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REMARKS ON DA COSTA’S PARACONSISTENT SET THEORIES

Ayda Ignez Arruda*

ABSTRACT. In this paper we analyse da Costa's paraconsis-—
tent set theories, i.e., the set theories constructed over
da Costa's paraconsistent logics Cp, 1 € n € w. The main re-
sults presented here are the following. In any da Costa para-
consistent set theory of type NF the axiom schema of abstrac-
tion must be formulated exactly as in NF; for, in the contra-
ry, some paradoxes are derivable that invalidate the theory.
In any da Costa paraconsistent set theory with Russell's set
R=%717(xex), UR is the universal set. In any da Costa
paraconsistent set theory the existence of Russell's set is
incompatible with a general (for all sets) formulation of the
axiom schemata of separation and replacement.

1. INTRODUCTION.

A set theory is paraconsistent if it is inconsistent but non-trivial, i.e.,
at least one contradiction is derived but still there are formulas that are not
theorems. Thus, the underlying logic of a paraconsistent set theory must be a
paraconsistent logic, i.e., a logic in which there is a symbol of negation™,
such that, from a formula A and its negation A, it is not possible in general
to obtain any formula B whatsoever.

Paraconsistent set theory appeared as an application ot paraconsistent log-
ic. The pioneering effort to construct a paraconsistent set theory was made by
N.C.A. da Costa, in 1963, in [12], the same work in which he presented his hier-
archy of paraconsistent logics (see also [14] and [15]). Further attempts can
be found in Arruda and da Costa [6] and [8], Asenjo and Tamburino [9], Brady
[10], Brady and Routley [11], and Goodman [17]. Except for da Costa's, and Asen-
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jo and Tamburino's set theories, the others are proved to be non-trivial. Those
paraconsistent set theories already proven to be non-trivial may be called weak
paraconsistent set theories for, because of their underlying logic, many of the
basic results of classical set theories ‘the usual set theories based on classi-
cal logic) are not valid in them. The others, supposing that they are nontrivial,
may be called strong paraconsistent set theories, for all or almost all results
of classical set theories are valid in them. Of course, although useful in this
paper, the above characterization of strong and weak paraconsistent set theories
is not precise.

Let us call a set non-classical if it may exist in a paraconsistent set the-
ory but not in a classical set theory, and contradictory set to a nonclassical
set X such that X e X and (X = X). Thus, Russell's set, R = X77(x €x), is a
contradictory set. In the above mentioned attempts to construct a paraconsistent
set theory, Russell's set is, in general, introduced through a widening of the
scope of validity of the axiom schema of abstraction, but its properties (as well
as the properties of other nonclassical sets) have not been studied well. Howev-
er, thesc properties may be very important, because they characterize the behav-
ior of the non-classical sets in a paraconsistent set theory.

In this paper we restrict ourselves to da Costa's paraconsistent set theo-
ries analysing mainly two problems: first, the widening of the scope of validity
of the axiom schemata of abstraction and separation, and second some properties
of Russcll's set and their consequences. The results presented here may be valid
in other paraconsistent set theories, as will be shown in [5].

A da Costa paraconsistent set theory is a paraconsistent set theory whose
underlying logic is one of da Costa's paraconsistent logics C;, 1<nguw.

The postulates of Cj are those of the positive intuitionistic first-order

logic with equality, axiomatized as in Kleene [18], plus:

(1) TIA= A,
(2) A vTDA.

The postulates of C;, 1< n < w, are those of C: , plus:

(3) BMg(A>B)a(A2T8) > A,
1) A ggM 5 x5y M gas8y Mgave @,
) A ™ 5 (A ™s(E0ac) ™,

where AM i¢ defined as follows: A' = A9 wa(Ac), AP*1 = (A0)0, A1)

o o T

i In each C;, 1<n<gw, 1% is defined as 'IA&A(n), and it is proved that
77 satisfies all the properties of the classical negation. Then classical logic
can be obtained inside these systems; consequently, they are finitely trivial-
izable. For, from any formula of the form A&"lA&A(n)
whatsoever. Nonetheless, C: is not finitely trivializable. Moreover, each sys-

we can deduce any formula
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tems in the hierarchy C?, C;, 55 5.5 C; 23 s & C: is strictly stronger than the fol-
lowing ones. Thus, we may construct a hierarchy of da Costa's paraconsistent set
theories in which, at least intuitively, it seems that each system may admit more
nonclassical sets than the preceding ones.

