Revista Colombiana de Matemáticas Vol. XVIII (1984), págs. 99 - 108

LOCALIZATION IN BUNDLES OF METRIC SPACES

bу

Gilma de VILLAMARIN

and

Januario VARELA

- §1. <u>Introduction</u>. The essentials of the method of *topological localization*, was presented in [1] for the first time, and a few years later in Hofmann's survey article [2]. If $p:G \to T$ is a surjection, the following data are given:
 - a) A uniformity on G
 - b) A topology on T
 - c) A family Σ of selections for p.

One seeks to establish the continuity of each $\alpha \in \Sigma$, for an appropriate topology on G; but this in general can not be secured, unless G is modified in a drastic manner. The process was described in terms of the entourages of the given uniformity and the neighborhood filters of the base space T. A family of modified stalks is obtained and their disjoint union provides

a new space Ĝ over T.

Recently, K.H. Hofmann [3], [4], gave a very elegant presentation of this localization process in terms of directed colimits, valid for bundles of Banach spaces. A feature of this presentation worth to mention is the giving of the data in the form of a presheaf.

The purpose of this paper is to give a metric version of Hofmann's localization method, generalizing the Banach bundle situation. The construction provides a universal arrow from the given presheaf to the functor that assigns to each bundle of metric spaces the presheaf of its bounded local section.

§2. Directed colimits.

- 2.1. Let X, Y be metric spaces and $f:X \to Y$. The map f is said to be *contractive* if $d(f(a),f(b)) \leqslant d(a,b)$ for every pair of elements $a,b \in X$. Denote by \mathfrak{M} the category of metric spaces and contractive maps.
- 2.2. Consider a directed system in M, $(X_{\alpha})_{\alpha \in A}$, $(\rho_{\beta\alpha})_{\beta \geqslant \alpha}$ where A is a directed set. In particular, each $\rho_{\beta\alpha}: X_{\alpha} \to X_{\beta}$ is a contrative map such that
 - i) $\rho_{\alpha\alpha} = id_{X_{\alpha}}$
 - ii) if $\gamma \geqslant \beta \geqslant \alpha$, then $\rho_{\gamma\alpha} = \rho_{\gamma\beta}\rho_{\beta\alpha}$.

Let X be the disjoint union of the family of metric spaces $(X_{\alpha})_{\alpha \in A}$. Define on X the relation \circ by:

 $u \sim v$ if and only if for every $\varepsilon > 0$, if $u \in X_{\alpha}$ and $v \in X_{\beta}$, there exists $\gamma \in A$ such that $\gamma \geqslant \alpha$, $\gamma \geqslant \beta$ and

$$d(\rho_{\gamma\alpha}(u), \rho_{\gamma\beta}(v)) < \epsilon$$
. We would also see a single solution

It follows, by a straighforward verification that $^{\circ}$ is an equivalence relation [6].

2.3. Consider the quotient Z of X by the equivalence relation $^{\circ}$, Z = X/ $^{\circ}$. Define on Z×Z,

$$d(\bar{\mathbf{u}}_{\alpha}, \bar{\mathbf{v}}_{\beta}) = \inf d(\rho_{\gamma\alpha}(\mathbf{u}_{\alpha}), \rho_{\gamma\beta}(\mathbf{v}_{\beta})),$$

where the infimum is taken over all $\gamma \in A$ such that $\gamma \geqslant \alpha$ and $\gamma \geqslant \beta$, and $\bar{u}_{\alpha}, \bar{v}_{\beta}$ are the equivalence classes, module the equivalence relation \sim , of $u_{\alpha}, v_{\beta} \in X$. It can be shown that d is a well defined map and that it defines a metric on Z [6]. Moreover, the canonical map $\tau_{\alpha}: X_{\alpha} \rightarrow Z$ is contractive.

- 2.4. The metric space Z and the maps $(\tau_{\alpha})_{\alpha \in A}$ define an inductive cone for the directed system of metric spaces. This cone turns out to be the directed colimit of the system. In fact, given another inductive cone, Y, $\sigma_{\alpha}: X_{\alpha} \to Y$, where α runs through A, define $\phi: Z \to Y$ by $\phi(\bar{u}_{\alpha}) = \sigma_{\alpha}(u_{\alpha})$. One can easily see that ϕ is a well defined contractive map satisfying the universal property for Z [6]. Hence we have the following statement.
- 2.5. Every directed system of metric spaces and contractive maps has a directed colimit.
- **2.6.** REMARK. The above construction remains valid even if the metric is allowed to take the value ∞ .

