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NATURAL NUMBERS IN ILLATIVE COMBINATORY LOGIC

M.W. Bunder

1. INTRODUCTION. In this paper we attempt to develop natural numbers using
the second order predicate calculus and the three axioms also used to obtain the
set theory of [3]. Of these three axioms, two give us that the natural numbers,
as we define them, are elements of the class of individuals A, the other says
that all individuals are sets under the definition given in [3]. Besides the in-
duction property and some elementary arithmetical properties of natural numbers,
we can prove that the class of all natural numbers forms a set which is a subset
of A.

It has been thought that this theory would be strong enough to contain all
of first order arithmetic, and hence that it would be subject to GGdel's incom-
pleteness results; this however seems not to be the case. In order to obtain the
remaining Peano type axioms for arithmetic, we need to assume a restricted form
of substitution of equality and a "type' for the paradoxical combinator Y.

2. THE SECCND ORDER LOGIC.

The primitive constants that we require, besides the combinators K and S (or
\-abstraction), are: A, H (the class of propositions) and Z (restricted general-
ity). EUX (or Uy:>y Xy) expresses the fact that XY holds for all Y in U. o can
be defined in terms of & as in [1].

The rules of the logic are:

If X =Y then X + Y.

XY, X+ Y.

ZUX, UY - XY where U is A,H or FaH(")

If A, X Y then A, HX kX2 Y .

If A, UY XY then A + EUX where U is A,H or FAH.
H X —HX.

PH HX, X2 HY —H(X=Y).

IR

(1) F = AxXA\yAzEx(Byz) and FXY can be interpreted as the class of functions from
X to Y. FAH can therefore be interpreted as the class of first order predic-
ates.
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ZH FUHX +H(EUX) where U is A, Hor FAH.
(The last five of these could be replaced by Axioms as in nn.
Quantification over H is not used directly in this paper, but it is needed

to define the connectives I', v and a, and the existential quantifier IA and to

prove their appropriate properties (see [2]).

3. ARITHMETIC.

Natural numbers were defined in terms of A-abstraction by Church in [4] and
equivalently by Curry and Feys in [S] in temms of combinators. They have:

ZO = KI

Zo41 = SBZ,

~

= AX Ay.y)
AX Ay.x(any))

~
I

(Church starts with Zy = X Ay.xy (=B1)). These combinators, called iterators,
have the property:

X = an

where X0 =g (= 2. %)
and X2 B (= aux(w) .
It is easy to prove that:

Zm+n = <I>BZmZn

Zmn = Bzm“n
and =7

an = Lln-

Thus the iterators themselves can be taken as numbers and addition, multi-
cation and exponentiation can be defined so that the appropriate commutative,
associative and distributive laws hold.

If however we want to represent numbers in a predicate calculus, a symbol
for equality has to be introduced into that system; combinatory equality (=) is
a primitive predicate.

Church, and also Kleene in his development of Church's system in [7], use

Q= /\x)\y(ux_:u uy),

which is satisfactory when Church's strong deduction theorem for E is used.
Church's system is hovever inconsistent because of this deduction theorem,and
our weaker theorem (or rule) requires a different equality. The one we use is
an extensional equality given by:

Q) = Ax dy. FAx A FAy A Aus (xu cnyu)(z)

In [3] sets and first order predicates were identified so that "FAHX" stands

(2) "e~»" stands for "if and only if'". We will often write X =, Y for Q1XY.
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for "X is a set'.
The main axiom of [3] asserts that all individuals are sets i.e.

(A F Au > FAHu.
The empty class, based on Q, given by:
0= }\x.I‘(Q1xx)
could. then be shown to be a set (i.e. + FAHO), as could the class containing
only 0 (Q,O) the class contamlng only that (Q] (QTO) = Q10) etc.

Now 0, {0} (= Q1O), {{0}} (= Q1O) . have been used as definitions for
0,1,2,... in naive set theory and are very suitable here. Thus we define:

2
= Q0, 2 = Q{0,....,n = Qo,...

As n = QI;O = ZnQ]O, we can define the arithmetical operations in the follow-

ing way:
n+m = 982 7,0 = ¢(}0)
n.m = BZ 2 Q0 = (@P"0
and " = 2 20,0 = @M.

As before the appropriate commutative, associative and distributive laws
hold over = ; this fact is independent of our definitions of 0 and Q; and of
- our axiom (A). Given (A) these laws also hold over Q1 as we then have
- FAH(QIO) for i > 0.
To prove that for i # j, Q10 and QJO are unequal in the Qq sense we need,
as was shown in [3]:
- AO (N
il - FAAQ, (2)
which guarantee that all our numbers are individuals.
These axioms, as was also shown in [3], allow us to prove the cancellation
law for addition.
Thus we have all the simpler 'Peano axioms" in the following form:
FT(0 =qn+ 1)
n+1=ym+1>n=,m, etc.,

where n and m are natural numbers, but we do not have
F¥X)(x=N=2T(0 =4 x+ 1) etc.

Also to prove the mathematical induction axiom we need a class N of natural

numbers. This we define as follows:
N =00x(0A Ay 2 Oy = x(Qy))))
vhere NZ = Au. FAHv SER Zv 2 vu.

We then prove that N is a set:
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THEOREM 1. + FAHN.

