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A GENERALIZATION OF FUBINI'S THEOREM

FOR BANACH ALGEBRA-VALUED MEASURES

by

Didmedes BARCENAS and T.V. PANCHAPAGESAN™

RESUMEN. Se demuestra una generalizacidn del teore-
ma de Fubini para medidas vectoriales en dlgebras de Ba-
nach, en el caso en que la funcidn a integrar toma también
valores en el algebra.

ABSTRACT. The present paper gives a generalization
of Fubini's theorem when the function f and the vector
measures Y4 and Y, of bounded variation assume values in
a Banach algebra.

Fubini's theorem for Bochner integrals with values in a
Banach space has been known for a long time (see Hille and
Phillips [5]). The object of the present work is to treat a
generalization of this theorem when the function f and the
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vector measures My and p2 of bounded variation assume values
in a Banach algebra. When the Banach algebra is commutative
and the range of f is bounded, this generalization reduces to

the theorem of Fubini for this case.

§1. Preliminaries. In this section we give some definitions

and results from the literature on the theory of integration
with respect to Banach algebra-valued measures of bounded var-
iation.

X # {0} will denote in the sequel a Banach algebra (real

, which is not assumed to have an i-

or complex) with norm | *
dentity. Unless otherwise mentioned, X is not commutative.

Let £ be a Oo-ring of subsets of a set  # ¢, u:Z * X is
called a measure if p is countably additive in I with respect
to the norm topology of X. U is called a measure 0f bounded
variation when E%EIUI(E) < o, where |u| denotes the variation
of Uy As Iul is countably additive in the o-ring I, u is of
bounded variation if and only if |u|(E) < ® for all E € L.

If v:I » [0,»] is a positive measure, v*(B) =
inf{v(F):E «F €I} is an outer measure on the hereditary
o-ring H(Z) generated by L. Let M, = {E €H(Z): E is v -mea-
surable} . Let T(v) = {E =Q: ENA €M, for every A €M,}.
The members of T(V) are called v-measurabfe sets. It is known
that T(v) is a o-algebra containing M,, and hence containing I
(vide p.70 [2]).

The set function v*:T(v) > [O;w], defined by

v¥(E) = sup v¥(A)
AcCE
AeM,,
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is a positive measure and extends v* from M, to T(v). The sets
E e 1(v) with VF(E) = 0 are called v-negligible. The notion of
almost everywhere with respect to V is defined en terms of
v-negligible. Also we shall denote v* by v on T(V).
A function f: + X is called I-s4mple if it admits a rep-
resentation of the form
n

£(w) = izixiin(w)

where Xs <X, EiC L, i=1,2,...,n. 'It is true that

N(f) = {w: f(w) # 0} = L.
(Vide Remarks p.83, [2]).

DEFINITION 1.1. A function £:Q + X is called |u|-mea-
sunable, where u:I » X is a measure of bounded variation, if
there exists N c‘r(|u[), Nlul-negligible, such that there
exists a sequence (sn) of Z-simple X-valued functions converg-

ing to f pointwise in {\N, i.e. B, ® f |u|-a.e. in Q.

As u is of bounded variation, lu|* is bounded in H(Z) and,
hence, |u|* is bounded in t(|u|). Therefore, Q is |u|-inte-
grable in the sense of Definition 6, p.75 of [2]. Consequently,
by Theorem 2, p.99 of [2], a function f:Q + X which is lul—mea—
surable in the sense of Definition 4, p.89 of [2] is |u|-mea-
surable in the sense of our Definition 1.1. Conversely, as a
L-simple X-valued function s is clearly lpl—measurable in the
sense of [2], by Theorem 1, p.94, of [2], we obtain that a func-
tion f:Q -+ X which is ]u|—measurable in the sense of Defini-

tion 1.1 is |u|-measurable in the sense of [2]. Thus we have:
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PROPOSITION 1.2. Let u:I » X be a measure of bounded
varniation, £:Q + X 48 |u|-measurable in the sense o Defini-
tion 1.1 Lf and only L§ it <8 |u|-measurable in the sense of