For a long time, in fact since 1964, we have been studying from time to time
da Costa's paraconsistent set theories of type NF and NFn, 1<n< w. We have
proved that da Costa's formulation of the axiom schema of abstraction for the
systems NF_ , 1 <n <w, leadsto the trivialization of the systems (see (1], [3]
and [4]). Thus, we have proposed to formulate the axiom schema of abstraction in
these systems exactly as in NF.

The main objetive of this paper is to present some results (in fact some
paradoxes) that we believe are very inportant in the construction of strong paracon-
sistent set theories, particulary, da Costa's paraconsistent set theories. In
Section 2, we prove that tha Costa's formulation of the axiom schema of abstrac-
tion for NF, leads to the paradox of identity, (x,y).x =y, and conclude with
some argumentation showing that this axiom in any da Costa paraconsistent set
theory of type NF should be formulated exactly as in NF. In Section 3, we summa-
rize the syntactical development or our version of NE; showing that this system
may be considered as a strong paraconsistent set theory. In Section 4, we prove
that if Russell's set is introduced in any da Costa set theory based on C;,

1 <n < w, then UUR is the universal set. In Section 5, we analyse some limita-
tion in the construction of da Costa's set theories of type ZF where Russell's
class is a set. Finally, Section 6 is a conclusion where we call attention to

some open problems concerning paraconsistent set theory.

2. ON DA COSTA'S SET THEORIES OF TYPE NF.

In this section we analyse da Costa's formulation of the axiom schema of
abstraction for the set theories NF, 1 <n < w. In [1] and [4], we proved that
da Costa's formulation of the axiom schema of abstracion for his systems of type
NF and NF;, 1 <n <w, leads to their trivialization. Here we prove that da
Costa's formulation of the axiom schema of abstraction for NFZ leads to the par-
adox of identity.

The systems NFIC1 are constructed, similarly to NF, over the respective cal-
culus of descriptions D, . The calculi of descriptions D, 1<n<w, are con-
structed as usual (see Rosser [20]) from the respective C;.

The specific postulates of NFE) are the following:

EXTENSIONALITY. (a,B):.(X).xea = xef:2:a=8 -

ABSTRACTION. (Ea)(X):xear*=+F(x), where X and o are different variables



o doci not oceur free in F(x), F(X) is stratified or it does not contain any sub-

Jormula o the form A © B,

In le), the restrictions regarding the use of non-stratified formulas obstruct
a direct proof of the paradox of Curry. Puss21l's set R, defined as £71(x € x),
exists as well as many other non-classical sets. The paradox of Russell in the
form R e R&1(R € R) is derivable but, apparently, it causes no harm to the sys-
tem.
Due to its weakness, the primitive negation of NFE), 1, is almost useless
for sct-theoretical purposes. Thus, let us define

v A for A2 (x,y).xeyé&x=y.

The universal set V is defined as %.x = x, the empty set A as X v (x = X),
and the complement of « set o, a, as X v (xeo). From now on the set theoretical
notations and terminology in this and the next sections are mainly those of Ro-

sser [20].

TEOREM 2.1. In NFw, v s « mnimal intuitionistic negation.

It is enough to prove (A=B)&(A2"B)+2 «u A, Let us suppose that

Proog.
i.e., vA,

A >B and A> VB, Then, we obtain A 2 (x,y) .xey&x=y,
COROLLARY 1. A (vA © v B).
(A2B)> (WB2nA).
COROLLARY 2. ALl the theorems of NF whose proofs depend only on the laws
e minimal intuitionistic first-order logic with equality and on the postu-
1 abstraction of NF are valid in NFZ') "

lates of extenstonality and

THEOREM 2.2, (Cantor's Theorem) F (a)+ ~ (o sm SC(a)).

Let us suppose that o sm SC(a). Then, there exists a relation S
= a and Vai(S) = SC(a). Now, let us take

such that S « 1-1, Arg(S) =
X=Xxeand). (M

As the formula x e 2 NS(x) is non-stratified and does not contain any sub-for-
Moreover, as X < «, then there exists

Proof.

mula of the form A= B, then X is a set.
y e« a such that S(y) = X. Then, by (1), we have:
ye X = y «aNS{y).

llowever, y € afiS(y) *=» ye a& V(y « S(y)). Then,
(2)

yeX = yesad v(yeX).

