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REMARKS ON DA COSTA'S PARACONSISTENT SET THEORIES

*Ayda Ignez Arruda

ABSTRACT. In this paper we analyse da Costa's paraconsis-
tent set theories, i.e., the set theories constructed over
da Costa's paraconsistent logics C~, 1 ~ n ~ w. The main re-
sults presented here are the following. In any da Costa para-
consistent set theory of type NF the axiom schema of abstrac-
tion must be formulated exactly as in NF; for, in the contra-
ry, some paradoxes are derivable that invalidate the theory.
In any da Costa paraconsistent set theory with Russell's set
R = xl(x EX}, UUR is the universal set. In any da Costa
paraconsistent set theory the existence of Russell's set is
incompatible with a general (for all sets) formulation of the
axiom schemata of separation and replacement.

1. INTRODUCTION.

A set theory is paraconsistent if it is inconsistent but non-trivial, i.e.,

at least one contradiction is derived but still there are formulas that are not
theorems. Thus, the underlying logic of a paraconsistent set theory must be a
paraconsistent logic, i. e., a logic in which there is a symbol of negat ion "i ,

such that, from a fonnula A and its negation lA, it is not possible in general
to obtain ar.y formula B whatsoever.

Paraconsistent set theory appeared as an application of paraconsistent log-
ic. The pioneering effort to construct a paraconsistent set theory was made by

N.C.A. da Costa, in 1963, in [12], the same work in which he presented his hier-

archy of paraconsistent logics (see also [14J and [15J). Further attempts can
be found in Arruda and da Costa [6] and [8J, Asenj 0 and Tarnburino [9], Brady
[10], Brady and Routley [11J, and Goodman[17]. Except for da Costa's, and Asen-

* This paper is the text, now considerably expanded, of our lecture in the Fifth
Latin American Symposium on Mathematical Logic (Bogota, July of 1981). We
thank IBM of Brazil for the financial help given to attend the meeting. This
paper was written when the Author was Visiting Professor at the. University of
Warsaw (October of 1981), with & partial grant (81/0522-4) of the 'Funda~ao
de Amparo a Pesquisa do Estado de Sao Paulo' (FAPESP), Brazil.
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jo and Tamburino's set theories, the others are proved to be non-trivial. Those
paraconsistent set theories already proven to be non-trivial may be called weak

paracons i.stcnt set theories for, because of their underlying logic, many of the
basic results of classical set theories (the usual set theories based on classi-

cal logic) are not valid in them. The others, supposing that they are nontrivial,
may be called strong paraconsistent set theories, for all or almost all results

of classical set theories are valid in them. Of course, although useful in this
paper, the above characterization of strong and weak paraconsistent set theories
is not precise.

Let us call a set non-classical if it may exist in a paraconsistent set the-
ory but not in a classical set theory, and contradictory set to a nonclassical
set X such that X c X and ,eX eX). Thus, Russell's set, R = x I(x eX), is a

contradictory set. In ~1e ahove mentioned attempts to construct a paraconsistent

set theory, Russell's set is, in general, introduced through a widening of the
scope of vali di ty of the axiom schema of abstraction, but its properties (as hell
~IS the properties of other nonclassical sets) have not been studied well. Howev-

er, these properties may be very important, because they characterize the behav-
ior of the non-classical sets in a paraconsistent set theory.

In this paper we restrict ourselves to cia Costa's paraconsistent set thee-
r ies annIys ing mainly two problems: first, the widening of the scope of validity
of the axiom schemata of abstraction and separation, and second some properties
of Russell's set and their consequences. The results presented here may be valid
in other parucons is ten t set theories, as will be shown in [SJ.

,\ da Costa pa;:aconsistent set theory is a. paracons i stent _set theory whose

undcr Lyi ng logic is one ~f da Costa's paraconsistent logics C~, 1 ~ n ~ W.

TI1Cpostulates of ~ are those of the positive intuitionistic first-order
logic with equality, axiomatized as in Kleene [18J, plus:

(1) ilA::> A,

(2) A viA.

111epostulates of C~, 1" n ~ w, are those of C: ' plus:

(3) B(n)&(A::>B)&(A::>lB):::>lA,
(4) A(n)&B(n):::>(A::>B)(n)&(A&B)(n)&(AvB)(n),

(S) (x) (A(x)) (n) ::>((x)A(x)) (n) &((Ex) A(x)) (n),

where A(n) is defined as follows: A1 = A0 =.., (A&lA), An
+
1

A1&A2&A\ ... &An.
In each C~, 1 ~ n "w, i*A is defined as iA&A(n), and it is proved that

