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NATURAL NUMBERS IN ILLATIVE COMBINATORY LOGIC

M.l~. Bunder

1. INTRODUCTION. In this paper we attempt to develop natural numbers using

the second order predicate calculus and the three axioms also used to obtain the
set theory of [3]. Of these three axioms, two give us that the natural numbers,
as we define them, are elements of the class of individuals A, the other says
that all individuals are sets under the definition given in [3]. Besides the in-

duction property and sorre e lenen tary ari thrre t icaI properties of natural numbers,
we can prove that the class of all natural numbers forms a set which is a subset

of A.

It has been thought that this theory would be strong enough to contain all
of first order arithrretic, and hence that it would be subject to Godel's incom-

pleteness results; this however seems not to be the case. In order ~o obtain the

remaining Feano type axioms for ar ithne t ic , we need to assune a restricted form
of substitution of equality and a "type" fo.c the paradoxical combinator Y.

2. THE SECO~D ORDER LOGIC.
The primi ti ve constants that we require, besides the combinators K and S (or

A abstraction) , are: A, H (the class of propositions) and ::: (restricted general-
ity). :::UX(or lJy =>yXy) expresses the fact that X'( holds for all Y in U. =>can

be defined in terms of ::: as in [1].
The rules of the logic are:

Eq If X = Y then X f- Y.

P X=>Y, Xf-Y.
~ :::UX,UY f- X'( where U is A, H or FAH~1)

IJfP If ts, X f-Y then ts , HX f-X =>Y .
JJf::: If s, UY f-X'( then /'"f-:::UXwhere U is A,H or E<\H.

H X I-HX..
m HX, X =>HY f-H(X=>Y).

(1) F = Ax>.yAz:::x(Byz)and FX'f can be interpreted as the class of functions from
X to Y. FAHcan therefore be interpreted as the class or first order predi~
ates.
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::H FlJI-IXI-H(::UX) where U is A, IJ or FAH.
(The last five of these could be replaced by Axioms as in [1]).

Quantification over H is not us~d'directly in this paper, but it is needed
to define the connectives r, v and A, and the existential quantifier LA and to
prove their appropriate properties (see [2]).

3. ARITHMETIC.

Natural numbers were defined in terms of A-abstraction by Church in [4] and
equivalently by Curry and Feys in [5] in terms of combinators. They have:

(Church starts with Z1
have the property:

Zo KI (= AX AY·y)
Zn+1 SBZn (= AX AY.X(ZnXY))

Ax Ay.xy (=BI)). These combinators, called iteratorsJ

Xn Z Xn
where XO (= Ax.x)
and Xn+1 BXXn (= AU.X(Xnu)).

It is easy to prove that:
Z = <l>BZZm+n mn
Z = BZ Znn m n

and Znm = ~mZn'
Thus the iterators themselves can be taken as numbers and addition, multi-

cation and exponentiation can be defined so that the appropriate commutative:
associative and distributive laws hold.

If however we want to represent numbers in a predicate calculus, a symbol
for e~uality has to be introduced into that system; conIDinatory equality (=) is
a primitive predicate.

Church, and also Kleene in his development of Church's system in [7], use

Q = AxAy(UX·=>U uy),

which is satisfactory when Church I s strong deduction theorem for:: is used.
Church's system is hovever inconsistent because of this deduction theorem,and
our weaker theorem (or rule) requires a different equality. The one we use is
an extensional equality given by:

Q1 = Ax AY. FAHx A FAHy " Au => (xu V) yu) (2)
U

In [3] sets and first order predicates were identified so that "FAHX" stands

(2) "v)" stands for "if and only if". We will often write X =, Y for Q1XY'
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for "X is a set".
The TIlainaxiom of [3] asserts that all individuals are sets i.e.
(A) I-- Au :::>u FAHu.

The empty class, based on Q1' given by:
o = Ax.f(Q1xx)

could then be shown to be a set (i ,e. I-- FAHO), as could the class containing
only ° (Q:O), the class containing only that CQ1(Q10) = QfO) etc.

Now 0, {a} (= Q10), {{a}} (= QfO) ... have been used as definitions for
0,1,2, ... in naive set theory and are very suitable here. Thus we define:

1 = Q10, 2 = Qfo, ....,n = ~o, ...
As n = Q~O 2nQ10, we can define the arithmetical operations in the follow-

ing way:
n+m = <l>B2mZnQ10= Q7(~0)
n.m = BZmZnQ10 = (Q~)rna

nm
= ZmZnQ10 = QJfITIo.