From (2) we have ~v(y € o), but, as y e a, then we obtain



(0 smSC(w)) oyea, and (asmSC(a)) @ v(yea).
Thus, by Theorem 2.1, the desired result follows.

COROLLARY. (Cantor's Paradox) + (V sm SC(V))&~(V sm SC(V)).

Proof. As V = SC(V), then we obtain V sm SC(V). On the other hand, by the
theorem, we have ~ (V sm SC(V)). O

Apparently, Cantor's paradox does not trivialize NFS For, from A and 7A we
cannot obtain any formula B whatsoever. For instance, apparently, we cannot ob-
tain any formula of the form 7B, where B is a nonatomic formula.

THEOREM 2.3. I. k(o,R).a =B&"v (o = B)
II. +(,R).0 eB&V (o= B)
I F(@.aea&™v(ae0).

Proof. I. By the corollaries of theorems 2.1 and 2.2, we obtain x = x =
(a,B).0. eB&o.= B. Thus, as x = x, then (¢,B).a = B. By the same corollaries we
also obtain (a,B).~v (a = B). The proof of part II is similar to that of part I.
Part III is an immediate consequence of part II. O

By Theorem 2.3, it could seem that NFE, is trivial. Nonetheless, apparently
this is not the case. However, though it is nontrivial, NFE] is without interest,
for not only are every two sets identical, but also every set belongs and 'does
not belong'" to itself.

In order to avoid the results mentioned in Theorem 2.3, one could think of
introducing more restrictions in da Costa's formulation of the axiom schema of
abstraction when F(x) is non-stratified. Nonetheless, we belive that this is a
worthless effort. For:

(i) The only non-stratified formula used in the proof of Cantor's Theorem
(which is fundamental in the proof of Theorem 2.3) is a non-stratified formula
of the form a e 8. Then, the new restrictions must avoid those nonstratified a-
tomic formulas of the form o e gwhich determine a set.

(ii) A new proof of Theorem 2.3 may be obtained in the following way: in
NF the formula y = {x} cannot determine a relation because <x,y> = <x,y>&Y ={x}
is non-stratified. But, such a formula does not contain any subformula of the
form A @ B; then, in Nl-f) it determines a relation S such that S € 1-1. With such
a relation we prove that (a).a sm USC(a). In NFS we also prove that (a). v
(USC(a) sm SC(a)). Then, these new restrictions must also avoid that those non-
stratified formulas whose atomic subformulas are of the form a = 8 determine a
set.

From the above remarks we conclude that, in order to avoid the counterin-

tuive results mentioned in Theorem 2.3, the axiom schema of abstraction in NF;
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should be formilated as in NE.

Duc to the paradoxes obtained in Nl-f,y 1 < n € w, we conclude that in these
svstems the axiom schemt of abstraction should be formulated as in NF. Thus, if
we want these theorics to be paraconsistent set theories, we need to postulate
directiv the existence of controdictory sets. Apparently, we may postulate the
¢ istence of Russcll's set without any problem. Nonetheless, due to the two a-
bove considerations about the non-stratified formulas that lead to the proof of
the paradox of identity, we believe that, besides Russell's set, very few other

non-classical scts may exist in NFn, 1<ngow.

3. THE CLASSICAL PART OF NF .

In this section we sumnarize the development of our version of NF , in or-
der to show that it can be considered a strong paraconsistent set theory, i.e.,
almost all the results of NF can be obtained in NF . In our version of NFw, the
axiom schemi of abstraction is formulated as in NF, an axiom for the complement
of a sct is introduced, and no postulate is considered concerning the existence
of non-classical sets.

Ihe specific postulates of NF ~are extensionality and abstraction (both for-

pulated as in NE), and the following one for the complement:
(a,X).X €a v X €a.

hi< axiom is fundamental if we want to preserve in NF at least the same prop-
crtics of the algebra of classes of NF. Moreover, if we want to prove many
other results of NF for instance, some of those in whose proof in NF it is nec-
cssary to use the principle of excluded middle or the law of double negation
hoth for non-atomic formulas, this axiom is needed.