2]

The theory of integration in 88 of [2] can be simplified

to some extent as we have U defined on the p-ring I.

n
For a I-simple function f = gxiXEi’ x&.: X, Ei <z,

i=1,2,...,n we define

no-—-1g

WENE)x;, Eel R

[fdu =
E 1

i
It is clear that

léfdul < fl€lalul. (1)

DEFINITION 1.3. Let up:Z - X be a measure of bounded
variation. If f:Q + X is Iul—measurable, then we say that f is
u-Aintegrable if there exists a sequence (sn) of IZ-simple X-va-
lued functions such that
i) sp > f lul—a.e in Q

ii) f”sn—sm”dlul + 0 as n,m > ©

o0
Then by (1), for E€ L , {ésndU}n-l is a Cauchy sequence

in X and it is therefore convergent in X. By Proposition 8 and
9, §7 of [2], ffdu = lim[sndu is well defined for E e« I U{Q}.
E ®E

f(u,X) will denote the collection of all X-valued u-in-
tegrable functions. From (i) and (ii) in Definition 1.3, it
follows that [|f]| in |p|-integrable (in classical sense) if f

is so, and that
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| feau] < [l€ldln] <=,
Q Q

as (R,Z,]ul) is a finite measure space.

Using the equivalencerelation f v g if {x: £(x) # g(x)}
is Iul—negligible, one sees that Ll(u,X) = I(U,X)/& is a Ba-

nach space under the norm
Ll = [idlalul.

PROPOSITION 1.4. Let £:0 + X be |u|-measurable. 14
Il « £(|ul,R), then £ eL(1,X) and

| fgaul < [l£lalul.
Q Q

Proof. It is obvious that |f|| is |u|-measurable. By Prop-
osition 1.2 and by Theorem 2, p.99 of [2], there exists a se-

quence (sn) of Z-simple X-valued functions such that
i) fs,w | <f#w)], neNad we

ii) L ¥f lu]-a.e.

Then by Theorem 3, p.136 of [2] (which applies here), fed(u,X)
and || [fau]| < [I£lalul.
Q Q

§2. Product measures with values in X. Throughout this

section we shall assume that ui:Zi -+ X are measures of bound-
ed variation for i = 1,2, where Zi are O-rings of subsets of

Q.1 # i =1,2. Then sup |u.|[(E) = M. is finite for i =
i F o Eegil ;| i
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s e . E
1,2. In this section,using auxiliary functions hE and h™,

E €:21XZ2’ we prove the existence and uniqueness of the prod-

t
on 21XZ2, such that

uct measures u1Xu2 and (u1Xu2)
(uIXuQ)(AXB) = ul(A)u2(B)

and
(ulxu2)t(AXB) = 1, (B)u, (A)

. t
for A 6:21 and B 22. It is also true that W ,Xu, and (ulxuz)

are of bounded variation in zixzz.

DEFINITION 2.1. Let E >:1x>:2. We define the functions
hE:Q1 -+~ X and hE:Q2 + X as follows:

hE(wl) = “2{W2 = 92: (wl,w2) e E}, W, € Ql

and
E
h (W2) = ul{wle Ql’ (wl,w2) < B}, W, € 92.
: { }ex 2. g
Since Ewl =W, e 92. (wl,w2) e E} 2 and E = 1wy ?121.
(wl,wz/ < E} = I, because E €I XI,, the functions h; and .h

are well defined.

LEMMA 2.2. Let E «I,xZ,. Then hy:Q, > X 48 |u, | -mea-
surable and hE:Q2 > X 48 |u,|[-measurable.

Proof. We shall prove the result for hp. In a similar
manner the result for hE can be proved.

Let E = AXB, A€ B e 22. Then, in this case, hE =

13
u2(B)xA which is clearly |p1|—measurable. Consequently, if

n
= X 4
E §:{Ai B,, A;€Z,, B, €L, (AixBi)[](ijBj) b,
for i # 7,
14



then it is clear that
n
hy (veyd = l_lez(Bi)XAi(wl)

which is a Zl-simple X-valued function and hence is |u1|—mea—
sureble. Therefore, if R is the ring generated by {AxB: A€221,
B€:22}, then h; is |u1I—measurable for each E € R.