*I sat.i s f ies all the properties of the classical negation. Then classical logic
can be obt aine d inside these systems; consequently, they are finitely tri vial-
i zabIe . For, from any formula of the form A&lA&A(n) we can deduce any formula

whatsoever. Nonetheless, C: is not finitely trivializable. M::Jreover, each sys-
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tems in the hierarchy C" C2, Cn C: is strictly stronger 'than the fol-
lowing ones. Thus, we may construct a hierarchy of cia Costa's paracons is terrt set
theories in which, at least intuitively, it seems that each system may admit nore

nonclassical sets than the preceding ones.
For a long tine, in fact since 1964, we have been studying from time to time

cia Costa's paraconsistent set theories of type NF and NFn, 1 ~ n ~ w. We have
proved that cia Costa's formulation of the axiom schema of abstraction for the

systems NFn, 1 ~ n < w, leadsto the trivialization of the systems (see [1], [3]
and [4]). Thus, we have proposed to fonnulate the axiom schema of abstraction in

these systems exactly as in NF.

The main objeti ve of this paper is to present some results (in fact some
paradoxes) that we believe are very inportant in the construction of strong paracon-
sistent set theories, particulary, da Costa's paraconsistent set theories. In
Section 2, we prove that tha Costa' 5 fonnulation of the axiom schema of abstrac-
tion for NFw leads to the paradox of identity, (x,y).x; y, and conclucle with
some argumentation showing that this axiom in any da Costa paraconsistent set

theory of type NF should be fonnulated exactly as in NF. In Section 3, we summa-
rize the syntactical clevelopment or our version of NFw showing that this system
may be consiclered as a strong paraconsistent set theory. In Section 4, we prove

that if Russell's set is introduced in any cia Costa set theory based on C~,
1 ~ n < w, then UURis the universal set. In Section 5, we analyse sorr~ linuta-
tion in the construction of cia Costa's set theories of type ZF where Russell's

class is a set. Finally, Section 6 is a conclusion where we call attention to

some open problems concerning paracons isrent set theory.

2. ON DA COSTA'S SET THEORIES OF TYPE Nf.
In this section we analyse cia Costa's fonnulation of the axiom scherrm of

abst raction for the set theories NFn' 1 ~ n ~ w. In [1] and [4J, we proved that
cia Costa's fonnulation of the axiom schema of abstracion for his systems of type
NF and NF~, 1 -$; n < w, leads to their trivialization. Here we prove that cia
Costa's formulation of the axiom schema of abstraction for NF~ leads to the par-
adox of identity.

cThe systems NFn are constructed, similarly to NF, over the respective cal-

culus of clescriptions Un' The calculi of clescriptions Un' 1 ~ n ~ w, are con-
structed as usual (see Rosser [20J) from the respective C~.

The specific postulates of NF~ are the following:

EXTENSIONALITY. (a,S):.(x).xEa" xES:::::>:a;S

ABSTRACTI ON. (Eo.)(x) :XEa~"" F(x) , where x and a are different variables
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(j. .Ioe.. not occuy' [ree in F(xL F(x) is stratified OY' it does not contain any eub-
[ormuLa 0.' Lhe form A :::> 6.

In Nl'r~" the restrictions regarding the use of non-stratified fonnulas obst rict

a di rcct proof 0 f the paradox of Curry. Russell's set R, defined as x"l (x E x) ,
exists as 1,011 as many other non-classical sets. The paradox of Russell in the
[o rm R E R&'l(RE R) is derivable but, apparently, it causes no harm to the sys-
tem,

Ilue to its weakne s.s , the p ra nit ive negation of NF~, I, is almost useless
for set-theoretical purposes. Thus, let us define

'\, A for A => (x,y) .XEy &x = y.

The uni versal set V is defined as x. x = x, the empty set A as x '\, (x = x),
:UIU the complement of a set a, a, as ~ '\, (xEa). From now on the set theoretical

notations and tenninology in this and the next sections are mainly those of Ro-
sser [20].

TEORHI 2. 1. In NF~, '\, is c minimal: intuitionistic negation.

P!1oo6· It is enough to prove (A:::> 6) &(A:::> '\,8)':::> o'\, A. Let us suppose that
'\ =>6 ;1I1dA:::> '\,8. Then , I,e obtain A:::> (X,y),XEy&X= y, i.e., '\,1\.

COROLLJ\RY 1. f- A => ('\, A :::> '\, 13 ) .

f- (A:::> 8):::> ('\, B :::> '\, A) .

COIWLL\I<Y 2. AU the theorems of NF whose proofs depend only on the laws
or the rrin imai intu"tionishc [i rs t-sorden logic with equality and on the poet:u-
lat.c.: oj' extensionality and abet raci.ion of NI~are valid in NF~ .

