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CHUAQUI'S DEFINITION OF PROBABILITY
IN SOME STOCHASTIC PROCESSES

*Leopoldo Bertossi

AB S TRACT. Models for Harkov Dependent Bernoulli Trials,
Markov Chains, Random Walks and Brownian Motion are con-
structed in the framework of Chuaqui's Definition of prob-
ability.

Chuaqui 1980 and 198] explains how a semantical definition of probability can
be applied to random experiments that give rise to compoundoutcomes. In order
to do this, he introduces what he calls "compoundprobability structures" (CPS).
These CPSare based on causal trees of the form ('1', R) where 'J' is a nonempty set
and R is a partial order in '1' which reflects the causal dependence relation

between the simple outcomes which make up the compoundoutcome.
In the applications we are interested in, the elements of '1' are time mon~nts

and R is a the natural linear order ~.
A compoundoutcome is a func t ion f with domain '1' for which f(t) is an out-

come in a simple probability structure (SPS) (see Chuaqui 1977 and 1981). Start-

ing with known probability measures on these SPS, he defines a probability mea-

sure on the set of compolHldoutcomes (see Chuaqui 1980).
In what foLlows we show how this definition works for some known stochastic

processes.

1. MARKOV DEPENDENT BERNOULLI TRIALS (MDBT)
Werepeat n times an experiment which has only two possible outcomes, 5

and f (for success and failure). Weassume that P f is the probability of f on5,
the (k+1)-st trial, given that the outcome was 5 pn the k-th trial, and that the

analogously defined probabilities P , Pf ' Pf .t' are known and independent of
$ .e ,$ ,J

k. Wealso assume the initial probabilities P5' Pf to be known.

* The work of the author was partially supported by the Organization of American
States through-its Regional Scientific and Technological Development Program.
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Here T = {to, ... ,tn_1},and we consider in T the natural order relation:
ti ~ tj if and only if i ~ j. Weassociate with each ti E T, i > 0, two simple

probabili ty structures KS and Kf. The models in ~ are of the form <As,S~ Y, fa}>,
with AS a non-empty set, {gS,Y} a f ixe.d partition of AS where the proportion of

eIerrents of AS which are in gS is P and that of the elements which are in YS S .
S 'is P f' and a an element of A •s,

The appearance of an eIenerrt of SS gives outcome S and the appearance of an
elenent of Y gives outcome f.

. S S S...B s} S S .s ...B { } ...B}Wewnte as for {<A ,S .r ,{a}>: a E S and O/.f for {<A ,0 ,l!' , a >:a E r

and simplifying, we write r = {o/'t' O/.~}' Analogously, we define K
f and write

Kf
= {O/.~, O/.~}; 0/. ~ and a f give out cone r, a ~ and 0/. ~ give outcone s.
To complete our formulation, we associate with to the simple probability

structure K = {O/.0, O/.fO}' where the definition of 0/.0 and O/.fO is analogous too S S
that of 0/.: and 0/.;, respectively.

The following probabilities follow i.mnedi.ateIy from the above definition:

]l(0/. f) = psJ ]l(a~) = Ps,s

]l(0/.~) = Pf,! ]l(0/.~) = Pf,s

0 0
]l(0/. s) = Ps ]l (Ol f) = Pf .

A compound outcome is a function f which satisfies the following conditions:

a) Domainof f = T,

b) fCtO) e:: KO '
c) :t'(tk) e:: otf implies f(t-!<+l) e:: Kf and f(tk) e: Ol.s* implies f(tk+1) e: KS

,

with * e:{s,f} for k > 0 and * = 0 for k = O.
The compoundprobability structure corresponding to these MDBTis H = <T,~,H>

where H is the set of all functions that satisfy (a) - (c). On the basis of the

probabilities assigned above and the relation ~ in T, we define a probability
rreasure u on H. In the case of MDBT,it is interesting to calculate the proba-

bilities:

P~ = probability of s on the k-th trial

p} = probability of f on the k-th trial.