As before the appropriate commutative, associative and distributive laws
hold over = ; this fact is independent of our definitions of 0 and Q1 and of

"our aXio~ (A). Given (A) these laws also hold over Q1 as we then have
I-- FAH(Q~O) for i >-- 0.

i jTo prove that for i I j, Q10 and Q10 are unequal in the Q1 sense we need,
as was shown in [3]:

and

I-- AO (1)

(2)I- FAAQ1'
which guarantee that all our numbers are individuals.

and

'rhese axioms, as was also shown in [3], allow us to prove the cancellation
law for addition.

Thus we have all the simpler "Peano axioms" in the Io lIowing form:
I-f(O =1 n + 1)

I-- n + 1 = 1 m + 1 :::>n =, m , etc. ,
where n and mare natural "numbers, but we do not have

I-- (Vx)(x EN:::> f(O = 1 x + 1) etc.
Also to prove the mathematical induction axiom we need a class N of natural

numbers. This we define as follows:

where
N = n (AX(xO 1\ Ay ::::> yCxy ::::> x(Q1Y))))

n Z = AU. FAHv:::> Zv:::>VU.
V

We then prove that N is a set:
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THEOREM 1. ~ FNm.

PMo6. By (1) FAHx ~ H(xO)
and FAHx,Ay ~ H(xy)

also by (2) FAHx,Ay ~ H(x(Q1Y))
so FAHx,Ay ~ H(xy ::>x(Q1Y))

and FAHx ~H(xO" Ay ::>y(xy::> x(Q1Y)))

(this step uses rules PH and P" and results from [2]).
Let W = AX.XO" Ay::> y(xy ::>x(Q1Y))
then, by IJI'::, ~ F(FAH)HW
Now , Au, FAHz~ H(zu)
and FAHz ~ H(Wz)
so Au, FAHz~ H(Wz ::> zu)

and so Au ~ H(FAHz ::>zWz::> zu)

.. ~ FAH(nW)

i.e. ~ FNm. 0

We could note that (A) is not needed in this proof so that this theorem holds

in a l tc rnat ive set theories where (1) and (2) hold but (A) does not.
We now show that N is, in a sense, a subclass of A; again this does not re-

quire (A).

THEORH1 2. Nu ~ Au.

PItOO 6. By
and so Ay
and by DE

Then by (1),

(2) we have Ay I-A(Q1Y)
I-Ay::> A(Q1Y)

I-Ay ::>y Ay::> A(Q1Y)'

taking W as above we have:

~ WA

Now Nu=nll'u=FAHv::>vWv::>vu,

so 3S ~FAHA

we have Nu t- Au. 0

Note that because DT::: holds only for U = A, H and FAHwe cannot conclude

~Nu ::>u Au from this. Using Theorem 1 we can get no more than Au i- Nu ::>Au,
which is not very useful. If we use the st ronger deduction theorem for ::: given

in [1):
If 6, Xu ~ Y then 6, FAHX f- :::XY,

we could obtain ~"NA, but this rule makes the system substantially stronger.
The theorem however means tnat Au ::>u (Nu ::>Xu) has all the properties that

Nu ::>u Xu could have, namely:
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Au ::0 u(Nu ::0 X), Nu I-X

and if 1:1, Nu I-X then 1:1 f- Au ::0 u(Nu::o X).
We now prove that mathematical induction holds for N.

THEOREM 3. If f-XO A Ay ::o/Xy::o X(Q,y))

f-Au ::0 u Xu > Nu
f-FAHX,

then f-Q,XN,

PltOO 6. With W as above we have:

(a)

(b)

(c)

L.e ,

Nu f-FAHv ::OvWv ::0 vu

Nu f- WX::oXu

Nu f- Xu.

Au i-H(Nu)
Au I-Nu ::0 Xu.

Au I-Xu::o Nu

Au I-Xuv> Nu

I-Au ::0 u Xu '-? Nu

I-Q,XN. 0

so by (c)
and by (a),

By Theorem 1,

so
Also by (b)

so

The following restricted form of this theorem will be all we need in many

cases:

COROLLARY. If (a) and (c) hold then Nu I-Xu.