§3. Bundles of metric spaces.

3.1. DEFINITION. Let p:G → T be a surjective function

A metric for p is a map $d: G \times G \to [0,\infty]$ such that its restriction to each fiber $G_t = \{u \in G : p(u) = t\}$ is a metric in G_t and $d(u,v) = \infty$ if $p(u) \neq p(v)$.

We refer to [4], [5] for each definitions of selection, section and local section.

A set M of selections is called bounded if $d(\alpha,\beta) = \sup\{d(\alpha(t),\beta(t)) : t \in dom \alpha \cap dom \beta\}$ is finite for every $\alpha,\beta \in M$, in this case $(\alpha,\beta) \to d(\alpha,\beta)$ is a metric on M. Nevertheless it is convenient for us to allow the value ∞ for d.

By definition, a bundle of metric spaces is a bundle of uniform spaces in the sense given in [5], such that the family of pseudometrics reduces to the metric d. In particular, the tubes around local sections are a basis for the topology of G and the map $t\mapsto d(\alpha(t),\beta(t)):U\to\mathbb{R}$ is upper semicontinuous whenever α,β are local sections over U.

3.2. Let (E,p,T) and (F,q,T) be bundles of metric spaces, Σ a presheaf of local sections in the field (E,p,T) and Σ' a presheaf of local sections in the field (F,q,T), such that for every open set U of T the domain of each section in $\Sigma(U)$ or in $\Sigma'(U)$ is U.

Consider a morphism of presheaves $\phi:\Sigma\to\Sigma'$, then for every open subset U of T and $\alpha,\beta\in\Sigma(U)$, $d(\phi_U(\alpha),\phi_U(\beta))\leqslant d(\alpha,\beta)$.

Assume that for every $t \in T$, every $x \in E_t = p^1(t)$ and every open neighbordhood V of t, there exists $\alpha \in \Sigma(W)$ such $\alpha(t) = x$, with $W \in V$. That is, assume that Σ is full.

Define f:E \rightarrow F by f(x) = $\phi_U(\alpha)(t)$ if p(x) = t, $\alpha(t)$ = x and U = dom α is an open neighborhood of t.

This is a well defined map: suppose $\beta \in \Sigma(V)$ is such that $\beta(t) = x$. Then there exists an open neighborhood $W \subseteq V \cap U$ of t

$$\mathrm{d}(\varphi_{\mathrm{W}}(\alpha_{\mathrm{W}})(\mathsf{t}), \varphi_{\mathrm{W}}(\beta_{\mathrm{W}})(\mathsf{t})) \leqslant \mathrm{d}(\varphi_{\mathrm{W}}(\alpha_{\mathrm{W}}), \varphi_{\mathrm{W}}(\beta_{\mathrm{W}})) \leqslant \mathrm{d}(\alpha_{\mathrm{W}}, \beta_{\mathrm{W}}) < \varepsilon$$

Thus
$$\phi_{\mathbf{U}}(\alpha)(t) = \phi_{\mathbf{W}}(\alpha_{\mathbf{W}})(t) = \phi_{\mathbf{W}}(\beta_{\mathbf{W}})(t) = \phi_{\mathbf{V}}(\beta)(t)$$
.

The map f is contractive fiberwise; in fact, take $x,y \in E$ with p(x) = p(y) = t. Let $\alpha,\beta \in \Sigma(U)$ be such that $\alpha(t) = x$ and $\beta(t) = y$, where U is open in T and $t \in U$. Given $\epsilon > 0$, there exists $V \subset U$ open and containing t such that

$$\begin{split} \mathrm{d}(f(\mathbf{x}), f(\mathbf{y})) &= \mathrm{d}(\phi_{\mathrm{V}}(\alpha_{\mathrm{V}})(t), \phi_{\mathrm{V}}(\beta_{\mathrm{V}})(t)) \leqslant \mathrm{d}(\phi_{\mathrm{V}}(\alpha_{\mathrm{V}}), \phi_{\mathrm{V}}(\beta_{\mathrm{V}})) \\ &\leqslant \mathrm{d}(\alpha_{\mathrm{V}}, \beta_{\mathrm{V}}) < \mathrm{d}(\alpha(t), \beta(t)) + \varepsilon = \mathrm{d}(\mathbf{x}, \mathbf{y}) + \varepsilon. \end{split}$$

Hence $d(f(x), f(y)) \leq d(x,y)$.

