1xr2 •

This completes the proof of existence and uniqueness of the
extension of ].llx].l2in r1xr2.
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From (1), we have that

As 1~1Ixl~21 is a finite measure on E1XE1, by a known argument
we see that M is a monotone class and hence by Theorem B, §8
of Halmos [4J ,

and hence ~1x~2 is of bounded variation in E1xE2. The corre-
sponding result for (~ x~ )t is proved in a similar manner.1 2

COROLLARY 2. 7. I 6 ~1 and ~2 C.Otrn1u-te., in. the. -6e.n..6e.

~1(A)~2(B) = ~2(A)~1 (B), 60ft Ae:E1, B e:L2, the»

Proof. The result follows from Lemma 2.4 and the unique-
ness part of Theorem 2.6.

§3. A general ized Fubini's theorem. Let 16., L, ~., M.,
l l l l

i = 1,2, be as in §2. Let ~lx~2 and (~1X~2)t be the product
and transpose product measures, respectively. In this section
we obtain a generalized Fubini's theorem, giving the relation
between the integral with respect to the product (transpose
product) measure and a suitable iterated integral, when the
function f :Q1xIG2-+ X is I ~11x I ~21-measurable and II fllis
IW1IxIW21-integrable. Further, when W1 and W2 commute and the

21



range of f is bounded in X, this result reduces to the theorem
of Fubini for such integrals.

~ will denote ~1x~2 in the sequel.

L~MMA 3.1. Let f:~-+xbe.6uchthtrt f ~ 1).I1IxI1l21-meMUfL-
able and [r] E fC!1J1IXI).l21,IR).Then f J.-6 C1l1X).I2) and aL60
C).I1X).I2)t-in.teg~le.

Proof· Let fW1Cw2) = f(w1,w2) = fW2(w1). As f is
I).I1!xl).I21-measurable,there exist a sequence Csn) of X-valued

L{L2-simple functions and a set N, C I).11'-l ).I2!)-negligible,such
that sn -+ f in ~'-N. As 1).I1X"jJ2/CE)~ I).I1IXI).I2ICE)for EEL1XL2
by Theorem 2.6, it is clear that N is I).I1x).I21-negligibleCvide
Proposition 11, p.15 of [2J) and hence sn -+ f 1).I1x).I2!-a.e..
Therefore, by Definition 1.1, f is 1).I1x).I21-measurable.Conse-
quently, IIfllis IJJ1xlJ21-measurable. Further,

and hence by Proposition 1.4, f is C).I1x).I2)-integrable.

Since the inequality IC1l1X1J2)tICE) ~ 1).I11xIJJ2ICE),
E E L1XL2 holds by Theorem 2.6, the above argument can be modi-
fied to prove that f is CJJ1XlJ2)t-integrable .•

In the sequel we shall assume that f:~ -+ X is I).I1IxIJJ21-
measurable and that IIfl/is lJJ1!xl).I21-integrable.

LEMMA 3.2. Let N be I ).111-l ).I21-negug-Lble.. Then theJte
e.xis« .6W A and B .6u.c.hthtrt ~'N = AU B, whe.Jte A E: L1 XL2 and

B ~ I lJ1!x I JJ2!-negug-lble. 16 the nLlYLcU.ong:~ -+ X .6a:U6 Mu
the Jtelation gCw1,w2) = fCw1,w2)XA, then the.Jte ewt C c ~1
and D c ~2' IlJ11-negug-lble and 1).I21-negug-lble, JtupecU.vely,
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-6uc.h that g -L6 l~llxl~)-me.MUJta.b.e.e.,gW1 = fW1 l~ll-a.e. and
W2 W2 I I dg = f ~1 -a.e., 60lt "i c n1" C an w2 c n2 -, D.

.Proo]: Since sup (llJ1IXllJ21(E)< 00, n"N is a
EE:LlxL2

1~1Ixl~21-integrable set in the sense of Definition 6. p.75 of
121. Hence by Proposition 12, p.75 of [2J, there exist sets

A C L1xL2 and B, IlJ11x IlJ21-negligible, such that Q" N = A U B.

lherefore, g = fXA is IlJllxl~21-measurable by Corollary 1,
p.101 of [2].

Let h = f-g. Then h(w1,w2) =
h = a IlJ1Ixl~21-a.e. Now, by the
for E C T( IlJ11), Fe T(llJ21)

a for (w1,w2) C A and hence
classical Fubini's theorem,

= f[f~hwl~dl~2I]dl~11
E F

= f[f~hw2~dllJ11]dl~21
F E

where we consider the restrictions of IlJ11 and IlJ21 in

and

respectively. Fixing F and varying E we obtain that there
exists C C n1, IlJ11-negligible, such that

and now, varying F in T ( IlJ21), we deduce that hW1 = a
IlJ21-a.e. Similarly, we have that hW2 = a IlJ11-a.e., for
w2cn"D, with D IlJ21-negligible. Hence fW1 = gWl IlJ11-a.e.,
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and fW2 = w2 1~11-a.e., for such and w2.g w1

LEMA 3.3. TheJte ewt .ow N. cD., Iu, l-negUg-ible,
l l l

i = 1,2 .0 uc.h that
(i) nOlL W1 e:: D1" N1, f fw1dlJ2 eW U and

D2
w2(ii) nOlL W2 e:: D"N2, f f dlJ1ewu.