We now look at sone further basic properties of the natural nunbe rs as we

have defined them.

THEOREM 4. Nx f- N(Q,x) .

Pltoo6. Nx, FAHv, [vo II Ay ::0 Y vy::o v(Q1Y)] I-vx.
By Theorem 2,

Nx f- Ax,

.. Nx, FAl-Iv, [vo A Ay ::0 Y vy ::0 v(Q,y)] f- v(Q,x).

Thus as FAHv I-H[ vo II Ay ::0 Y vy::o y(Q,y)]
Nx I-FAHv ::>v[vo A Ay::>y vv :» v(Q,y)]::o v(Q,x)

i .e , Nx I-N(Q1x).

THEORH1 5. Nx f- x = , 0 v LA(AZ.X =, Q1Z A Nz).

PltOo6. Let X = AX'x =,0 v LA(AZ.X =, Q1Z A Nz)

then f- FAHX
(3)



Ax ~X =10 :::>Q1X =10,0 1\ NO,

Ax ~X =1 0:::> l:A(AZ'O,X =1 0lZ 1\ Nz).

Ax, flz,x =1 O,Z 1\ Nz ~QIX =1 01 (Olz)

Theorem 4, fo::.,fIz,x =1 Qlz 1\ Nz ~ N(Q,z)

so a l so by Theorem 2, tsx., x =1 O,Z 1\ Nz ~L:A(Aw'Olx =1 O,W 1\ Nw)

fix ~L:A(AZ'X =1 O,Z 1\ NZ) :::>L:A(AZ'O,X =1 O,Z 1\ Nz)

by (5) and (6)
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NO\" as

and

Also

and so

Now

so

i\Jso

and by

311d using (4)

~FAHO,

flz ~rAlI(O,z),

Az ~H(Nz)

~11(L:ACAz'O = 1 0lZ 1\ Nz)).

~AO

~O =1 0
I-XO. (4)

(5)

(6)

Ax --Xx :::>X(O,x)

~XO" Ax :::>xXx:::> X(O,x).

T'lUS by (3) and the Corollary to Theorem 3,

Nx ~x =10 v L:A(AZ'X =1 O,Z 1\ Nz).

TIIEORHI 6. Nx f- Au :::>U xu:::> L:AlAz'O,zu 1\ Nz).

PJtoo 6. Nx , Au, xu ~rcx =, 0)

Nx, flu, xu f-L:A(AZ'X =1 0lz 1\ Nz)

Nx, Au, xu ~- L:ACAz'O,zu 1\ Nz). 0

If we have the fo Ll owi ng axiom of extent (mentioned in [3]):

(E2) f-Au :::>u Az :::>z FAJ-It :::>t O,ZU :::>tz v, tu .

. We also have as f- FAlIN:

TlIEORHI 7. Nx ~Au :::>uxu:::> Nu.

Note that this axiom for the weakest form of substitution for equality is

suggested in [3]. The first rule:

0, zu , tz f- tu

le3ds to anomalous (though not inconsistent results). The second, the axiom:

(E')

gives
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where R is the Russell class (which is a set in this paper). We also have RR =

I' (RR) and so by Eq, I- RRvo I' (RR), but as we do not have I- AR and hence not

I-H(RR) we cannot prove a contradiction from this anomalous result.
The third possibility, the axiom (E2) mentioned above seems to be free of

anomalies and is sufficient for what we requi re above.
Note also that Theorem 7 says that N is a transitive set.
Going back now to arithmetical properties in the more general form we find

that we can easily prove:

THEOREM8. (i)

(ii)
(iii)

(iv)

NZ,Nx,Ny >.--x=1 y::> (x =1 Z::> Y =1 z)

Nx,Ny I-x = 1 Y ::>Qlx = 1 Q1Y
Nx >.--f(O= 1 Qlx)

NX,Ny I-Qlx = Q1Y::>x = 1 y.

PJWo6. By Theorem 2, (A)

and

FAHx, FAHy l--Hfx = 1 y)

FAHx >.--FAH(Qlx)

it is easy to show that on the
right of I- are propositions;

and (iv) follow directly from

basis of the assumptions all the fonnulas to the
(i) then follows by the definition of Q1 and (ii)

(i); (iii) follows by the definitions of Q1 and 0.0

The four parts of Theorem 8 correspond to the first four Peano type axioms

gi yen by M:mdelson [8J. To prove the next one:

Nx >.--x + 0 = 1 x,

however seems to be impossible with + defined contextually as it is.
The alternative is to define addition (and also mUltiplication) by recursion.