Obeorve that the universal set, the empty set, and the complement of a set
are defined without using negation as follows, and the these definitions in NF

are cquivalent to the usual ones.

A for f\\{(n)..\ e Q

vV for g(l;.l]..\c\(

G for RUER).x eRsaUB=V eaNp = A
lo express that « and 2 are different (or distinguishable) sets we use the sym-
hol # defined as follows:

w #8 for (ExX).xe anf v XeaflB.

LEMMA 3.1, 1. H(Ex).x ep:2:(y).y e A
IT. +(Ex).x eA:2:(y,2).y e z&y = Z.

LEMMA 3.2, 1. +(a,B).a =B va#B.



- II. +(a,B).a = B&C# B: o :(Ex).x € A.
DEFINITION. ~ A forA o (Ex).x € A.
THEOREM 3.1. In NFw’ N 18 a minimal intuitionistic negation.

THEOREM 3.2. For atomic formulas of NFw’ n s a classical negation.

Proof. Let P and Q be variables for atomic formulas. Thus, by theorem 2.1,
it suffices to prove that (i) P> (vP=> Q) and (ii) P v~ P.

(i) From P and P we obtain (Ex).x e A. Thus, from part II of Lemma 3.1, we
obtain any atomic formula whatsoever.

(ii) P is of the form a e B. Supposing that o = B, we obtain o € Bv~(a < B).
On the other hand, supposing that o « g, we obtain o € 8 @ (Ex).xeA , i.e.,

2 (a e B); consequently, a « 8 v v(a « 8). Finally, using the axiom for the com-
plement, we obtain the desired result.

P is of the form a = B. Supposing that o = B we obtain a = 8 v v(a = 8). On
the other hand, supposing that a # B, then there exists an x such that x « an B8
or x = af 8. Taking the additional supposition that o = B, in both cases we ob-
tain (Ex).xeA . Thus, from o # B we obtain a = 82 (Ex).xeA, i.e., v(a = B),
and so, by part 1 of Lemma 3.2, we have ¢ = g v ~(a = B).

COROLLARY. I. F(X): xep =+ v(x
II. F(X): xeVeze x =X

IIL F(X): xea*= v(x €q).

X)s

V. +(x): xea 3 W(xe a).

V. +(a,B): o # B8 *=+ v(a = B).

THEOREM 3.3. For positive formulas of NF (i.e., formulas in which no

sbformula is of the formTA) ~ is an intuitionistic negation.

Prood. Due to Theorem 3.1, we only have to prove that, if A" and B" denote
positive formulas of NF, then At o (NA+=’ 8"). In fact, let us suppose A" and
NA+; thus we obtain (Ex).x «A. Then, using Lemma 3.1, part IT, we have (a,B).
a=Rs0 e B. Now, by induction on,the length of 8" we conclude the proof. 0

In the rest of this section, we follow Rosser [20], chapters IX to XIII. As
almost all results of chapters IX and X that are valid in NF are proved in [19],
the summary of these chapters is very short. The other chapters will be summa-
rized section by section. From now on when we say that a theorem (or an exervise)
of NF is yalid inNE  we are saying that the theorem (orexercise)is valid with the
same formulation as in [20]; of course, negation is understood as the defined
negation of NE . When we say that the proofs are similar to Rosser's proofs,we are
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saying, in fact thateither the proofs are exactly the same given in [20] or that
small changes in Rosser's proofs are made in order to use the axiom for the com-

plement and the above lemmas and theorems.

(CHAPTER IX) CLASS MEMBERSHIP. Except for part II of Theorem IX.4.11
and its corollaries, all the other theorems are valid in NFw, and the proofs are
similar to Rosser's.

Let A" denote a positive formula of NF,, then part II of Theorem IX. 4.11
and its corollaries are proved in NF | with the following formulations respective-
ly:

H(x). v INEES (x).x eA= At

—(x). v Ao 3gA

). vATiopa= x AT

(CHAPTER X) RELATION AND FUNCTION. All the theorems of this section

are valid in NF, and the proofs are similar to Rosser's proofs.

(CHAPTER XI) CARDINAL NUMBERS.