TIIEOI,UI 2.2. (CiJl1tor's Theorem) I- (a)· '\, (a sm SC(a)).

r.WOI1· Let us suppose that a sm SC(a). Then, there exists a relation S
such that S EO 1-1, i\rg(S) = a and Val lS] = SC(a). Now, let us take

X = x(x E anSTXJ). (1)

,\5 the formula x E Cl n Sex) is on-stratified and does not contain any sub-for-
inul a 0 I' the form A:::> 8, then X is a set. ~breover, as X £ o , then there exists
y E ('( such that S(y) = X. T11en, by (1), we have:

Y EX· =Co Y '" an Sry)

Y E X 0 =Co Y c Ct " '\, (y E X) . (2)

1'1\;P' (.') we h.rvo '\, (y c a), but, as y' E c , then we obtain
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(a s~ SC(a)) ~ y e: a, and (a sm SC(a)) ~ 'V(y e: a).

Thus, by Theorem 2. 1, the desired result follows.

COROLLARY. (Cantor's Paradox) I- (V sm SC(V))s 'V(V sm SC(V)).

PJtooo. As V = SC(V), then we obtain V sm SC(V). On the other hand, by the
theorem, we have 'V(V sm SC(V)). 0

Apparently, Cantor's paradox does not trivialize NF~. For, from A and iA we
cannot obtain any formula B whatsoever. For instance, apparently, we cannot ob-
tain any formula of the form 1B, where B is a nonatomic formula.

THEOREM2.3. 1. I- (a, 8) .a = 8 &'V(a = 8)
II. l-(a,8).a e: 8 &'V(ae: 8)
III. I- (a) .a e: a &'V(a e: a) .

PJtooo. I. By the corollaries of theorems 2.1 and 2.2, we obtain x = x ~
(a,8).a e:8&a= 8. Thus, as x = x, then (a,8).a = 8. By the sane corollaries we
also obtain (a, 8) . 'V(a = 8). The proof of part II is similar to that of part I.
Part III is an immediate consequence of part II. 0

By Theorem 2.3, it could seem that NF~ is trivial. Nonetheless, apparently
this is not the case. However, though it is nontrivial, NF~ is without interest,
for not only are every two sets identical, but also every set belongs and "does

not belong" to itself.
In order to avoid the results nent i.oned in Theorem 2. 3, one could think of

introducing more restrictions in da Costa's formulation of the axiom schema of
abstraction when F(x) is non- stratified. Nonetheless, we beli ve that this is a

worthless effort. For:
(i) The only non-stratified formula used in the proof of Cantor's Theorem

(which is fundarrental in the proof of Theorem 2.3) is a non-stratified formula
of the fonn a EO 8. Then, the new restrictions must avoid those nonstratified a-

tomic formulas of the form a E: 8which determine a set.
(i i) A new proof of Theorem 2.3 may be obtained in the following way: in

NF the formula y = {x} cannot determine a relation because <x,y> = <x,y>&Y= {x}
is non-stratified. But, such a formula does not contain any subformula of the

form A ~ B; then, in NF~ it determines a relation S such that S e: 1-1. With such
a relation we prove that (a).a SITI USC(a) . In NF~we also prove that (al. 'V
(USC(a) sm SC(a)). Then, these new restrictions must also avoid that those non-

stratified formulas whose atomic subfonnulas are of the form a = 8 determine a
set.

From the above remarks we conclude that, in order to avoid the counterin-

tui ve results mentioned in Theorem 2.3, the axiom schema of abstraction in NFw
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~1H1l1ld hl' :'UI"IIIIII::ll'd :", ill t'if'.

lJu\. r. till' p:1 r:ld"xes obtained in NF~, 1 ~ n '" w, we conclude that in these
- ys tcms the ax i om scl.cm.. of ubs t rnct ion should be fonnulated as in NF. Thus, if
lV\.' wan t these thco rics to be pa racons is tent set theories, we need to postulate

d i rcc t l y the cxi s rcncc o f cont ro d.ictory sets. Apparently, we may postulate the
(' is renee 0 C kus so I I' s sc r wi thout any problem. Nonetheless, due to the two a-
h.rvc cons i dc rut ions .ibout the non-stratified fonnulas that lead to the proof of
rill' pu r.ulox o I i ck-nt i t y, we believe that, besides Russell's set, very few other

1l01l-C 1:1~~ iGil se t s 1I1:IYcxist in NFn, 1 '" n '" w.

3, THE CLASSICAL PART OF NFw •

III this sen inn IVCsunmarize the development of our version of NFw' in or-

de r to show that ; t CLUl be considered a strong paraconsistent set theory, i.e.,

:IIIIDSr a l l the rcsul t.s of NF can be obtained in NFw' In our version of NFw' the
:JXioIIIschcuu of abs t ract ion is fonnulated as in NF, an axiom for the complement
o C :1 <c r is j nt roduccd , and no postulate is considered concerning the existence

o f non-vl.ns s icnl sets.
TIll' spc.: i fic pos t u la tcs of NFware extensionality and abstraction (both for-

mular co as ill NJ:I, and the following one for the complement:

(a,x).x E a v X Ea.
'1111" .ix iom 'I~ Iundumcnt a I if IVewan t to preserve in NFw at least the same prop-
c r t i('s 01' the a Ig~hra of classes of NF. tvloreover, if we want to prove many
ot hvr l'('~til t s o f NF for instance, sene of those in whose proof in NF it is nee-
e~S:II')' to usc the pr inc ip l.e of excluded middle or the law of double negation
ho rh [o r non-utomi c fo rmul.as , this axiom is needed.