The recursion operator has been defined in [6J in terms of an ordered pair oper-
ator, which is also defined in [6J and a predecessor function which is also defi-
nable in terms of corrhiriators . We can however define the predecessor rela-

tion in terms of terms definable using ~, A and H, in a much simpler fashion.

DEFINITION. [11] = AZ Ax'LA(Ay'YX II zy) .

we can then prove:

THEOREM9. (i) FAHz I-FAH([1I]z)

(ii) FAHt I- [11] (Qlt) = 1 t
(iii) I-- [11] 0 = 1 O.

PJwo{ (i) By (A), FAHz, Ax, Ay I-H(yx II zy)

so FAHz, Ax, I- H(LA(Ay'YXII zy))
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i.e. FAHz I-FAH([1T] z).

(ii) [1T)(Q,t) AX'l:ACAY-Yx 1\ Q,ty) , so by (A) and Theorem Z

Ay,Ax I-H(yx)

and FAHt,Ay,Ax I-H(Q, ty)

FAHt,Ax, [1TJ(Q,t)x I-tx

i.e. FAHt,Ax I- [1TJ(Q,t)x :::>tx.

Also Ax, tX,FAHt I-tx 1\ Q,tt,

so Ax,tx,FAHt I-l:A(AYOYX 1\ Q,ty) ,

and so Ax,FAHt I-tx :::>[1T](Q,t)x.

.. Ax,FAHt I- [1TJ(Q, t)x e:-o tx

so FAHt I-Ax :::>J1TJ(Q,t)xv,tx

i .e , FAHt I- [1TJ(Q,t) = 1 t ,

(iii) [1TJOX = l:A(AYOyX 1\ Oy).

But I-Ay :::>l(Oy)
so I-Ax :::>i ([1TJ Ox)

and so I-Q,([1TJO)O. 0

The ordered pair operator D can now be defined by:

DEFINITION D. D = AxAyAzAU.(r(l:Az) :::>xu) 1\ (I.:Az:::> y([1T]X)U).

To prove all the expected results for this however, we need the following

stronger fonn of (EZ), which is however still weaker than (E') and seems to a-

void the anomalies mentioned earlier.

AXIOM (B). I- Au :::>JAHz :::>zFAHt :::>tQ,zu:::> tu:::> tz .

This gives in particular:

TIIEORH1 '0. (i) Au, FAHz, Q,zu I-Az

(ii) Nu, FAHz, Q,zu I-Nz,

and a l s o the basic properties of D:

TIIEOREM t i . (i) FZ(FAH)AHy, FAHx I-FZ(FAH)AH(Oxy)

(i i) FAHx, FZ(FAH)AHy I-DxyO =1 X

(i.i i) FAHx, FZ(FAH)AHy, At I-Dxy(Qlt) =1 yt.

P11Oo6. (i) By Theorem 9 (i) and (A)"

:1150

FZ(FAH)AHy, Au, FAHx I-H(yC[1TJX)U)

FAHz HI (I.:Az) ,

fZ(FNi)Ally, Au, FNIx, FNiz, I-H(Dxyzt.:)

FZ(FNI)AHy, FAllx I-FZ(FNI)A(Dxy)

so



(ii) Au,FAHx,FZ(FAH)AHy, DxyOu I--xu

and by (i)
FAHx, FZ(FAH)AHy, Au I--DxyOu ::::>xu.

FAHx, FZ(FAH)AHy, Au i-xu::::>DxyOu

FAHx, FZ(FAH)AHy I--Au::::>u xu """DxyOu
FAHx, FZ(FAH)AHy I--DxyO = 1 x.

Also

so
i .e .

(iii) As At I--Q1tt

At 1--~(Q1t)
AU,FAHx, FZ(FAH)AHy,At,Dxy(Q1t)u l--y(['IT] (Q1t))u.