1. Cardinal similarity. All the theorems of this section are valid in NF,
and the proofs are similar to Rosser's proofs.

2. Elementary properties of eardinal numbers.All the theorems of this sec-
tion are valid in NF; concerning the exercises, only XI.2.12 apparently is not
valid. This exercise guarantees in NF that if S is a relation not belonging to
1-1, then there exist x and y such that x,y e Arg(S), S(x) = S(y) and x # y. We
call attention to the apparent nonvalidity of this exercise because it is used
by Rosser to prove the 'Pigeonhole Principle’.

3. Finite classes and mathematical induction. let us discuss first the theo-
rems about mathematical induction. Weak Induction (Theorem XI.3.18) is proved
in NF as in Rosser; Strong Induction is valid as in Theorem XI.3.19 and its Cor-
ollary, but apparently it is not valid in the form of Theorem XI.3.20. Nonethel-
css, a restricted form of Theorem XI.3.20 is valid in NF;; to wit, when the for-
mula F(x) appearing in it is a positive formula. Apparently, Theorem XI. 3.22
(Principle of Infinite Descent) is not valid in NF,. Rosser's proof does not ob-
tain because he uses the principle of double negation (vvA = A) for non-atomic
formulas and we could not find ancther way to prove this theorem.

All the other theorems of this section are valid in NF, and, except for the
proof of Theorem XI.3.21; the proofs are similar to Rosser's ones. To prove
Theorem XI.3.21 (every non-empty subset o of Nm has a minimum), it is enough to
prove the lemma used in Rosser's proof. The proof of this lemma runs as fol-

lows:
Case 1. Supposing that n+! < m, we obtain the desired result.
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Case 2. Supposing that m < n+1, by the axiom for the complement, we obtain
m<n+l&(Me o v me a), and from this formula the desired result follows.

Now, the lemma follows from cases 1 and 2, because in NF  the following for-
mula is provable: (mn).m<n vn <m

4. Denumerable classes. All the theorems of this section are valid in NF
and the proofs are similar to Rosser's proofs, except for the proof of Theorem
XI.4.4 ((a).a € Nn> ae Count). This proof in NF runs as follows:

Case 1. If a< Nn and o = Fin, then, obviously, a e Count.

Case 2. let us supposse that a < Nn and o € Infin, then it is easily proved
that

(M:nelNn .o. Z(zea &z > n) #A. (@)

Consequently, we obtain
(m): neNn .o .(Ey).yeas&y >n. (2)

Now, by (2) and the corollary of Theorem XI.4.3, we obtain a « Den, consequently
o € Count.

Finally, as it is easy to prove that (a).a e Finvoe Infin, the desired re-
sult follows from cases 1 and 2.

5. The cardinal number of the continuum. All the theorems of this section
are valid in NF,, and the proofs are similar to Rosser's, except for the proof
of Theorems XI.5.5 (c = ZDen)' The proof of this theorem runs as follows. let

a be defined as in Rosser's proof.

LEMMA 1. + o sm(SC(Nn)n Fin).

Proof. Like in Rosser's Lemma 3.

LEMMA 2. + NIBX sm(SC(Nn)n Infin).
Proof§. Similar to the proof of Lemma 1, but taking

A

W = §8(S = NIBX8B = m(m < Nn &S(m) = 1)).
LEMMA 3. FoaNNTBX =A.
LEMMA 4.  (ayNIBX)sm(PI }{0,1}).
The rest of the proof is similar to the rest of Rosser's proof.

(CHAPTER XII) ORDINAL NUMBERS.

1. Ordinal similarity. All the theorems of this section are valid in NF,
and the procfs are similar to Rosser's proofs.
2. Well-ordering relatioms. Except for Theorems XII.2.10 to XIL.2.13 (all
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about definitions and proofs by transfinite induction), all the others are valid
in NE,. Rosser's proofs of Theorems XI1.2.10 to XII.2.13 do not obtain in NF,
and we could not find another way to prove them. It is worthwile to mention that
the proof of Theorem XII.2.14 (two well ordered sets either are similar or one
is shorter than the other) is obtained without using transfinite induction (as
mentioned in [20], p.462).