To do this, it is enough to solve a difference equation whose derivation is

based on the "total probability theorem" which can be formulated and proved in

this context in the usual fashion.

Clearly, the situation corresponding to MarkovChains can be formulated in

a form completely analogous to that of MDBT.In considering Markov Chains, it
is nere ly necessary to choose a greater nunber of simple probability structures

associ ated with each rronerrt of tine and a greater nunber of transition probabil-

ities.
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2. RANDOM WALKS.
Let us consider a one dimensional random walk which, starting from the ori-

gin, is controlled by a coin thrown n t ine s , where the step size is constant and
equal to 1.

Here T = {to, ... ,tn}, T ordered as in §1. Weassociate with to the simple
probability structure K = {ClO} with on = <{O},{O}>. For each tk, k > 0, denne

Ut
k
:= {-k, -k+2, ... ,k-2,k} and UtO:= {O}.

A random walk (a compound outcome) is a function f which satisfies the following

conditions:
a) Domain of f = T,

b) f(tO) = aO ,
c) f(tk) is a model of the form <Ut

k
, {A}>with Ae::: Ut

k
,

d) f(tk) = <Utk,{A}> implies f(tk+1) e::: Kk+1,A:= {<Utk+1,{A+1}>, <Utk+p {A-1}>}.

With each tk e::: T, k: > 0, we associate a family of SPS wi th the same similarity

type and a commonuniverse, namely the family {Kk, A:Ae:::: Utk_1}.

lhe probability in Kk A is uniformely distributed if the coin which controls
the walk is unbiased, but: in general,

u (<Ut k' {A+ 1}>) P and

lJ«Utk' {A-1}» 1-p for each k: and for each A e::: Utk_1.

we assign to ClO the probability 1.
The CPS corresponding to this kind of random walk is H = <T, < ,H>, where H

is the set of all functions which satisfy (a) - (d). On H one obtains a probabil-
i ty neasure lJ determined by H and the probabilities assigned above to the SPS

Kk, A·
\Vecan calculate probabilities according to Chuaqui 1980, such as, for ex-

anple , the probability of the path fe: H shown in the given figure.

k



Z8

\lie show that lJ(f) = pn, as expected. In Chuaqui 1980, the measure u on H is de-

fined by induction on ordinals.
Let g E H, te::.T and Tt:= {s e::.T : s -'> t, s -f t}, then H(g,t):= {h(t): h e::.H,

gfTt = hfTt} is ~1 SPS where a probability measure with values p and 1-p is de-

Fined. Denote this measure by lJg,t' Weneed some definitions from Chuaqui, 1980:

T~ is the set of all minimal elen~nts of T-~{TS: S c a}

T U{TS: S c a}; T .- U{TS: S ~ a}, a ordinal.a a

Tt Tt U{t}, t e::.T.

H(s) :~ {ffS "f e::.H}, S cz rp ,

A(S) :~ {ffs f E A}, 5 ~ T, A c H.

1118n I"e have Ti = {ti}, Ti = {to,···,ti_1}, Ti = {to" .. ,tiL

\lie have to find the neasure u on H. Clearly H = H(Ttn). Then the measure on

H is 0tn which is defined for AsH by

~ (A(Ttn)) = f lJg t (A(g,tn))dlJtntn A(Tt) , nn

where A(g, tn)

that

{h(t) : h e::.A and hiTt = gfTt L In our case A = {f), son n n

lJ(f) 0tn({f}) = J lJ t (A(g,t ))dlJt
{fiTt } g, n n n

n

= lJf t (f(tn))'lJt (fiTt ), n n n

= pOlJt (flTt ).
n n

defined byThe measure lJtn is

lJ = n(0 : s e::.T'tn s n-1

Thus , ut f) = POlJtn_1(fITtn). If we calculate 0tn-1 as we calculated 0tn, we
have, upon iteration, lJ(f) = pn.