( 7)

(8)

Now as Ar I-FAHr

we have FZ(FAH)AHy,Ar ,Au I-H(yru)

i .e , FZ(FAH)AHy,Ar,Au I-H(Cyur)
and .', FZ(FAH)AHy, Au I-FAH(Cyu).
By (A) and Theorem 9 (i) At I-FAH(['IT](Q1t))

and by Theorem 9 (ii) At I- ['IT](Q1 t) = 1 t
:. by (B) and (5):

Au,FAHx,FZ (FAH)AHy,At,DXY(Q1t)u I--ytu.
Similarly using (B)

AU,FAHx, FZ(FAH)AHy,At,ytu l-y(['IT] (Q1t))u

AU,FAHx, FZ(FAH)AHy, At,ytu I-DXY(Q1t)u,

and the result can be proved. 0

so by (7),

Now we define the recursion operator:

DEFINITION R. R = >.x>.y.Y(B(Dx)(5y)).

A result such as that in parts (i) of Theorems 9 and' 11, about the funcion-

ality (or type) of R seems to be imposs ib le , We have

Rxy = 'Dx(5y(Rxy)) ,

so to determine, for given x and y, the type of Rxy from that of D we need first

the type of Rxy.
Alternatively, we need to know a type for Y; however, this is known to be

not derivable from the types for K and 5. (These "types" in fact constitute the

two basic axioms of the kind of system that we are dealing with - they allow

the proof of the deduction theorem for ::' - see [1], and for a discussion of the

relation between axioms and types see [6]).
We can however postulate a type fOT Y that does not conflict with those for

K and 5 and which will lead to a type for R.

(Y) I- F{F[F(FAH)(FAH)] [F(FAH)(FAH)] }[F(FAH)(FAH)] Y.
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(f- F(fTJ')TY is reasonable for any T as then ITTZ I--T(YZ) and FITZ I--T(Z(YZ)).

BeI ow Iv(' only need the above special case).

\ve C;Jn now prove:

TIIL,ORE~I 12. (i) F
2

(FAH) (FAH) (FAH)y,FAHt, FAHx I--FAH(Rxyt)

(ii) f'2(FNI)(FAH)(FAHly,FAI-ix I--RxyO =1 X

(iii) T'2(FNi)(FNI)(FNi)y,FNix,At I--Rxy(Q1t) =1 yt(Rxyt).

r!l()O~. F(fA11) (FN'I)u,FAJlv I-- fAJ1(uv)

.uid 1"'2(FAJIJ (Fi\:-I) (FAJI) y, FAJIv I--F(FAJI) (FN-l) (yv)

1'2(1:,\11)(h\ll) (FN-I) y, F(FAJ-I) (FN-I)u,FAHv I--FN-I(yv(uv))

and so 1
2
(1'[111)(FAll) (fAH)y,rcfAiI) (FAH)u I--F2(FN-I)AH(SyU)

.'. by Theorem 11 (i l :
['2 ( 1,\11)(h\ll) (l',\I.)y, FCFi\lI) (FAH) u,FAl-lx I- F2 (FAH) N-l (Dx (Syu) )

:1I1e1 ~() 1'2(1',\11)(i\ll) (1,\II)y,FAJlx I-F[FCf'AJI) (FAi!)] [F2(FAH)N-l] (BDx(Sy)).

\0.' I'Z(HJI)\II = 1(1,\11) (1''\11), so hy (Y) and Definition R:

f
2

(Ft'\lI) (I'AJI) (FI\ll)y,fAJlx I-FCFAiI) (FNIl (Rxy)

~0 tile re~lilt fo l l Ol'~.

(i i I ,\~ 1- 1',\llrl, I,e h.ivc- by (i) that

I: 2 l i'J\l1) ( I'c\ll) (F/\lI) Y ,FAHx I- 1',\11(RxyO) .

~LJ I", (i)

1'\',),11 Y(I3(nx) (Sy))O

B(Dx) (Sy) (Rxy) 0

llx(Sy (Rxy)) O.

I
Z

( 1\111(1,\11) (Ji\ll)y,Fi\Jlu I-F(f,'\II)(FAJI) (yu)

I'ZII,\l11(1,\lI) 11:'\llly,I'i\llx,f/\llu I-I'i\Jl(yu(Rxyu))

IZIIt\lI) (1:,\11)lh\ll)y, 1'/\1Ix 1-1'2 (F.\lI)\(Sy(Rxy)).