Let M = {Ee L, X2, hp is lull—measurable}. Then by the
foregoing argument, R < M. Let {En} be a monotonic sequence in
M with E = l%m E - Then {(En)wl} is monotonic with Ew1 =
l%m (En)w1' Since H, is a vector measure, which is countably
additive in 22, it follows that

hp = UQ(EWI) = Idn Hy((E)y, ) = lim hg .

1
As En € M, then hp is lull—measurable for n e N. Now by Prop-
n

osition 1.2 and by Theorem 1, p.94 of [2], lim hE = h, is
n n

E
Iull-measurable. Hence E « M and consequently, by Theorem B,

§8 of [u4], we have that M = S(R) = 21X22. That is, hE is

Iull—measurable for each E € lezg.
n n
COROLLARY 2.3. Llet {E;}; , <L xI . If {x;}; =X and
s:Q, > X 48 glven by

n
= h ’ 3
s(w,) izl Ei(wl)xl

then s 44 |u1|—nma4unab£e. Simibarly t:Q, > X, given by

nE_
tlwy) = _Z h*(w,)x,
1=1

A5 |u2|-mea4unab£e.
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Proof. Let fi(wl) = hEi(wl)xi’ w, € Ql' As hEi is
Iull—measurable, by Lemma 2.2, exists a sequence (sn) of X-va-
lued Zl—simple functions which converges to hEi |p1|—a.e. in
Ql. As s X is also an X-valued Zl-simple function and as
s %; 7 f Iull-a.e. in Ql’ it followsthatfiis hﬁ}—measurable.
Now by Proposition 1.2 and by corollary 1, p.101 of [2], s 1is
|u1|~measurable. By a similar argument we also have that t is

|u2|—measurable.

LEMMA 2.4. For E LI, ho e ZL(u,%) and h e Li,,X) .
14 we define
_ ¢ .E
T,(E) = [ hodw, and T,(E) = [ hidu,,
Ql 92

then T, and T, are X-valued measunes An L¥E,. Furthen,

Tl(AXB) = ul(A)uQ(B) and TQ(AXB) = u2(B)u1(A)

for A= L, and Be I,.
Proof. For E 21XZ2, by Lemma 2.2., hE is Iull—mea—

surable and h is |u2|— measurable. For w, & 0
In ()] = Hu2(Ewl)ﬂ < |u2|(Ew1) <M,
and hence hE:Q1 + X is bounded. As "hE" is |u1|—measurable and

bounded and (91,21,'p1
that "hE" is Iull—integrable and, consequently, by Proposition

|) is a finite measure space it follows

1.4, hE 18 ul—integrable. Similarly, hB is u2—integrable.

Because of the similarity it is enough to prove that Ty
is countably additive in Z,XX,. Let {E } c L XZ,, = \,)E.,
142 2 £

Ein Ej = ¢, i # j. Then it is obvious that for W, € Ql,
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-‘- . . . . Z = -
{(Ei)w1} is a disjoint sequence in 1, and that Ey, SZ)(Li)wl

Further, for wle Ql

n
hp(w,) = U (Ey,) = Z (B ) lim ) u2(<}:i)w1)

=1 n i=1
(1)
= 1lim h (w,).
n n 1
[\
i=1
Also we have that for W, € Ql
bl =l|u2((UE) y
[S«JEi
1=1
< Ju I((\_jE.) )
2 P 1 w1
< |u2|(Ew1) < M,. (2)

If hE:Q1 + R is given by hE(wl) = |u2|(Ew1), then from the
theory of product measures in the case of positive measures
(vide Berberian [1]), we have that gE is Iu2|—measurable and
bounded by M2. Therefore ﬂE is fu2|—integrable, as !u2| is

a finite measure in 22. We rewrite (2) in terms of hE as

1
"h@ (w )| < h (w ), Wy e Q. €2')
[1 Ei]
From (1), (2') and the fact that hE e:f(lull,R), we ob-
tain by Theorem 3, p.136 of [2], that

/ hpdh, = lim [ h f hEidul.

du, =
n n 1
Ql Ql !I)Ei} Ql

1,(E) = g T, (E)).