- 3.3. LEMA. Let (E,p,T) and (F,q,T) be bundles of metric spaces, Σ a presheaf of local sections in (E,p,T) and Σ' a presheaf of local sections in (F,q,T). Assume that Σ is full. If φ is a morphism between the presheaves Σ and Σ' , let $f:E \to F$ be defined as described above in terms of φ , then
 - a) For every open subset U of T and every $\alpha \in \Sigma(U)$, $fT_{\varepsilon}(\alpha_{U}) \subset T_{\varepsilon}(f\alpha_{U}) = T_{\varepsilon}(\phi_{U}(\alpha_{U}))$.
 - b) f is continuous.
 - c) $d(f\alpha,f\tau) \leq d(\alpha,\tau)$ for every pair of local sections $\sigma,\tau \in \Sigma_{D}(U)$.

Proof. Parts a) and c) follow from the contractivity of f established above.

b) Let $x \in E$, t = p(x) and σ a local section in (F,q,T) such that $f(x) \in \mathcal{T}_{\varepsilon}(\sigma)$. Take $\alpha \in \Sigma(U)$ such that $\alpha(t) = x$, then $W = \{s \in U \mid dom\sigma: d(\phi_U(\alpha(s)), \sigma(s)) < \delta\}$, with $d(f(\alpha(t), \sigma(t)) < \delta < \varepsilon$, is an open neighbordhood of t = p(x) = q(f(x)). Now,

 $\mathcal{T}_{\varepsilon-\delta}(\sigma_W(\alpha_W)) \subset \mathcal{T}_{\varepsilon}(\sigma)$; in fact, if $y \in \mathcal{T}_{\varepsilon-\delta}(\sigma_W(\alpha_W))$, then $s = q(y) \in W$ and

 $\mathrm{d}(\mathtt{y},\sigma(\mathtt{s})) \leqslant \mathrm{d}(\mathtt{y},\phi_{\mathtt{W}}(\alpha_{\mathtt{W}}(\mathtt{s}))) \; + \; \mathrm{d}(\phi_{\mathtt{W}}(\alpha_{\mathtt{W}}(\mathtt{s})),\sigma(\mathtt{s})) \; < \; \epsilon - \delta + \delta = \epsilon.$

By part (a) of this lemma $f\mathcal{T}_{\varepsilon-\delta}(\alpha_{W}) \subset \mathcal{T}_{\varepsilon-\delta}(\sigma_{W}(\alpha_{W})).$ Thus f is continuous at x.

3.4. Let (E,p,T) and (F,q,T) be bundles of metric spaces, a continuous map $h:E \to F$ is called a morphism of bundles of metric spaces if h is fiber preserving (i.e. qh = p) and h is contractive.

To a bundle of metric spaces (E,p,T) we can associate a sheaf of metric spaces Σ_p such that for each open subset U of T, $\Sigma_p(U)$ is the space of all local sections whose domain is U, and to each morphism h:E \rightarrow F of bundles of metric spaces we can associate a sheaf morphism $\Sigma_p(h) = \theta$ such that if $\alpha \in \Sigma_p(U)$, $\theta \alpha = h \alpha \in \Sigma_q(U)$.

3.5. THEOREM. Let T be a topological space, A the set of all open subsets U of T and $(\Sigma(U))$, $U \in A$, (ρ_{VU}) , $V \subseteq U$ a presheaf of metric spaces. Then there exists a bundle of metric spaces (\hat{G},\hat{p},T) and maps $\phi_U:\alpha \to \hat{\alpha}$, $\Sigma(U) \to \Sigma_{\hat{p}}^{\alpha}(U)$, where $\Sigma_{\hat{p}}^{\alpha}(U)$ are the local section for p over U, compatible with restriction such that for every open subset U of T and every pair $\alpha,\beta \in \Sigma(U)$, $d(\hat{\alpha},\hat{\beta}) \leqslant d(\alpha,\beta)$.

Proof. As in the second paragraph, \mathfrak{M} denotes the category of metric spaces and contractive maps. For each $t \subseteq T$, denote by V(t) the directed set of all open neighborhoods of t in the space T and $(\Sigma(U))$, $U \subseteq V(t)$, (ρ_{VU}) , $V \subseteq U$, the directed system determined by the given presheaf. Call \hat{G}_{+} its directed colim-

it. It was shown before that $\boldsymbol{\hat{G}}_t$ is endowed with a metric $\boldsymbol{\hat{d}}_t.$

Let \hat{G} be the disjoint union of the family $\{\hat{G}_{\underline{t}}: \underline{t} \in T\}$. Define $p:\hat{G} \to T$ by $\hat{p}(\hat{u}) = t$ if $\underline{u} \in \hat{G}_{\underline{t}}$ and a metric \hat{d} for \hat{p} by $\hat{d}(\hat{u},\hat{v}) = \hat{d}_{\underline{t}}(\hat{u},\hat{v})$ if $\hat{p}(\hat{u}) = \hat{p}(\hat{v}) = t$ and $\hat{d}(\hat{u},\hat{v}) = \infty$ if $\hat{p}(\hat{u}) \neq \hat{p}(\hat{v})$.