.;" by Thco rcm 11 Iii I

(9)

IZII,\lII(I,\lI)(I:,\llly,F/\llx I--LJx(Sy(Rxy)O) = 1 x,

Iii i I Til i~ 11<.l e1~ bv (')) and Theorem 11 C-ii i l . 0

i ii'll \ I 1'1(1\ + +xy = x + y = Rx(KQ1)Y·

111,111(1\1 I,. (il h\llx I-X+(1=1:\

Iii) \:;\lL,,'\y I-x + '~lY =1 Q1(x+y)

(iii) 'Jx,'Jv I--'Jlx+y).

I.l'.

(i) II: 1,\), 1,\llv,!\lv I-lI(Qlw)

1,\lIII,h\liv I--F!\II (I\Qluv)

I- IZ ( 1\11) (/;'1iIJ (F,\lI) (KQ1) (lOj
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:. By (A) and Theorem 12 (ii)

FAHx I-Rx(KQ1)0 = 1 x

i.e. FAHx I-x+O = 1 x.
(ii) By (10) and Theorerr 12 (iii),

FAHx,Ay I- x+Q1Y = 1 KQ1Y(x-y)

so FAHx,Ay I-x+Q1Y = 1 Q1(x-y) .

(iii) Theorem 12 (i) I- FAH(x+O), so by (i) and Theorem 10 (ii)
Nx I-N(x+O)

. . I-Ax :::>xNx :::>N(x+O) .

Now kx :» ~x :::>N(x+y) ,Ax,Nx I-N(x+y)

so by Theorem 4,
Ax :::>~x :::>N(x+y) ,Ax,Nx I-N(Q1 (x-y) ) ,

also then Ax :::>~x:::>N(x+y) ,Ax,Nx I-A(Q1 (x-y)},

Now Ay I-FAH(Q1Y)

so by Theorem 12 (i) Ay,FAHx I-FAH(x+Q1Y)
.'. by (ii) and Theorem 10 (ii)

Ax :::>~x::> N(x+y) ,Ax,AY,Nx I-N(x+Q1Y)

so I-Ay ::>y[Ax ::>~x::> N(x+y)] ::> [Ax ::>~x ::>N(x+Q1Y)].

So by the corollary to Theorem 3

Ny I-Ax ::>~x::> N(x+y)

so Nx,Ny I-N(x+y). 0

Oearly (i) and (ii) of this theorem have as special cases:

Nx I-x+O = 1 X

Nx,Ny I-x+Q1Y = 1 Q(x+y).

\'Ie now define the multiplication:

DEFINITION X. Xxy = x-y = RO(K(+x))y.

THEOREM 14. (i) FAHx I- x-u = 1 0
(ii) FAHx,Ay I-x·Q1Y =, x + x'y
(iii) Nx ,Ny I- N(x·y)

P!W0n. (i) By Theorem 12 (i), FAHx,FAHy I-FAH(x+y)
so FAHu,FAHx,FAlly I-FAH(K(+x)uy)

.• FAHx I-F2(FAH)(FAHHFAHHK(+x))

then by Theorem 12 (ii) FAI-IxI-RO(K(+x))O = 1 0

so (i) follows.

(ii) .By (11) and Theorem 12 (iii)
FAHx,Ay I-X· (Q1Y) = 1 K(+x)y(x-y)

so FAI-Ix,Ay I-x· (Q1Y) = 1 x-x-y.

(11)
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(iii) By (i) and Theorem 10 (ii)

Nx I-N(x'O)

I-Ax :::>xNx :::>N(x'O),so

Ax :::>j'x :::>Nt x-y) ,Ax,Nx I-N(x'y)

.. by Theorem 13 (iii)

Ax :::>j'x:::> Nf x-y) ,Ax,Nx I-N(x·y + x).

Now by Theorem 12 (i), (2) and Definition X

FAl-lx,FAHy I-FAH(X'Q1Y)

.. by Theorem 10 (ii) and (ii)

Ax :::>xNx:::>N(x·y) ,Ax",Nx,Ay I-N(x'Q1Y)

I-Ay :::>y[Ax :::>xNx:::>N(x'y)] :::>[Ax :::>xNx :::>xN(x'Q1Y)]

corollary to Theorem 3

Ny I-Ax :::>"xNx:::>N(x'Y)

NX,Ny i-N(x·y). 0

so by the

'n1US given the extra axioms (B) and (Y) which we have had to introduce, we

C;Ul dc vc l op all the Peano type axioms of [8J, alldhence~1endelson's development

of Io rmal number the,C;ry can be carried out here.
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