D1

Proof. As f is IlJ1!xllJ21-measurable,there exist N
IlJllxl~21-negligible and a sequence (sn) of L1xL2-simple X-va-
lued functions such that s -+ f in D"N. By Lemma 3..3, there

n
exist sets A and B, with A e:: L1XL2 and B IlJllxllJ21-negligible,
such that D \ N = A U B. Let g = fXA, then snXA -+ g in D and
tn = snXA is L1xL2-simple. Consequently,

and hence gW1 is IlJ21-measurable. Similarly, gW2 is IlJ11-mea-
surable.

'Now from Lemma 3.2, it follows that gW1 = fw 1~21-a.e.
for w1 IlJ11-a.e., and gW2 = fW2, IlJ11-a.e., for w2 1~21-a.e.~
Consequently, by Proposition 1.2 and by Proposition 9, p.91 of
[2], we have that fW1 is IlJ21-measurable and fW2 is IlJ11-mea-
surable, for "i Ip11-a.e. and w2 IlJ)-a.e.

As "flle:: 1( IlJ11x I ~21 ),lR),applying the classical fubini 's
theorem to IIfll,we obtain that
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for w,1 e:::: n "N1, with
have, by Proposition

N1 1~11-negligible. Consequently, we
1.4. that ~2fW1d1l2 exists for w1 e:::: n1"",N1
for w2 e:::: n2" N2, where N1 = N1 U C andand 61fw2d1l1

N2 = N2 UD,

exists
C and D being those given in Lemma 3.2 .•

LEMMA 3.4. Wilh N1, N1 a6 in Lemru 3.3, Let

r £/w1 d1l2, w1 e:::: n1\ N1
F(w1) = l0, v: e:::: N1 ;

1.

and

Then F -L6 I l-l11-mea6uMble and G -L6 11l21-me.a6uJtab£e..

Proof. As f is 11l1lxl1l21-integrableby Lemma 3.1. there
exists a sequence (sn) of X-valued L1xL2-simple functions such
that

~~Sn-f~d( 11l11X11l21) < ~, n e:N (1)

and sn -+ f 11l1IXIl-l21-a.e.By the classical Fubini's
theorem. there exists Nn, I 1111-negligible, such that

F (w1) = f ~(s )w1-f ~d11l21n ~ n w1
3G2 .

Fn e: t( 11111,R) and also

< co •

~ Fndl1l11 = Dlsn-flld(11l1Ixlll) < ~
1 25



by (1). Therefore

That is, Fn tends to 0 in l~ll-mean and hence by Proposition
1.4,p.130 of [2], there exists a subsequence (Fnk) of (Fn)
such that Fnk ~ 0 1~11-a.e. Therefore, there exists a set
NO' 1~11-negligible, such that Fnk(w1) ~ 0 for all w1e:r21\NO'

Let 00

then ill is I~11-negligible. For "i e: r21" N,

= Ilf{fw1-(snk)W }d~2~
r22 1

~ f IIfw1-(snk)W11Idl~21
r22

as k ~ 00. In other words, we have that,

( 2)

We observe that if

n
s = I x ,XE '

i=l 1 i
x.e:X,
1

i = 1,2, ... ,n,

so that s is L1x~2-simple with values in X, then
n

= I ~2( (E·)w ) x , =i=l 1 1 1

n
IhE. (w1)x .•

i=l 1 1
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Now, by Corollary 2.3, we obtain that £2sWld~2 is l~ll-mea-
sur-abLe , and by (2) and Theorem 1, p.94 of [2] we have
that F is I~ i-measurable. The proof for G is similar and

1
hence omitted.