1lJ,,,c rvc tha t the un i ve r sa l set, the empty set, and the complement of a set

:11'(' dl' I'j lied \V ithout us i ng negation as follows, and the these definitions in NF

:11"1' l',!tli v.i lrn t to thc usua I ones.

fI Cal" XllX) . X <=Ci

V Cur xli:,,) .x <=Ci

<i- I'OJ xlLG I. x <=B&uUf3= V & an S = A.

III C\I,rC"~ th;lt « :lIld ;3 :l1'Cdifferent (or distinguishable) sets we use the sym-

hlJ I ~ de Ci Ill'd :l~ Co Ll016:

c< f- G COl' (Lx).x <=anB v x <=an B.

1.1:.1101\ ~. 1. I. f- (Lx) . x <=A:::>:(y).y E A·
II. f- (Lx) .x <=A:::>:(y,=).y-c z&y = z.

1.1: oi,\I.\ :;. ~. I. f-(a,B).Ct f3 v a f- B.



II. f-(a,8).a = 8&a1' 8: OJ :(Ex).x EA.

DEFINITION. '" A fo r A OJ (Ex).x EA.

THEOREM3. 1. In NFw' '" is a minimal intuitionistic negation.

THEOREM3.2. For atomic formulas of NFw' '" is a cl aeei.oal: negation.

Pltoon. Let P and Q be variables for atomic formulas. Thus, by theorem 2.1,

it suffices to prove that (i) P OJ ('" P OJ Q) and (ii.) P v '" P.
(i) From P and ",p we obtain (Ex).x EA. Thus, from part II of Lerrnna3.1, we

obtain any atomic formula whatsoever.
(ii) P is of the form a E 8. Supposing that a EO 8, we obtain a E 8 v "'(a E 8).

On the other hand, supposing that a EO S, we obtain a E 8 OJ (Ex) .x EA , i. e. ,
"'(a E 8); consequently, a E 8 v "'(a E 8). Finally, using the axiom for the com-

plement, we obtain the desired result.
P is of the form a = 8. Slvposing that a = 8 we obtain a = 8 v "'(a = 8). On

the other hand, supposing that a I- 8, then there exists an x such that x E an 8
or x Ean S. Taking the additional supposition that a = 8, in both cases we ob-
tain (Ex).x EA. Thus, from a of 8 we obtain a = 80J (Ex).x EA, i.e., "'(a = 8),
and· so, by part I of Lemma3.2, we have C!. = 8 v "'(a = 8).

COROLLARY. I. f- (x) : x EA .",. "'(x = x) .

II. I- (x) : x EV·"'· x = x.

III f- (x) :
-

"'(x Ea) .x Ea·",·

IV. f- (x) : x Ea·",· ",,,(x E a) .

V. l-(a,8): a I- 8 " .=. "'(a 8) .

THEOREM3. 3. For positive formulas of NFw (i. e., [ormul.ae in which no
sVbJormulais of the form -,A) '" is an intuitionis·tic negation.

PltOo6. Due to Theorem 3.1, we only have to prove that, if A+ and B+ denote
posi ti ve formulas of ~'Fw' then A+ ::> ("'A+ OJ B +). In fact, let us suppose A+ and

"'A+; thus we obtain (Ex).x EA. Then, using Lemma3.1, part II, we have (a,8).

a=8&a.-: 8. Now, by induction on,the length of B+ we conclude the proof. 0

In the rest of this section, we follow Rosser [20J, chapters IX to XIII. As

almost all resul ts of chapters IX and X that are valid in NF are proved in [19J,
the summary of these chapters is very short. The other chapters will be summa-
rized section by section. From now on when we say that a theorem (or an exercise)

of NF is val id inNFw we are saying that the theorem (or exe rc ise) is valid with the
ame fonnulation as in [20]; of course, negation is understood as the defined

negation of NFw' Whenwe say that the proofs are s imiI vr to Rosser's proofs, we are
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saying, in fact that ei ther the proofs are exactly the sane given in [20] or that

small changes in Rosser's proofs are made in order to use the axiom for the com-
plement and the above lemmas and theorems.