=~ 8
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Further, for A 521 and B CEQ, by the definition of the
integral of an X-valued simple function, we have that

Tl(AXB) = sz hAXdel = gfz 112(B))(Ad}_11 5 pl(A)uz(B)

1 1

and similarly

T,(AXB) = [ u (B)xgdn, = uy(Bluy (). ®

4

DEFINITION 2.5. Let R be the ring generated by the
semi-ring {AxB: A =I,, B CZ2}. We define

i 2}
XMy iR > X by (uyXHp)(E) = iZlul(Ai)uQ(Bi)
and

H.M:’

(nyxp,) ":R > X by () B = ] uy(Buy (),

i=1

where

n
A iL__Jl(AiXBi), (AXB )N (AXB)=¢ for i # j,A; € Ly,

Bi €Z2, I =2 1,2,60050,

THEOREM 2.6. 1 X, and (uu) " ane well defined in R-
Moreover, T, 44 the unique extension of u,xu, as an X-valued
measure 1o 21XZ2.(The extension is also denoted by w, Xy, and
s called the product measure 06 Uy and 1,).A similarn nesult
holds gon (ulxuz)t and its extension T, (which s also de-
noted by (“1x“2)t and called the transpose product measuwre 0f
My and Mo Further, u,*u, and (“1x“2)t are of bounded varia-
tion An L,xT, and satisgy:
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[y xus [ () € (Jug [x[uy | ) (E)
and

| 1Y <€ Clug X[, D (E)

gon E c21><22.

Proof. By Lemma 2.4, we have that Tl(AXB) = (u1Xu2)(AXB)
and T2(AXB) = (u1Xu2)t(AXB). If R is the ring generated by
{AxB: A €I, B CZQ » then T,
ably additive in R and hence are finitely additive. Hence, if

= Ter and T, = T2[R are count-

n
E & iL)=1<Ai><Bi), (A;xB)N (A;%BS) = ¢ for i # 1,

i3 xi By €Ly, > 28 T W1 TS,

then
Tl(E) =

II-M’J

n
T,(A%B,) = Z Wy (AU, (B,).

i=3 i

As %1 is well defined on E and is independent of the represen-

tation as a finite disjoint union of measurable rectangles, it
follows that (U1Xu2)(E) is well defined for E € R and further,
as U, Xu, = T, in R, M XU, is countably additive on R. Similarly

1
(u1Xu2)t is well defined in R and (ulxu yt = % in R.

2 2
From Lemma 2.4, it follows that ulxu2 has a countably
additive extension T1 and (u1><].12)t has a countably additive

extension T, in 21X22. We shall prove the uniqueness of Ty -

. ' &
Similar arguments will prove the uniqueness of Ty- If T, is
another countably additive X-valued extension of u1Xu2 in

% % b R
21X22, then for x €X , x TI(E) X Tl(E), E €321XZ2.

In fact, for
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n
A i_L_Jl(AixBi), (A;XB) N(AxB.) =6, it7,

we have

n
I CIDITNG-I]

I, (B)]
1 21

A

e, a3 )

=

N

He~-13 113 B
[N

[N

lug [ Ca ) [, (B

e

(|u1|Xlu21)(B). (1)

From the classical theory of product measures of finite posi-
tive measures, !uilxlu2|:21X22 > [O,w) is countably additive
and finite (see Theorem 2, p.126 of [1]). As 21XZ2 is a o-ring,
it follows that

sup (IullXIMQI)(E) =M< ®- (2)
E€21XZ2

Therefore, from (1) and (2) we obtain that

It,(E)] €M for all E €R.

Y.

