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§ 1. I nt roduct ion. The operator Re (taking the real part of
a complex function in one complex variable) transforms the class
of analytic functions into the class of harmonic functions.
Since harmonic functions are the solutions of Laplace's equation,
it is natural to ask whether similar possibilities exist for
relating solutions of more general partial differential equations
to holomorphic functions. Bergman [1J established various inte-
gral operators which associate the solutions of linear elliptic
partial differential equations in two real variables with holo-
morphic functions of one complex variable.

Let L(U) be a second linear partial differential equation
given by

L(U) = U +U +a(x,y)U +b(x,y)U +c(x,y)U = 0 (1.1)xx yy x y

where a,b,c are real analytic functions in a domain D cw.2• Now,
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continue a,b,c into entire functions in a:2• Consider the follow-
, f' f ",2 '. . I.elng trans ormatlons 0 ~ lnto ltse ~:

z = x+iy 2(x,y) e: et
1:z = x-iy

(z,z* are complex conjugates if and only if x,y are real). Then
(1.1) becomes

L(U) = U l':+ AU + BU s, + CU = 0,zz z z" (1. 2)

wher-e B = A, U(z,zl':)= U( x cy) and A,B,C are entire functions in
two complex variables [1,p.6]. It is known that

is a solution of (1.2), where c2 is the B~gman c2-integ~ op-
enaton and g is a given holomorphic function in one complex var-
iable z [1,p.13]. Solutions of equation (1.2) can be written as
an infinite series:

U(Z,Zl':)= c
2
(g)

Zl': 00 Q(n)(z,zl':) z
= exp[ - J A(z,i;;l':)di;;l':][g(z)+ I --i-2n-(~- !(z-i;;)n-lg(i;;)di;;].

o n=l 2 B n,n+1) 0
(1. 3)

Here i':
= f p(2n)(z,z*)dz*,

o

h P( 2n) ho Lornor-ol func t i , f .were are 0 omorphlc unctlons satls ylng certan recur-
Slon relations [1,p.15, Equation 5). Also, it is assumed that
g(O) = 0, and B(n,n+1) is a beta function

In the rest of the paper D, E and F are positive constants
which depend on the indicated parameters only and not on any
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function which may appear in a particular formula. The con-
stants are not necessarily the same on any two occurrences.

§2. Bergman spaces for solution of 1 inear partial
differential equations. Let tY denote the unit poly-

disc with center at the origin, and TN = {w e:crN:Iw.1 = 1, 1~ j
N ]

~ N} be the B~gman-S~ov boundany. For z e: cr , let dz = dZ1N. -N... dz and for w e:T , w. = eXp(le.), let dmN(w) = (21T) del'"
n. ] ] N

deN' Glven r = (r1,... ,rN) and z e: [ , denote by rz the N-tuple
(r1z1, ...,rNzN). A function f, holomorphic on 6N, is said to be
in HP(6N), 0 < p < 00, if

is bounded independently of r for all r e:IN = [0,1) x ••• x [0,1) .

The funtion f is said to be in the B~gman ~paQe AP(6N) (0 < P

< 00), if

Yang [4, Theorem 5.1, p.96] proved that the Bergman c2-in-

tegral operator preserves the HP property, i.e. the c2-operator
maps HP(61) into HP(62) for (1 ~ p < 00).

We extend Tang's result and prove:

THEOREM. ton. 1 ~ P < 00,(.11 g e: AP(6
1), then c2(g) =

U(Z,Z··1) EAP(62), whefLe c2 .t6 the mtegJta1. openaro« g,{.ven by
(1.3).

Proof. First assume g(O) = O. Then U(z,z*) is given by
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(1 3) S· A(z,T~':)' . lI'2," b . A
2. . lnce ~ lS an entlre In ~ It lS ounded lD U , so

that 7;':

lexp(-(A(z,L;;~':)dt:~':)1~ D.
o

(2.1)

Let z i81 :': i82 i81= r1e ,z = r2e , t:= se . Then by (2.1) and (3.1),

Hhere
Q(n)(z,/:)

22~(n,n+1)

Now lz-t:\< r1 < 1, so that

therefore it

00I H (z,z*) is an entire function in [2,
n=1 n 2is bounded in 6 and

IIt can be shown that

Since
(2.2)

[2], then

Integrate with respect to 81, 82 over [0,2nJx[0,2n], then take
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ththe p root of both sides and use (2.2). This gives

Using Minkowski's inequality in continuous form on the second
term of the right side, we obtain

J I i81 i82 P l/p(T2 U(r1e ,r2e.)1 d81d82)

2rr ie rl 2n ie
~ D [(J Ig(r1e 1)Fde1)1/P + EJ- (J Ig(se 1)fd81)1/PdS].

P 0 0 0

Since the mean of g is monotone nondecreasing, we have

Now, raising both sides to the pth power, mUltiplying by r1,r2
and integrating with respect to r1,r2 over [O,l]x[O,l], we
obtain

(2.3)

Secondly, suppose that g(O) = a ¢ 0. Set G(z) = g(z) - a. Then
c2(g) = c2(G)+c2(a), since c2 is a linear operator, where

s,
n W

c2(a) = exp[_!Z A(z,Z;;lt:)dZ;;1:][a+a Ihn(Z,Zl':)]
o n=l

and
s,

h (z,zn)
n

Q(n)(~ It:) n= "'-',Z z
22~(n,n+l)
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But h = !h converges uniformly in every compact subset of
2 n=1 n~ ~ [4, Lemma 5.1, p.94]; therefore, h is an entire function

. 2 * 2In ~ . 'I'hus; for (z,z ) e: /), ,

Hence by using (2.1) we get

(2.4)

But for g e: AP(/),) (p > 0), we have

[3,p.476 Equation 17J and in particular for z = 0

(2.5)

so that (2.4) and (2.5) give

(2.6)

Thus (2.3) and (2.6) give the theorem.

OROLLARY. 111 g e: AP(/),1), 1 ~ P < 00, then :the c2-oPe.Jta.-
:toJr. J.A ~ bounded LLneCVL bLarz..66oJtJrk:tt.i.on nJr.om AP(/),1) .to AP(/),2).

Proof. From the proof of the theorem, there exists a con-
stant D depending on P only such that
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