(CHAPTER IX) CLASS ~IE~~BERSHIP.Except for part II of Theorem IX.4.11
~1d its corollaries, all the other theorems are valid in NFw' and the proofs are

similar to Rosser's.
Let A+ denote a positive formula of NFW' then part II of Theorem IX. 4.11

and its corollaries are proved in NFwwith the following formulations respective-

ly:
f- (x), 'U A+:'O: (x).x e::A'O A+
f-(x). 'U A+:=>: 3xA+.

f- (x). 'U A+ : => : A = x A+ .

(CIIAP'fER X) RELATION AND FUNCTION. All the theorems of this section

are valid in NFw and the proofs are similar to Rosser's proofs.

(CHAPTER XI) CARDINALNUMBERS.
1. cardinal similarity. All the theorems of this section are valid in NFw'

and the proofs are similar to Rosser's proofs.
2. Elementary properties of cardinal numbere;All the theorems of this sec-

tion are valid in NFw; concerning the exercises, only XI.2. 12 apparently is not

valid, This exercise guarantees in NF that if S is a relation not belonging to
1-1, then there exist x and y such that x,y E Arg(S), S (x) = S(y) and x " y. We
call attention to the apparent nonvalidity of this exercise because it is used

by Rosser to prove the "Pigeonhole Principle'.
J. Finite classes and mathematical induction. Let us discuss first the theo-

rems about mathenutical induction. Weak Induction (Theorem XI. 3.18) is proved
in NFw as in Rosser; Strong Induction is valid as in Theorem XI. 3. 19 and its Cor-
ollary, but apparently it is not valid in the form of Theorem XI.3.20. Nonethel-
ess, a restricted form of Theorem XI.3.20 is valid in NFw; to wit, when the for-

mula F(x) appear ing in it is a positive formula. Apparently, Theorem XI.3.22
(Principle of Infinite Descent) is not valid in NFw. Rosser's proof does not ob-

tain because he uses the principle of double negation ("-vA= A) for non-atomic
formulas and we could not find another way to prove this theorem.

All the other theorems of this section are valid in Nfw and, except for the

proof of Theorem XI. 3. 21; the proofs are similar to Rosser's ones. To prove

Theorem XI.3.21 (every non-empty subset a of Jl«l. has a minimum), it is enough to
prove the lenuna used in Rosser's proof. '111eproof of this lemma runs as fol-

lows:
Case 1. Supposing that n+1 ~ m, we obt ai.n the desired result.



17

Case 2. Supposing that m < n+ 1, by the axiom for the complement, we obtain
m < n+ 1 &(mE a v mEa), and from this formula the desired result follo s.

Now, the lemma follows from cases 1 and 2, because in NFw the following for-
mula is provable: (m,n).m ~ n v n < m.

4. Denumerable classes. All the theorems of this section are valid Dl NFw
and the proofs are similar to Rosser's proofs, except for the proof of Theorem
XI. 4.4 ((a). a s Nn=>a E Count). This proof in NF runs as follows:

Case 1. If a s Nn and a e::Fin, then, obviously, a E Count ,

Case 2. Let us supposse that a s Nn and a e:: Infin, then it is easily proved

that
(n): ne::Nn .=>. ~(ze::a&z > n) ««. (I)

Consequently, we obtain

(n): n c Nn .=.>.(Ey).yEa&y > n. (2)

Now, by (2) and the corollary of Theorem XI.4.3, we obtain a E Den, consequently

a E Count ,
Finally, as it is easy to prove that (a).a e::Fin vaE Infin, the desired re-

sult follows from cases 1 and 2.
5. The cardinal: number of the continUJAm. All the theorems of this section

are valid in NFw, and the proofs are similar to Rosser's, except for the proof

of Theorems XI. 5 .5 (c = 2L'en). The proof of this theorem runs as follows. Let

a be def'ined as in Rosser's proof.

LEIvIMA1. I- a sm(SC(Nn) n Fin) .

P~OOb' Like in Rosser's Lemma 3.

LEMMA 2. I- NTBXsm(SC(Nn) n Infin) .

PM0n. Similar to the proof of Lenma 1, but taking

W = SB(SENTBX&8= ;;;(mENn&S(m) = 1)).

LEMMA3. 1--0, n NTBX= A.

LeMJvlA4. I- (a U NfBX)sm(PI ~ {O, 1}) .

The rest of the proof is similar to the rest of Rosser's proof.

(CHAPTER XII) ORDINAL NUMBERS.