Consequently, x“’r1 is a bounded scalar measure in R and hence

by the uniqueness of the Caratheodory-Hahn extension of bounded
% % !

scalar measures, we have that (x Tl)(E) 5 Tl(E), E E:lezz.

ofe

As x is arbitrary in - g by the Hahn-Banach theorem
1
= { =
T, (E) = 1,(E), E €I, .

This completes the proof of existence and uniqueness of the
extension of My XU, in 21XZ2.
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From (1), we have that
ReM={Ecr xz,: |upw,[(B) < (Juy [x]u,DE} .

As ]uilxlu2| is a finite measure on zlle, by a known argument
we see that M is a monotone class and hence by Theorem B, §8

of Halmos [4], M = S(R) = L,%XZ,. Therefore,

sup |u [ (E) < M
BEEIXZQ

and hence ulxu2 is of bounded variation in 21X22. The corre-

sponding result for (ulxuz)t is proved in a similar manner.

COROLLARY 2.7. If w, and y, commute, 4in the sense
that My (A, (B) = uy(A)u, (B), gon Ael,, Be1l,, Zthen

)t

Ty = Ty = WpXHy = (upXuy) ™ An LxL,.

Proof. The result follows from Lemma 2.4 and the unique-

ness part of Theorem 2.6.

§3. A generalized Fubini's theorem. LetS%} L., ui,M.,

i
)t be the product

i=:1,2, be ‘as”in"“8§27 " Let My XM, and (u1Xu2
and transpose product measures, respectively. In this section
we obtain a generalized Fubini's theorem, giving the relation
between the integral with respect to the product (transpose
product) measure and a suitable iterated integral, when the
function f:91XQ2 »+ X is |u1|X|u2|-measurable and “f” is
lullx|u2|-integrable. Further, when u1 and u2 commute and the
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range of f is bounded in X, this result reduces to the theorem
of Fubini for such integrals.

{2 will denote QlXQQ in the sequel.

LEMMA 3.1. Let £:Q+X be such that £ 48 |uq|x|n,|-measur-
abte and |f]| « £(Ju [x|u,|,R). Then £ 4is (uyxw,) and akso
(uyxu,) *-integrable.

Proof. Let fwl(w2) £ f(wl,w2) = fw2(w1). As f is
|ullxlu2]-measurable, there exist a sequence (sn) of X-valued
;gZQ—Simple functions and a set N, (|u1|xlu2p—negligib1e,such
that s > £ in Q\N. As |up, [(B) < |w [*|u,[(E) for E€Z T,
by Theorem 2.6, it is clear that N is |u1Xu2|—negligible (vide
Proposition 11, p.15 of [2]) and hence s, ~ f Iulxu2|-a.e. .
Therefore, by Definition 1.1, f is Iulxu2l—measurable. Conse-

quently, "f" is |u1Xu2l-measurable. Further,
fedatvymy| < flelaclu|xlu,D <

and hence by Proposition 1.4, f is (u1Xu2)—integrable.

Since the inequality I(u1Xu2)t|(E) < |u1|X|u2|(E),
E e 21XZ2 holds by Theorem 2.6, the above argument can be modi-

fied to prove that f is (ulxuz)t—integrable. a

In the sequel we shall assume that f: - X is lu1|xlu2|—
measurable and that ”f” is ]u1|XIu2|—integrable.

LEMMA 3.2. Let N be |u,|x|u,|-negligible. Then there
exist sets A and B such that Q\N = AUB, where A €I xI, and
B 48 |uy|xu,|-negligible. 1§ the function g:Q ~ X satisfies
the relation g(wl’w2) = £(wy W)X, then there exist C = 91
and D < Q,, |y, |-negligible and |u,|-negligible , nespectively,
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such that g 44 |UIIXIu2|-nnaAunab£e, gy = f -a.e. and

ng=fw2 v, |-a.e., fon w, € Q. \C and w, € 2\ D.
1 e 1 1 2 2
Proof. Since sup_ (|u,|x|u,[(E) <=, Q\N is a
E€Z1XZo Iy [Ju, :
|u1|X|u2|—integrable set in the sense of Definition 6. p.75 of
|2|. Hence by Proposition 12, p.75 of [2], there exist sets
A e 21X22 and B, !ullxluzl—negligible, such that \N = AUB.
Therefore, g = fXA is |u1|X|u2|—measurable by Corollary 1,
p.101 of [2].