3. Elementary properties of ordinal numbers. All the theorems of this section
are valid in NF;. The proof of theorem XII.3.4 (‘<O e Word) is a little different
from Rosser's proof. To wit: suppose that BNNO #A, then there exists ¢ such
that ¢ € BNNO. Case 1: BN NO = {¢}. Then there exists a minimal element in B.
Case 2: BNNO # {¢}. Then, as in Rosser's proof, there exists a minimal element
in B. Now, using Lemma 3.2, part I, and the fact that <, = Sord, we conclude the
proof.

4. The cardinal number associated to an ordinal number. All the theorems of

this section are valid in NFM, and the proofs are similar to Rosser's proofs.

(CHAPTHER X11I) COUNTING. The additional results about natural numbers
given in Section 1 are valid in NFw and, adding the axiom of counting, we also
proved the Theorems of Section 2. Nonetheless, the main result of this chapter,
the pigeonhole principle, apparently is not valid in NF,. Rosser's proof does
not obtain because, as mentioned above, Exercise XI.2.12 apparently is not valid

in NFM.

4. RUSSELL'S SET IN DA COSTA SET THEORIES.

In this section we show that in any da Costa set theory based on C:, 1<n
< w, UUR is the universal set; the same holds in a da Costa set theory based on
(3: when stregthened with some additional suppositions.

Let us denote by DC, any da Costa set theory based on the respective Cp,
where Russell's class is a set. Thus, in DCn, 1 <n < w, the defined negation
’1* @ *A = A &A(n)) is a classical negation; and in DC, the defined negation~
(VA = A2 (x,y).xeysax =y) is a minimal intuitionistic negation.*

Let us denote by ¢ the empty set, defined in DC,, 1 < n < w, as X1 (x = x),
and in DC as v (x = x). Thus, in DC,, 1 < n <w, we prove that (x)‘l*(x < ¢),

and in DC, we prove that (x).~ (x €¢).

LEMMA 4.1. ¢ «R.
*
Proog. In DCn, 1<n<w, if ¢=¢ then ¢ €0&7 (¢ =¢). As this formula triv-
ializes the system, then 1($ « ¢). Consequently, ¢ = R.
In DC,, if ¢ € ¢ then ¢ € ¢ & V(¢ = $); and so (x,y).x «y. Thus, ¢ R. On
the other hand, if 7(¢ = ¢) then ¢ «R.
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LEMMA 4.2. +x R o {x} «R.

Proof. If ({x} € {x}), then {x} =R. On the other hand, if {x} ={x} then
{x} = x; thus, by the hypothesis x e« R, we obtain {x} eR.

LEMMA 4.3. I. +Rc R
II. R < ULR.

Proof. I. If x eR then, by Lemma 4.2, {x} €R. Now, as x € {x}, then x =UR.
II. By part I, we have R < UR and UR = UUR. Consequently, R SUUR.

LEMMA 4.4. I. (.7 (xe R) ©x< UR, in DC, (1 <n <w).
II. -(x).~v(x €R) @ x € ULR, in DCw 5

Proog. I. Let us suppose that 'I*(x e R). Thus, if x = ¢, we obtain '1*(¢ <R),
and, using Lemma 4.1, we have ¢ R&'l*(¢ < R). Consequenlty

Tx = 9). (1
Let us suppose that {{x,¢}} € {{x,¢}}. Then, we obtain {{x,¢}} = {x,¢}. Conse-
quently, x = ¢. Now, by (1), we have a contradiction that trivializes the sys-
tem. Thus, 1({{x,¢}} = {{x,6}}), and so

{{x,$}} « R. (2)

But, {x,¢} = {{x,¢}}. Then, by (2), we have
{x,6} = UR. (3
However, x e {x,¢}. Then, by (3), we obtain x  UUR.
II. Let us suppose that v(x e R). Thus, if x = ¢, by Lemma 4.1, we obtain
(@ e R) and ¢ «R. Consequently, (x.y).xeyé&x =y. Thus, x= ¢2(x,y).x €y
& x =y. Then,
v(x = ¢). (1)
Supposing that {{x,¢}} €{{x,¢}}, as in part I, we obtain x = ¢. Thus, by (1),
we have (x,y).x €yé&x =y. Consequently, (x,y).x €y, and so {{x,¢}} = R. On
the other hand, supnosing that 71 ({{x,¢}} € {{x,¢}}), we obtain {{x,¢}} & R. con-
sequently, {{x,4}} =R.
The rest of the proof follows as in part I.