1. Or-dinal. similarity. All the theorems of this section are valid in NFw,

and the proofs are similar to Rosser's proofs.
2. Well-ordering relations. Except for Theorems XII.2.10 to XII.2. 13 (all
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about definitions and proofs by transfinite induction), all the others are valid

in NFw• Rosser's proofs of Theorems XII.2.10 to XII.2.13 do not obtain in NFw'

and we could not find another way to prove them. It is worthwile to mention that
the proof of Theorem XII.2. 14 (two well ordered sets either are similar or one
is shorter than the other) is obtained without using transfinite induction (as

mentioned in [20J, p.462).
J. Elementary prope rtii.ee of ordinal. numbere , All the theorems of this section

are valid in NFw' The proof of theorem XII.3.4 (~O E Word) is a little different

from Rosser's proof. To wit: suppose that en NO -I A, then there exists <jJ such
that <jJ E en NO. Case 1: en NO = {o}. Then there exists a minimal element in e.
Case 2: enNO -I {<jJL Then, as in Rosser's proof, there exists a mi.u irnaI element

in e. No", using Lernna 3.2, part I, and the fact that "'0 E Sord, we conclude the

proof.
4. The cardinal: number-associated to an ordinal number: All the theorems of

this section are valid in NFw' ~ld the proofs are similar to Rosser's proofs.

(CJ-!!\ PTII n, xi I I) COUNTING.The additional results about natural numbers

given in Section 1 are valid in NFw and, adding the axiom of counting, we also
proved the Theorems of Section 2. Nonetheless, the main result of this chapter,

the pigeonhole pr-inci pl e, apparently is not valid in NFw' Rosser's proof does
not obtain because, as mentioned above, Exercise XI. 2.12 apparently is not valid

in NFw'

4. RUSSELL'S SET IN DA COSTA SET THEORIES.
In this section we show that in any da Costa set theory based on C~, 1 '" n

< w, UUR is the urnversal set; the same holds in a da Costa set theory based on

C: when stregthened with sorre additional suppositions.
Let us denote by DSJ any da Costa set theory based on the respective ~,

where Russell's class is a set. Thus, in IlCn, 1 " n < w, the defined negation
1* (.,*A = df IA &A(n)) is a classical negation; and in Dew the defined negation '"

('VA = dfA:::J (x,y).x E Y&x = y) is a minimal intuitionistic negation.
A *Let us denote by <jJ the empty set, defined in rLn, 1 ..; n < w, as Xl (x = x),

*and in Dewas x » (x = x). Thus , in IlC11' 1", n <w.He prove that (x)l (x E<jJ),

and in OCwwe prove that (x). '" (x E <jJ) •

LH:~IA 4. 1. f-- <jJ E R.

Pltoo6. In Den' 1 ..; n < w, if ¢ <::¢then ¢ E ¢ &i*(¢ e:: ¢). As this formula triv-

ializes the system, then i(¢ e:: ¢). Consequently, ¢ e:: R.
In Dew, if ¢ e:: ¢ then ¢ e:: ¢ &'V(¢ E .p); and so (x,y).x E y. Thus, ¢ E R. On

the other hand, if i(¢ E ¢) then ¢ E R.
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LEMMA 4.2. --x e:: R :::>{x} e:: R.

PltOo6. If ,({x} E {x l}, then {x} ER. On the other hand, if {x} e::{x} then

Ix l = x; thus, by the hypothesis x e:: R, we obtain {xl e:: R.

LEMMA 4. 3. I. f-R s lJR
II. f-R s UUR.

PJtoo6. I. If x ER then, by Lemma 4.2, {x} ER. NoIV, as x < Ix}, then x e::UR.

II. By part I, we have R sUR and lJR s UUR. Consequently, R S:UUR.

*LEMMA 4.4. I. f-(x).,(xe::R):::>xEUUR,inDCn (l<;n<w).

II. f- (x) .'V(x e:: R) :::>x e:: UUR, in DCw .

PJtoo6. I. Let us suppose that ,*(x e:: R). Thus, if x = cp, we obtain I*(cp c:R),

and, using Lemma 4.1, IVe have cp e:: R &,* (cp e:: R). Consequenlty

I*(X = cp). (1)

Let us suppose that {{x,cp}} e:: {{x,cp}}. Then, IVe obtain {{x,cp}} = {x,cp}. Conse-

quently, x = cp. Now, by (1), we have a contradiction that trivializes the sys-

tem. Thus,i({{x,cp}} E {{x,cp}})' and so

{{x,cp}} e:: R. (2)

But, {x,cp} E {{x,cp}}. Then, by (2), IVe have

{x , cp} e:: UR. ( 3)

Iloweve r , x e:: {x,cp}. Then, by (3), we obtain x e:: UUR.

II. Let us suppose that 'V(x e:: R). 'OlUS, if x = 0, by Lemma 4.1, we obtain

'V(cpc: R) and cp <:R. Consequently, (x.y).xc:y&X = y. Thus , x= cp:::>(x,y).x e::y

& x = y. Then,

'V(x = cp). (1)

Supposing that {{x,cp}}c:{{x,cp}}, as in part I, we obtain x = cp. Thus, by (1),

we have (x,y).x c: Y &x = y. Consequently, (x,y).x e::y, and so {{x,cp}} c: R. On

the other hand, supnosing that I ({ {x , cp}} e:: {{x, cp}}), IVe obtain {{x, cp}} c: R. con-

sequently, {{x,cp}} c: R.