Let h = f-g. Then h(wy,w,) = 0 for (wl,w2) e A and hence
h =0 |u1|X|u2|—a.e. Now, by the classical Fubini's theorem,
for E< t(|w ), Fe t(u,))

0 = { Inlatluylxluyl = f[[Imeglalu, Jalu,]
EXE 1 2 B[F w1 2 ] 1

= [[ 1" alu, alu,|

FE

where we consider the restrictions of Iull and lu2| in

=y ) = {ee t(Ju ): 6 =E}

and

"

(D) = e e t(fu,1): B =F}

respectively. Fixing F and varying E we obtain that there

exists C Ciﬂl, Iull-negligible, such that

g"hw1"d|u2l = 0, for W, € Ql\ C

and now, varying F in T([u2|), we deduce that hwl =0
[u2|-a.e. Similarly, we have that h'2 = 0 Ipll—a.e., for

WQGZQ‘\D, with D [uzl—negligible. Hence fw1 = 8wy |u1|-a.e.,
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and £72 = gw2 lull—a.e., for such Wy and Wy

LEMA 3.3. There exist sets N, =@, luil-negLCngﬂe,
i=1,2 such that
(1) gorn w

< Q\N £y du, exiss and

2

1 1

WQ i
f du1 eXAATS .
1

Proof. As f is |u1|X|u2|—measurable, there exist N

(ii) fon W, Q\\NQ,

O FOL N

Iu1|X|u2|—negligib1e and a sequence (sn) of 21X22-simple X-va-
lued functions such that 8 * f in @\N. By Lemma 3.3, there
exist sets A and B, with A e 21X22 and B |ullx|u2|—negligible,
such that @\ N = AUB. Let g = fo, then SnXA + g in Q and

t = s, Xa is leZz—simple. Consequently,

n

gwl(wz) = l;m (tn)wl(w2), W, € Q,
w2

and hence gw1 is lu2|—measurable. Similarly, g < is lu1|—mea—

surable.

Now from Lemma 3.2, it follows that gW1 = fw qul—a.e.
for w, Iull—a.e., and g"2 = £"2

Consequently, by Proposition 1.2 and by Proposition 9, p.91 of

’ Iull—a.e., for Wo |u2|-a.e.

[2], we have that fwl is lu2|—measurable and f'2 is |u1|—mea—
surable, for w, Iull-a.e. and W, lu2|-a.e.

As || f]| i(IUIIXIUQI),R), applying the classical Fubini's
theorem to ”f”, we obtain that

[ 152 aln,] <<
1

for w, = 92\ N with NQ qul-negligible, and

2 23
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f ufwidIUQI <00
{2

for w €2Q‘\§1, with ﬁl Iull—negligible. Consequently, we

1
have, by Proposition 1.4, that é fwldu2 exists for w EZQl\\N
2

1 1

1 5 1 = NllJC and

N2 = ﬁQ UD, C and D being those given in Lemma 3.2. 8

and é fw2du exists for w EZQQ\ N2, where N
1

LEMMA 3.4. With N, N, as in Lemma 3.3, Let

1

élfwlduy W, NN,

F(wl) =
0, w1€: N1 5
and 5
élf du, W, = AN,
G(w2) =
0., W, € N2.

Then F 48 |u,|-measurable and G &5 |u,|-measurable.