Let $\tau_{tU}: \Sigma(U) \to \hat{G}_t$ be the colimit map. Given $\alpha \in \Sigma(U)$, define $\hat{\alpha}: U \to \hat{G}$ by $\hat{\alpha}(t) = \tau_{tU}(\alpha)$, with U and open neighborhood of t. Clearly $\hat{p}\hat{\alpha} = \mathrm{id}_U$. Let $\hat{\Sigma}(U) = \{\hat{\alpha}: \alpha \in \Sigma(U)\}$ and $\phi_U: \Sigma(U) \to \hat{\Sigma}(U)$ be defined by $\phi_U(\alpha) = \hat{\alpha}$. It is apparent that $\hat{G}_+ = \{\hat{\alpha}(t) \mid \hat{\alpha} \in \hat{\Sigma}(U)\}$.

We show now that $t \to \hat{d}(\hat{\alpha}(t), \hat{\beta}(t)): U \to \mathbb{R}$ is upper semicontinuous. Given $\epsilon > 0$, let $t \in T$ such that $\hat{d}(\hat{\alpha}(t), \hat{\beta}(t)) < \epsilon$. By the definition of \hat{d}_t as an infimum, there exists an open neighborhood $W \subset U$ of t in T such that

$$\boldsymbol{\hat{d}}_{\boldsymbol{t}}(\boldsymbol{\hat{\alpha}}(\boldsymbol{t}),\boldsymbol{\hat{\beta}}(\boldsymbol{t})) \leqslant \boldsymbol{d}(\boldsymbol{\alpha}_{\boldsymbol{W}},\boldsymbol{\beta}_{\boldsymbol{W}}) < \boldsymbol{\epsilon},$$

but W is also an open neighborhood of any $s \in W$, hence $\hat{d}_{s}(\hat{\alpha}(s), \hat{\beta}(s)) < \epsilon$. Then $W \subset \{t \in U : d_{t}(\hat{\alpha}(t), \hat{\beta}(t)) < \epsilon\}$; that is $\{t \in U : \hat{d}_{t}(\hat{\alpha}(t), \hat{\beta}(t)) < \epsilon\}$ is an open subset of T. This proves the asserted upper semicontinuity.

By Theorem 4 [5], we conclude that (\hat{G}, \hat{p}, T) is a bundle of metric spaces and that each $\hat{\alpha} \in \hat{\Sigma}(U)$ is a local section.

Let U be an open subset of T, $\alpha, \beta \in \Sigma(U)$ and $\epsilon > 0$, then there exists $t \in T$ such that $d(\hat{\alpha}, \hat{\beta}) - \epsilon < d(\hat{\alpha}(t), \hat{\beta}(t)) \leq d(\alpha, \beta)$. Thus $d(\hat{\alpha}, \hat{\beta}) \leq d(\alpha, \beta)$.

3.6. THEOREM. Under the same hypothesis of the preceding theorem, assume that there is a bundle of metric spaces $(\bar{\mathsf{G}},\bar{\mathsf{p}},\mathsf{T})$ and contractive maps $\psi_U\colon \Sigma(\mathsf{U})\to \bar{\Sigma}(\mathsf{U}),\ \alpha\to\bar{\alpha}$ compatible with restriction maps, where $\bar{\Sigma}(\mathsf{U})$ are the local section for $\bar{\mathsf{p}}$ over U. Then there exists a unique continuous map $h\colon \hat{\mathsf{G}}\to \bar{\mathsf{G}}$ such

- a) h is fiber preserving and contractive.
- b) h $\hat{\alpha} = \bar{\alpha}$ for every $\alpha \in \Sigma(U)$.