The rest of the proof follows as in part I.

THEOREM 4.1. In Den (1 ~ n < w), UUR is the uni.uereal. set.

PJtoo 6. It follows from Lemmas 4.3 and 4.4. 0

The proof of Theorem 4.1 does not obtain in any DCw but it obtain in any

1JC~, i.e., any Dew with universal set V, defined as ~(x = x). To have a proof

of Theorem 4.1 in any DC~ it is necessary to say what it means for a set to be

different or distinguishable from the universal set. Thus, let us define

x l V for (Ey) .'V(y EX).
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flbereover, if there exists a urii versal set it is obvious that every set must be
equal to or different from the LD1iversa l set. If this is not a theorem, it must

be introduced as postulate:

Pl. (x).x;Vvx~V.

uTHEOI<.H'14.2. In DCw plus P1, lJe prove that UUR; V.

PItOOO. By PI we have UUR; V or UUR~ V. If UUR; V, we have already the de-

sired result. If UUR~ V then, by the above definition, we have (Ey) ,'v(y E: UUR).
Thus, by Lenma4.3, part II, it follows that 'V(y E R), and by Lenma 4.4, part II,
y E UUR.Consequently, (x,y).x e:: y s x y, and so (x).x E UUR.Thus, UUR; V.

RE~1i\I<.K.In the sistema NFn (1 ~ n ~ w) we prove that UUR; V. For n < w,
the proof is the sane as in Theorem 4.1; for n ; w, the proof is the same as in

Theorcm 4.2, since P1 is a theorem of NFw'

Ile have int roduced sene conditions in order to prove that UURis the LD1i-

versa l set in DC~. TI1US, it could seem possible to construct a DCw without uni-

vcrsn 1 set. In the next section we prove in such a system the paradox of iden-

tity i~ derivable.

5. ON DA COSTA'S SET THEORIES OF TYPE ZF.
In sections 2,aJld 3 we have analysed da Costa's set theories with uni ver-

s31 set, constructed according to the pattern of NF. Nowwe analyse the possibil-
i ty of constructing da Costa's set theories following the pattern of classical
set theory wi thout LD1iversal set. We choose to analyse cia Costa's set theories

of type ZF, denoted by ZFn, 1 ~ n ~ w.
firstly, we show that if R is a set in ZFn, J ~ n " w, then the supposi-

tion of non-existence of a uni ver sa l set leads to some paradoxes that invalid-
atc these theories. Such a result may already be intuitively inferred from the
results presented in Section 4. Secondly, we show that the axiom schema of sep-
ara t ion , fo rmulat.ed for all sets, is incompatible with the existence of Rus-
sell's set. Consequenl ty, the axiom schema of replacement is also incompatible

wi th the existence of Russell's set.
Le LIS consi del' the set theories ZFn, ~ n ~ w, in which the axioms of

pairing and union a re postulated in general, and in which we also postulate the
existence of the empty set and of Russell's set. MJreover, let us suppose that

the re is no LD1iversal set, i. e. ,

Sn. (x)(Ey) .-I*(y E x) , in ZFn, 1" n < w;

SeD. (x)(Ey).'V(yE:x), in ZFw
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Let us observe that the lemmas of the preceding section are provable in ZFn,

1 ~ n ~ w.

THEOREM5. 1. The set theories ZFn (1 ~ n < w) plus Sn are trivial.

*P1W0tJ. By Sn there exists y such that I (y E UUR). By part
and part I of Lenuna4.4, we obtain (x).x cUUR. Consequently, y

and this fonnula trivializes the system.

II of Lemma4.3,
*EUUR&i (yEWR),

THEOREM5.2. The paradox of identity is derivable in ZFwplus Sw'

P~ootJ. By Sn, there exists a y such that ~(y E UUR). Using part II of Lem-

ma 4.3, we obtain y EUUR. Consequently, by the definition of :v, (x,y).xEy&x=y.

Thus, the paradox of identity, (x,y).x y, follows. ~'breover, we also obtain

the other results mentioned in Theorem 2.3.

THEOREM5.3. The systems ZFn (1-';; n < w) with Russell's set and the ax-

iom schema of separation postulate for all sets are trivial.

PMO tJ. If the axiom schema of separat ion is postulated for all sets then

there exists a subset a of R such that

(x) : X,Ea '::::' xER&(x EX)(n). (1)

From (1) we obtain
aEa '::::"(0. Ea)&(aEa)(n). (2)

*Consequently, we have a EO.&i (a E a), and this formula tri vializes the system.

THEOREM5.4. In ZFwwith Russell's set and the axiom schema of separa-
tion postulated for all sets, the paradox of identity is derivable.