Proof. As f is Iullxluzl-integrable by Lemma 3.1, there
exists a sequence (Sn) of X-valued Zixzo—simple functions such
that

l, n €N (1)

éisn—fﬂd(|u1IXIu2l> ¥

and s, el 2 Iu1|X|u2l-a.e. By the classical Fubini's

theorem, there exists Nn’ lull—negligible, such that

Fn(wl) 3 é u(Sn)wl_fwiud!uQI Ty |y NS Q1\ KIn’
2

F e‘f(lplg,R) and also

1
[ Faalug] = floy-flaciuylxly,h < 3

1§
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by (1). Therefore

1im [ F d|p, | = o.
n it
n> Q

1
That is, Fn tends to 0 in Iull—mean and hence by Proposition
1.4,p.130 of [2], there exists a subsequence (Fnk) of (Fn)
such that Fnk %50 |u1|—a.e. Therefore, there exists a set
Ny»
Let

I E . e
lu1| negligible, such that Fnk(wl) + 0 for all wlezﬂi\No.
(o]
¥=nul U §JuN,
1 e k 0

then N is Iull—negligible. For w, € 2\ N,

IFCw,) - é (spy dwy @l = "é{fwl-(snk)wl}dUQH
2

A

S.g " fwl‘(snk)wlu dl u2|
2

Fnk(wl) >0

as k > ©, In other words, we have that

F(wl) = 1im é (snk)wldu2, |u1|-a.e. (2)
2

We observe that if

n
s = iz XiXEi’ s < X; Ei c 21X22, i 15250 5310

1

so that s is 21X22-simple with values in X, then

[ swgdn, =

n n
((E, . = bp (w,)x/5
2, 1z1u2 g% izl By
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Now, by Corollary 2.3, we obtain that é swldu2 is [ull—mea—
2

surable, and by (2) and Theorem 1, “p.94% of [2] we have

that F is |u1i_measupab1e, The proof for G is similar and

hence omitted.

THEOREM 3.5. (A Generalized Fubini's Theorem). Let
£:Q > X be |uy|x|u,|-measunable with || €| |u|x|n,|-integrable.
Then there exist N, e I, with N, Iuil-negugx;bﬂe, i =12,
such that fon w, e Q\N, there exists the integnal sz gty

< Q,\N,, there exists the integral / fw2du1. 14
Q
2

and gor W,

F:fd, » X and G:R2, > X are defined by

L)
F(w,) = [ Fagdhy, W e NN, > G(wy) = 3 dp, > Wy QAN
§y 4
then F 45 ul-integnabze and G 45 uz-éntegnabﬂe. Furthen, we
have that
[faluxuy) = [ Fawy = [ [ £y, du dn,
Q Q Q.Q
1 12
and

ffd(u1Xu2)t = [ ed, = [ [ 2 du, .
Q 2, 2,2,

Proof. By Lemma 3.4 and by Proposition 9, p.91 of [2],
F is lull—measurable and G is |u2|—measurable, and the exis-
tence of Ni with specified properties is guaranteed by Lemma

3 ol

From (1) in the proof of Lemma 3.4, there exists a se-

quence (sn) of X-valued 21XZ2—simple functions such that

1
gznsn-flld(luilxluzl) < (1)
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for n eN. Let

n
g o i)

E. €I, xI E.NE. =¢ for i # j.
i 141 HLdnd

iXEi, 4 1 24

If

S(wl) é (sn)wldu2 i

2

then

n
s(wl) 'Z

hp (w.)x..
FET) Ei p. | 1

Then by Corollary 2.3, s is !uil—measurable and
n
Iscepl < T Ing ol
i=1
n
< (max x| )(izln uy (B )l

n
< K( ((E. ))
i§1‘u2| 1)w1

n
= Klu, | ((\JE,)_ )
2 o 1 w1
< KM2 <
where K = max "Xi”' Hence, "s" is a bounded |u1l-measurable

: 1<ig<n
function and so it is |u1]—integrable. Consequently, by Prop-
osition 1.4, s is Iuﬂ-integrable.

Now we shall prove that F is pl—integrable. It is clear

that |F-s| is |y |-measurable and
[IE-slalu | = [ I (£, -(s_ ), daw |d]u, |
2 1 T B T a2l
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S é gfz £, -Cop)u falyfal, |
172

o CENCUPRCIAD

(2)

A
o=

by the classical Fubini's theorem and by (1).