THEORE~1 3.5. (A Generalized Fubini I s Theorem). Le.:t

f:n "* X be I~11x I~21-me.a6UJ[ablewah IItil I~11x I]J21-httegJrable.
Then theM. excst: N. e: L. will N. 1~.I-negUg-i.ble, i =1,2,

l l l l

.6uc.hthat 60ft "i e: n1" N1 theJte ex£6:t.6the -i.VL:tegftalf fW1d~2n2
and 60ft w2 e: n2" N2, theJte ex£6:t.6the httegftal f fW2d]Jl' 16

n
F:n1"* X Md G:n2 "* X Me de6-i.vtedby 2

then F -i..6 ~l-httegftable and G -i..6 ~2 -httegftable. FWLtheJt, we
have that

Md

Proof. By Lemma 3.4 and by Proposition 9, p.91 of [2];
F is l]Jll-measurable and G is 1~21-measurable, and the exis-
tence of N. with specified properties is guaranteed by Lemma

l

3.3.
From (1) in the proof of Lemma 3.4, there exists a se-

quence (sn) of X-valued LlxL2-simple functions such that

<!
n
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for n e: N. Let

n
s = I x,XE '
n i=l l i

E. n E. = ¢ for i -I j.
l ]

If

= f (s )w dJl2~ n 1
2

then
n

= I hE (w.)x ..
i=l ill

Then by Corollary 2.3, s is /Jl11-measurable and

n
~ ( mc:x II xJ)( I IIJl2«Ei)w )11

l~l~n i=l 1
n

~ K(i~1IJl21«Ei)Wl»

~KM <co2

where K = max II xJ. Hence, II sll is a bounded I Jl1/-measurable
. l~i~n
function and so it is I Jl1/-integrable. Consequently, by Prop-

osition 1.4, s is !Jl1!-integrable .

Nowwe shall prove that F is )ll-integrable. It is clear

that II F-slI is I )ll/-measurable and
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1< -
n

( 2)

by the classical Fubini's theorem and by (1).

Let t (w1) = J (s )w d~2· Then, by the foregoing, t isn n n 1 n
~1-integrable and co~sequently, from (2) it follows that

Therefore, IIFIIis 1~11-integrable and hence by Proposition 1.4
F is ~l-integrable.

By a similar argument it follows that G is ~2-integrable.

AFFIRMATION 1. If
n

s = I x.XE.,
i=1 J. J.

E . n E. = <P fur i f. j,J. ] x . e: XJ.

then

In fact,

n
I (~1x~2)(E.)x. =
. 1 J. J.J.=

(3 )

by Theorem 2.6.

We observe that if g:n1 + X is ~1-integrable and x e: X
J.sa fixed vector in X, then gx is ~1-integrable and
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Using this observation in (3), we have

n

= f (f ( L1XiX(Ei)W1)d~2)d~1
rt1 rt2

= f f sW1d~2d~1'
rt1rt2

AFIRMATION 2. Let s be as in Affirmation 1. Then
,

In fact, using T2 of Lemma 2.4 in place of T1 in the
proof of Affirmation 1, the present affirmation can be proved.

From (2), recalling that s = t , we haven

lim f t d~l(") n
n 3'1

( 4)

Using Affirmation 1 in (4), we obtain
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as

~ fllf-snlld(I111IXI1121)
~

1< - -+ a as n -+ ro.
n

Similarly, using Affirmation 2 we have

This completes the proof of the theorem.

COROLLARY 3.6 [F'ub i.n i 's Theorem). In adcLi.;t.i.on, let
111 and 112 be. c.oYmlt..LU.ngme.a6uJte..6.16 f:~ -+ X ..L6 a. bounde.d
11111x 11121-me.a6wuWle. 6unclion, the.VI. f ..L6 111x112--i.nte.gJta.ble. an

Proof. IIfllis 1111IxI1121-measurable and bounded. Hence,
as 11111x 11121 is a finite measure in L:1xL:2 ' II fll is 11111x 11121-
integrable and hence by Lemma 3.1, if is 111x112-integrable.
Now by Theorem 3.5 and Corollary 2.7 the conclusion is obtain-
ed .•

It is known that for two complex measures 111 and 112 on
a-algebras L:1 and L:2respectively, I 11lx112I = Ill11xl1l21 (vide
Le~ma III. 11.11 of [3]). But this is not generally true for
X-valued measures as we see in the following counter example.
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COUNTEREXAMPLE 3.7. Let X be a commutative Banach al-
gebra with x1,x2 e:: X such that IIXlx211 < IIXl i~x2~' Let L:1 and L:2
be a-algebras of subsets of Sl1and Sl2 respectively, with Sl1 ::I <p

and Sl2 i <p. Let V.:L:. ~ [0,00)be non-negative non trivial mea-
J. J.

sures, i = 1,2, then ~. = x.v., i = 1,2, are X-valued measures
J. J. J.

on L:. with
J.

I~·I = II x·llv. , i = 1,2,
J. J. J.

I ~1x~21 = II xix2" (V1 XV2)

1~1Ixl~21 = IIxliiII x211(\J 1xv2) .

Consequently, (~lX].12)W1XSl2) = Ix1x2" (VlxV2)(SllXSl2)

= II Xlx2"V1 (Sl1 )v2(Sl2) < IIxliiIIx211V1 (Sl1 )v2W2) = (I ].111x I ~21 )(Sl1XSl2)·

;':
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