THEOREM 4.1. In DC, (1 £n<w), UR <Zs the unitversal set.

Proof. It follows from Lemmas 4.3 and 4.4. O

The proof of Theorem 4.1 does not obtain in any DC, , but it obtain in any
DCz, i.e., any DC, with universal set V, defined as X(x = x). To have a proof
of Theorem 4.1 in any DLS it is necessary to say what it means for a set to be
different or distinguishable from the universal set. Thus, let us define

x #V for (Ey).v(y ex).
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Moereover, if there exists a universal set it is obvious that every set must be
equal to or different from the universal set. If this is not a theorem, it must

be introduced as postulate:

Pl. (x).x=Vvx#V.

THEOREM 4.2. In DC':j plus P1, we prove that UUR = V.

Prood. By P1 we have UUR = V or UIR # V. If UIR =V, we have already the de-
sired result. If UUR # V then, by the above definition, we have (Ey).v(y = UUR).
Thus, by Lemma 4.3, part II, it follows that v(y R), and by Lemma 4.4, part I,
y e UUR. Consequently, (x,y).x € y&x =y, and so (x).x € UR. Thus, UUR = V.

REMARK. In the sistema NF (1 <n< w) we prove that UUR = V. For n < w,
the proof is the same as in Theorem 4.1; for n = w, the proof is the same as in

Theorem 4.2, since P1 is a theorem of NF.

We have introduced some conditions in order to prove that UUR is the uni-
versal set in [}C(l:. Thus, it could seem possible to construct a DC without uni-
versal set. In the next section we prove in such a system the paradox of iden-

tity is derivable.

5. ON DA COSTA'S SET THEORIES OF TYPE ZF.

In sections 2 and 3 we have analysed da Costa's set theories with univer-
sal set, constructed according to the pattern of NF. Now we analyse the possibil-
ity of constructing da Costa's set theories following the pattern of classical
set theory without universal set. We choose to analyse da Costa's set theories
of type ZF, denoted by ZF, 1< n < w.

Firstly, we show that if R is a set in ZF,, 1 <n <w, then the supposi-
tion of non-existence of a wniversal set leads to some paradoxes that invalid-
ate these theories. Such a result may already be intuitively inferred from the
results presented in Section 4. Secondly, we show that the axiom schema of sep-
aration, formulated for all sets, is incompatible with the existence of Rus-
sell's set. Consequenlty, the axiom schema of replacement is also incompatible
with the existence of Russell's set.

le us consider the set theories ZF,, 1< n < w, in which the axioms of
pairing and union are postulated in general, and in which we also postulate the
existence of the empty set and of Russell's set. Moreover, let us suppose that

there is no wniversal set, i.e.,
Sn. (x) (Ey).'l*(y ex), in ZF, 1<n<w;

Sw. (x) (Ey).v(y € x), in ZFw
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let us observe that the lemmas of the preceding section are provable in ZF,

1<n<w.

THEOREM 5.1. The set theories LF, (1 <n < w) plus Sn are trivial.
Proog. By Sn there exists y such that‘1*(y e UUR). By part IT of Lemma 4.3,

and part 1 of Lemma 4.4, we obtain (x).x = UUR. Consequently, y & UUR &'l*()’EUJR),
and this formula trivializes the system.

THEOREM 5.2. The paradox of identity is derivable in LF  plus Sw.

Prood. By Sn, there exists a y such that v(y € UUR). Using part 1I of lLem-
ma 4.3, we obtain y € UUR. Consequently, by the definition of v, (X,y).xey&x=y.
Thus, the paradox of identity, (x,y).x =y, follows. Moreover, we also obtain

the other results mentioned in Theorem 2.3.

THEOREM 5.3. The systems LE, (1 € n < w) with Russell's set and the ax-
iom schema of separation postulate for all sets are trivial.

Proog. If the axiom schema of separation is postulated for all sets then
there exists a subset a of R such that

(x) : xea *=» x eR&(x Ex)(n). @)
From (1) we obtain
aea *= (o con)&(aeot)(n). (2)

*
Consequently, we have ¢ ec& (o € o), and this formula trivializes the system.