Let tn(wl) = é (sn)wldUQ. Then, by the foregoing, t is
: 2 .
ul—lntegrable and consequently, from (2) it follows that

[Irlaly ]« [hPslalug |+ [ Tegdalu,| <= .
1 2 1

Therefore, "F" is |u1|—integrable and hence by Proposition 1.4
F is ul—integrable.

By a similar argument it follows that G is u2—integrable.

AFFIRMATION 1. If

n
n iZ1XiXBi’ E;NEyj=¢for 1# 3, E;€20,, x; <X

then
és d(ulxu2) = é é SwldUQdU1

1592
In fact,

n
1 T, (E)x,, (3)

n
fs alu,xpu,) = ¥ (uoxu )(E,)x, =
e Ry s

by Theorem 2.6.

We observe that if g:Q1 +rXuds ul-integrable and x € X
is a fixed vector in X, then gx is ul—integrable and
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(f gdpl)x = f gx dpl.
Q

1 Ql

Using this observation in (3), we have

és d(U1XU2) = ( hEidul)xi

[t

[N
I8 Ov— o

HnHe~-1s eI

s

hEixidul

e
[N

—
=2
M
b
(X
N
[aV)
=
[y

[y
[
[N

"

O e O
'-l-‘

1e~18

1U2((Bi)w1)xi}dU1

[N
.

)duz)du1

"
O
~~
O~

n
( ¢
gxl (Ei)Wl

=

2

"
FOLLEN

f Sw.du,du, .

12

,

AFIRMATION 2. Let s be as in Affirmation 1. Then

g W2
és CIETRSTIOREE é é s “du,du,.

211

5 of Lemma 2.4 in place of T, in the

proof of Affirmation 1, the present affirmation can be proved.

In fact, using T

From (2), recalling that s = t » we have

[ Fdu, = lim [ t du, = lim [ |

du2du1. (W)
Q, n n

(s.)
n W1

Using Affirmation 1 in (4), we obtain
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[ Fadu =limfsd(uxu)=éfd(u><u)
b IEL R N aa il oy

as

||éf d(u,xu,y) - ffzsnd(ulxuz)ll < flg=s_laCln, [x[u, D)

e by

< -+ 0 as n > o,

o l

Similarly, using Affirmation 2 we have

t
sszduQ = éfd(uix%)
2

This completes the proof of the theorem.

COROLLARY 3.6 (Fubini's Theorem). In addition, Let
My and u, be commuting measures. If £:0> X Ls a bounded
[uy x| u,| -measurable function, then £ is wu xu,-integhable anc

ffd(u1Xu2) = f f fwldUQdul = f f fw2du1du2.
9! 248, S804
Proof. “f" is |u1|xlu2|-measurable and bounded. Hence,
as Iu1|X|u2l is a finite measure in 21X22, "f" is Iullxluzl—
integrable and hence by Lemma 3.1, if is u1Xu2—integrable.
Now by Theorem 3.5 and Corollary 2.7 the conclusion is obtain-

ed. ®

It is known that for two complex measures ul and M, on
O-algebras 21 and 22 respectively, lulxu2| = lpllxluzl (vide
Lemma III. 11.11 of [3]). But this is not generally true for

X-valued measures as we see in the following counter example.
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COUNTEREXAMPLE 3.7. Let X be a commutative Banach al-

gebra with Xy 2%, € X such that "x1x2H < Hxllﬂxzﬂ. Let 21 and 22

2
be 0-algebras of subsets of 91 and 92 respectively, with 91 Z ¢
and 92 £ ¢. Let vi:Zi + [0,®) be non-negative non trivial mea-
sures, i = 1,2, then My = XV, i =1,2, are X-valued measures

on L. with
i

o= Ixgllvs 0 4= 1,2,
IulquI = "xix2"(\)1xv2)
RS PRI P IO I0F

Consequently, (U1Xu2)(Q1X92) = "xlxzu(lev2)(91X92)

= l|x1x2||v1(91)v2(92) < ||x1||]|x2"\)1(91)\)2(92) = (|u1|x|u21)(91x92).
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