Proof. Consider again the directed system $(\Sigma(U), \rho_{VU})$, where $V \subset U$ runs through the open neighborhoods of $t \in T$. Let \overline{G}_t the fiber above t in the bundle $(\overline{G}, \overline{p}, T)$. For $V \in V(t)$ define $\sigma_{tV} \colon \Sigma(V) \to \overline{G}_t$ by $\sigma_{tV}(\alpha) = \overline{\alpha}(t)$. Clearly $\sigma_{tW} \rho_{WV} = \sigma_{tV}$ when $W \subset V$. On the other hand, $d(\sigma_{tV} \alpha_V, \sigma_{tV} \beta_V) = d(\overline{\alpha}(t), \overline{\beta}(t)) \leqslant d(\overline{\alpha}, \overline{\beta}) \leqslant d(\alpha, \beta)$. Hence α_{tV} is contractive and consequently we have an inductive cone for the directed system.

By the universal property of \hat{G}_t there exists an unique contractive map $\theta_t: \hat{G}_t \to \bar{G}_t$ such that $\theta_t \tau_{tV} = \sigma_{tV}$, for every open neighborhood V of t. Therefore, for every $t \in V$ and every $\alpha \in \Sigma(V)$, $\theta_t(\hat{\alpha}(t)) = \bar{\alpha}(t)$.

By means of the family $\{\theta_t: t \in T\}$ we can define $\theta_U: \hat{\Sigma}(U) \to \bar{\Sigma}(U)$ such that $\theta_U(\hat{\alpha})(t) = \theta_t(\hat{\alpha}(t)) = \bar{\alpha}(t)$. Since $d(\bar{\alpha}(t), \bar{\beta}(t)) = d(\theta_t \hat{\alpha}(t), \theta_t \hat{\beta}(t)) \leqslant \hat{d}_t(\hat{\alpha}(t), \hat{\beta}(t))$ we have $d(\bar{\alpha}, \bar{\beta}) = d(\theta_U \hat{\alpha}, \theta_U \hat{\beta}) \leqslant d(\hat{\alpha}, \hat{\beta})$ for every $\alpha, \beta \in \Sigma(U)$. By Lemma 3.3 it follows that the map $h: \hat{G} \to \bar{G}$ defined by $h(\hat{x}) = h(\hat{\alpha}(t)) = \theta_t(\hat{\alpha}(t)) = \bar{\alpha}(t)$, is continuous.

Uniqueness of h is obvious.

3.7. EXAMPLE. Let T be a topological space and $\Sigma(U)$ be the (bounded) upper semicontinuous functions defined in U. As U runs through the open sets of T, $\Sigma(U)$ defines a sheaf of metric spaces by taking $d(f,g) = \sup\{d(f(t),g(t)) : t \in T\}$ and the obvious restrictions maps.

By Theorem 3.5 there exists a bundle of metric spaces $(\hat{\mathbb{R}},\hat{\mathbb{p}},T)$ and contractive maps $\phi_U:f\to \hat{f}:\Sigma(U)\to \hat{\Sigma}(U)$ compatible with restrictions such that for every pair $f,g\in\Sigma(U),\ d(\hat{f},\hat{g})=d(f,g).$ On the other hand if (E,p,T) is any bundle of metric

spaces and σ , τ are (bounded) local section for p over $U \subset T$, then $t \mapsto d(\sigma(t), \tau(t)) \colon U \to \mathbb{R}$ is upper semicontinuous and hence it determines an element of $\widehat{\Sigma}(U)$, call it $\widehat{d}(\sigma, \tau)$. The bundle $(\widehat{\mathbb{R}}, \widehat{p}, T)$ can thus be considered as the object "real numbers" in the category of bundles of metric spaces and contractive maps.

* *

REFERENCES

[1] Dauns, J. and Hofmann, K.H., Representation of rings by sections, Mem. Amer. Math. Soc. 83 (1968).

[2] Hofmann, K.H., Representation of algebras by continuous sections, Bull. Aner. Math. Soc. 78 (1972), 291-373.

[3] ————, "Sheaves and Bundles of Banach Spaces",
Tulane University preprint. 1975.

[4] Hofmann, K.H. and Keimel, K., Sheaf Theoretical Concepts in Analysis, Bundles and Sheaves of Banach Spaces, Lecture Notes in Mathematics 753, Springer Verlag, 1979.

[5] Varela, J., Existence of uniform bundles, Revista Colombia na de Matemáticas, Vol. XVIII, Nº 1-2 (1984), 1-8.

[6] Villamarín G.de, "Campos de Espacios Métricos", Master's Thesis, Departamento de Matemáticas, Universidad Nacional de Colombia, 1983.

* *

Departamento de Matemáticas y Estadística. Universidad Nacional de Colombia Bogotá, D.E., Colombia.

(Recibido en marzo de 1984, versión revisada en Diciembre de 1984).