Within this formulation '-Ie can prove all the results of Probability Calculus

invol ving random walks.

3. BROWNIAN MOTION.
Our formulation is motivated by the known fact thay by speeding up a random

walk it is possible to obtain a good model of Brownian Motion. We avoid this ex-

plicit acceleration process using non-standard techniques. Let us consider a
B,ownian ~btion during a unit of time and a w1-saturated non-standard extension

V(*R) of the superstructure VCR) of the real munbers.
Let n e::.~'N be an infinite natural number and T = {o, l/n,Z/n, ... ,1} order-



ed in the natural way. Weassociate to each tA
{A -A+2 A-2 A

UtA: = - /fj',~, ... '----,;'ii" Iil'},

llu := {O}.

= A/n E T the set

A ). 1

Now, if a.E UtA_l' A ). 1,
1

and a A,o.-:= <utA' {0.-7riJ>

11, (a, ) = 1/2.
11.,0. A,Ci.-

A possible path of Brown ian Motion is a function f such that:

then K, := {Ol, ,a, }, with 01, :=<Ut,,{o.+--J-}>
1\,0, 1\,0:.+ /\,0.- !\.,a+ 1\ ill

is a simple probability structure with 11, (Ol, +)
1\,0:. A,ct

a) Domainof f = T,

b) f(O) = <uO' {O}>,

c) f(tA_1) = <UtA_1'{0.}> implies f(tA) E KA,o.' A) 1.

Let H be the set of all possible trajectories. On H one obtains a probability

measure 11 induced by the 11, 'so As indicated in Chuaqui 1980, 11 is defined by
",a.

induction on ordinals which in this situation may be hyperfinite.

Wedefine random variables (XtA)~ = 0 on n by XtA (f) := Var. (f(tA)), where
Var.(f(tA)) c*R is the real number that belongs to the variable part of f(tA).
For example, if f(tA) = (UtA' {a.}>, then Var.(f(tA)) = a.

Using some results of Anderson 1976, it may be shown that this is a good
model for Browni an lI'btion. Indeed, if fE H, we define X (f) for each SE*[O, 1J

S

by

Xs(f):= Xt[nsJ (f)+(ns- [ns])· (Xt[nsJ +1(f) -Xt[ns] (f)).

In this way we have a set H that contains all possible trajectories, a measure

11 defined on H, or more precisely, on a family A of subsets of H and a family

(Xs)SlO: *[0,1] of random variables. Furthermore, all these objects (T, the func-
tions f, H, A, the Xs's) are internal. This is also the case for the measure 11,

because it is defined in terms of standard measures and internal ordinals. (H,

A,I1) is an internal probability space.
Now, we consider Loeb's standard probability space (H,L(A),P) associated with

(H,A,I1) (see Loeb 1975). L(A) is the a-algebra generated by A, and P is the

probability measure defined on L(A) and generated by the standard part 011 of 11·

If we now define
Y (f) := Ox (f) s E [0,11,s s'

then
1 a 2

P(Ys ~ a.) = -----! exp(-y 12s)dy, a. E R.
IliTS -00

In fact,

P(Ys ~ a.) = P(oXs ~ a)

p(oXt ens] ~ c)
[ns) -1

(~~o (Xtk+1-Xtk) ~ a.)
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= p

Because the random variables Xtk+ 1-Xtk are independent with mean 0 and variance
lin, by a non-standard version of central limit theorem (Anderson 1976) one has
that the last expre~ion equals

1
11m o (*1jJ) (J[n

J
' (a+l)) = lim l/J(a,;m) = 1jJ(~L

nrr» ns m fI1.+«> s v e

where l/J is the distribution function of the normal probability law with mean 0
and variance 1. Thus, Ys has normal distribution N(O,s), with Irean 0 and vari-
ance s.

It is known (Anderson 1976) that P is an extension of the Wiener rreasure on
clo, 1] .
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