THEOREM 5.4. In ZFj with Russell's set and the axiom schema of separa-
tion postulated for all sets, the paradox of identity is derivable.

Prood. From the axiom schema of separation and Russell's set we obtain
(x) : x €0 *=+ x € R&v(x €x). Thus,

oea=1(ce a)&via ). (n

Case 1. let us suppose that a e a. Then, by (1), we obtain v(aea). Thus,
a easVv(a € o). Consequently, (x,y).x =Y.

Case 2. Le us suppose that 7 (a ea). By (1) we obtain vYa €a), i.e.,
(e €a) o (x,y).x ey&x =y. Thus, (x.y).x =y.

From cases 1 and 2, the paradox of identity follows. Moreover, the other
results mentioned in Theorem 2.3 are also derivable. O

As a consequence of Theorems 5.3 and 5.4 we conclude that the existence of
Russell's set is incompatible with a general (for all sets) formulation of the
axiom schema of replacement. For, on the one hand, a general formulation of the



axiom schema of replacement implies a general formulation of the axiom schema of
separation. On the other hand, using the axiom schema of replacement we prove

Cantor's Theorem. But, as UUR is the universal set, then Cantor's paradox is de-
rivable. Conscquently the ZF,, 1 < n < w, are trivial and the paradox of identi-

ty is derivable in ZF .

6. CONCLUDING REMARKS.

The main results presented in this paper are thefollowing: (i) in any da Costa
paraconsistent set theory with Russell's set the scope of validity of the clas-
sical formulations of the axiom schemata of abstraction, separation and replace-
ment cannot be enlarged; (ii) it is not possible to construct da Costa's set
theories with Russell's set and without universal set. These results may be ob-
tained in many other strong paraconsistent set theories.

In a certain sense, these results may be considered as limitative ones. By
(i), Russell's set as well as other non-classical sets have to be introduced by
specific postulates. Thus, in each case, we must investigate if the non-classical
set we want to introduce does not lead to a paradox that invalidates the theo-
rv. Still by (1), Russell's set is incompatible with a general formulation of
the axiom schema of replacement. This fact makes it impossible to prove some in-
teresting thing about some contradictory sets generated by R. For instance, let
us define SL'](R) as SC(R) and SLn+1(R) as SC(SCn(R)). I1f we could apply the ax-
iom schema of replacement to these sets, we would prove that they are universes.
Ihis is the most interesting property of contradictory sets we have already de-
vised. But, wmfortuately, up to now we have not found any paraconsistent set
theory in which this property is valid.

Set theories without universal set may be considered richer and more inter-
estine than the ones with universal set. Moroeover, it is natural to guarantee
the existence of Russell's set in paraconsistent set theories. But, by (ii) it
seems that we cannot construct a strong paraconsistent set theory with Russell's
and without wniversal set.

A natural question one may ask is if the above limitative results are valid
in weak paraconsistent set theories. In [5] it is proved that Russell's set im-
plics the existence of universal set in weak paraconsistent theories in whose
widerlying logic the law of excluded middle is valid. In [8] it is proved that
Russcll's set is not incompatible with a general formulation of the axiom schema
of abstraction in some weak and non-trivial paraconsistent se theories. Nonethe-
less, it has not been investigated whether the paradox of identity is derivable
or not in them. ilowever, in [7] it is shown that the paradox of identity is de-
rivible in some other weak and non-trivial paraconsistent set theories.

'he weak paraconsistent set theories have the advantage of being non-trivial.
But, cven if they are free from the paradox of identity, they seem to be weak
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concerning the set-theoretical operations. Thus, it is interesting to know if
they may be strengthened in a way similar to that used by Griss to construct
his logic of species (see [2]). An idea of how to proceed in this direction is
given in Section 3 above.

To finish, we mention some open problems whose solution we believe are im-
portant in the development of paraconsistent set theories. In da Costa paracon-
sistent set theories, is R different from the universal set? If the answer is
affirmative, is UR different from the universal set? What is the meaning of the
defined negation in NF (see Section 3, Theorems 3.1-3.3)? 1Is it possible to
construct a paraconsistent set theory with Russell's set and without universal
set? Apart from Russell's set what other non-classical sets may be introduced
in paraconsistent set theory?
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