P~OOtJ. From the axiom schema of separation and Russell's set we obtain

(x) : x EO. '::::' x E R&~(x EX). Thus,

a Ea'::::' I (a E a) &~(a E a) . (1)

Case 1. Let us suppose that Cl Ea. Then, by (1), we obtain ~(aEa). Thus,

Cl Ea&~(a E a). Consequently, (x,y).x = y.
Case 2. Le us suppose thati(a Ea). By (1) we obtain ~i(a Ea), i.e.,

1(0. Ea):=J (x,y).x Ey&X = y. Thus, (x.y).x = y.

From cases 1 and 2, the paradox of identity follows. ~reoveT, the other

results nent ioned in Theorem 2.3 are also derivable. 0

As a consequence of Theorems 5.3 and 5.4 we conclude that the existence of

Russell's set is incon~atible with. a general (for all sets) formulation of the
axiom schema of replacement. For, on the one hand, a general formulation of the
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axiom schema of replacement implies a general forrnu.Iation of the axiom schema of
sepa ra tion. On the other hand, using the axiom schema of replacement we prove
Cantor's Theorem. But, as UUR is the universal set, then Cantor's paradox is de-

r ivabl.c . Consequently the ZFn, 1 "" n < w, are trivial and the paradox of identi-

ty is derivable in ZFw'

6. CONCLUDING REMARKS.
The nu in results presented in this paper are thefullowing: (i) in any da Costa

p.rrucons i stcn t set theory wi th Russell's set the scope of validi ty of the clas-
si ca l formulations of the axiom schemata of abstraction, separation and replace-
IIICIH CH1I1l)the cnl a rgcd ; (i i ) it is not possible to construct da Costa's set

theories wi th Russell's set and wi thout universal set. These results may be ob-
t.i ined in many other strong paraconsistent set theories.

In :J ccr tu in sense, these results may be considered as limitative ones. By
( i ). l!lIsseI I' 5 set as we11 as other non-classical sets have to be introduced by
spcc : ric post ul a tcs . Thus, in each case, we must investigate if the non-classical
seT \'C want to int roduce does not lead to a paradox that invalidates the theo-

1">'.St II I IJ) (1), Russell's set is incompatible with a general formul at.i.on of
the :IX ialii sclwlIl,1of replacement. This fact makes it impossible to prove some in-
te res r ing thillg about some contradictory sets generated by R. For instance, let

us define SC1 (R) :IS SC(R) .md sc'" 1 (R) as SC(SCn(R)). If we could apply the ax-
iom <chcim of rcp Incencnt to these sets, we would prove that they are uni verse s ,
Thjsis the most; lnteresting property of contradictory sets we have already de-
vised. llut, unIo r tuna te l y , up to nO\1we have not found any paraconsistent set

theory in which this property is valid.
Set theor ics wi thout universal set may be considered richer and more inter-

cs t in.; th:1I1the ones wi th univers al set. ~broeover, it is natural to guarantee
the c xi s tcncc of Russe 11' s set in paraconsist ent set theories. But, by (i i) it
see,!)s t hat we cannot construct a strong paraconsistent set theory with Russell's

an.l \, ithout unive rsu l set.
,\ n.i tur.i l question one may ask is if the above limitative results are valid

in wc.ik par.iconsi s tcnt set theories. In [5] it is proved that Russell's set im-

plics the ex istcnce of universa l set in weak paraconsistent theories in whose
undc r lyi ng logic the Law of excl uded middle is valid. In [8J it is proved that

Russc 11' s set is not incompatible with a general formul at i.on of the axiom schema
or nbsr r.ic t i on in SOlllC weak and non-trivial paracons is tent se theories. Nonethe-
less, it h:rs nor been invcst igate d whethe r the paradox of identity is derivable
01"not in them. Howcvcr, in [7J it is shown that the paradox of identity is de-

ri v.rb lc in some other weak and non-trivial paracons is tent set theories.
The "e:lk p.rracons i s tcnt set theo r ie s have the advantage of being non-trivial.

But, even i r the)" ,1re free from the paradox of jdentity, they seem to be weak
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concerning the set-theoretical operations. Thus, it is interesting to know if
they maybe strengthened in a way similar to that used by Griss to construct
his logic of species (see [2]). An idea of how to proceed in this direction is
gi ven in Section 3 above.

To finish, we mention SOIre open problems whose solution we believe are im-
portant in the development of paraconsistent set theories. In da Costa paracon-
sistent set theories, is R different from the universal set? If the answer is
affirmative, is UR different from the universal set? What is the meaning of the

defined negation in NF (see Section 3, Theorems 3.1-3.3)? Is it possible to
construct a paraconsistent set theory with Russell's set and without universal
set? Apart from Russell's set what other non-classical sets may be introduced
in paraconsistent set theory?
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