Proof. By (1) FAHx + H(x0)
and FAHX, Ay + H(xy)
also by (2) FAHx, Ay +H(x(Qy))
) FAHx, Ay + H(xy = x(Qy))
and FAHX + H(x0 A Ay :,y(xy > x(Qyy)))

(this step uses rules PH and PZ and results from 2D.
Let W = xx.x0 A Ay o y(xy = x(Q1y))

then, by DIZ, I F(FAH)HW

Now, Au, FAHz - H(zu)

and FAHz +— H(Wz)

SO Au, FAHz — H(Wz o zu)

and so Au + H(FAHz o, Wz = zu)
— FAH(W)

i.e. ~ FAHN. 0O

We could note that (A) is not needed in this proof so that this theorem holds
in altemnative set theories where (1) and (2) hold but (A) does not.
We now show that N is, in a sense, a subclass of A; again this does not re-

quire (A).

THEOREM 2. Nu + Au.
Proog. By (2) we have Ay I—A(Q1y)
and so Ay I=Ay 2 A(Qqy)
and by DIZ - Ay = Ay = A(Q1y).
Then by (1), taking W as above we have:
= WA

Now Nu = lWu = FAHv 2y Wv > vu,
so as  FAHA
we have Nu - Au. O

Note that because DTZ holds only for U = A, H and FAH we cannot conclude
+Nu 2, Au from this. Using Theorem 1 we can get no more than Au + Nu = Au,

which is not very useful. If we use the stronger deduction theorem for E given
in [1]:

IfA, Xu + Y then A, FAHX + EXY,
we could obtain Z=NA, but this rule makes the system substantially stronger.

The theorem however means that Au = (Nu = Xu) has all the properties that
Nu 4 Xu could have, namely:



Au :u(Nu: X), Nu X

and if A, Nu X then A |- Au o u(Nu: X)-
We now prove that mathematical induction holds for N.

THEOREM 3. If X0 A Ay o y()(y — X(Q]y))
FAu o 3 Xu > Nu
- FAHX,
then FQq XN,

Proof. With W as above we have:
Nu +FAHv = Wv = w

so by (c) Nu + WX > Xu
and by (a), Nu + Xu.
By Theorem 1, Au H(Nu)

so Au —-Nu = Xu.

Also by (b) Au —Xu © Nu

so Au —Xu v~ Nu

—Au 2 XuNu
i.e. L—Q1XN. (]

The following restricted form of this theorem will be all we need in many

cases:
COROLLARY. If (a) and (c) hold then Nu Xu.

We now look at some further basic properties of the natural numbers as we
have defined them.

THEOREM 4. Nx k- N(QX).

Prood. Nx, FAHv, [vo A Ay o y W2 V(Qp’)] =vx.
By Theorem 2,
Nx + Ax,

<~ Nx, FAHv, [vo A Ay pr g V] + v(QX).
Thus as FAHv —H[vo A Ay >, W= y(Q)]

Nx —FAHv 2 [vo A Ay =y vy = vQ)] 2 v(Qx)
i.es Nx —N(Qx).

THEOREM 5. Nx bk x =40 v ZAQAz.x =, Qz A Nz).
Prood. Let X = Axex =10 v ZA(Az.Xx =, Q]z A Nz)

then - FAHX
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Now as - FAHO,
Az L—l’/\II(Q1z),

and Az —H(Nz)

HH(ZA(Az0 =14 Q]z A Nz)).
Also = AO
% 0 =,0
and so - XO. 4)
Now AX x=,0 S Qx = Q10 A NO,
S0 AX b=x =4 02 ZA(AZeQqx =¢ QqZ A Nz). (5)

Also  Ax, Az,x =, Qqz A Nz =Qyx =4 Q1(Q1z)

and by Theorem4, Ax, &z, x =, Q,z A Nz N(Q1z)

14

so also by Theorem 2, Ax, x =; Qqz A Nz FIAQWQqx =4 QW A Nw)

Ax HIZA(Azex =, Qqz A Nz) = EA()\Z'Q1X = Qz A Nz) (6)
by (5) and (6)
AX -Xx 2 X(Qx)

and using (4) X0 A Ax DXX)(D X(Q1x).
Thus by (3) and the Corollary to Theorem 3,

NX X =40 v ZA(Az*X =4 Qqz A Nz).

THEOREM 6. Nx + Au o pxu= ZAO\z-Q]zu A Nz).

Proo§. Nx, Au, xu T(x =, 0)
Nx, Au, xu FZIZA(Azex =4 Qqz A Nz)
Nx, Au, xu L—EA(Az-Q]zu A Nz). O

If we have the following axiom of extent (mentioned in [3]):
(E2) - Au 2, Az = FAHt o ¢ leu otz v tu.

“We also have as FAHN:
THEOREM 7. Nx Au o U= Nu.

Note that this axiom for the weakest form of substitution for equality is
suggested in [3]. The first rule:

Q1zu, tz Htu
leads to anomalous (though not inconsistent results). The second, the axiom:

(E1) +FAHu o uFAHz :zFAHt =} tQ]zu o tzw tu

gives RR «» RR
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where R is the Russell class (which is a set in this paper). We also have RR =
I'(RR) and so by Eq, + RR«»T'(RR), but as we do not have + AR and hence not
—H(RR) we cannot prove a contradiction from this anomalous result.

The third possibility, the axiom (E2) mentioned above seems to be free of
anomalies and is sufficient for what we require above.

Note also that Theorem 7 says that N is a transitive set.

Going back now to arithmetical properties in the more general form we find

that we can easily prove:

THEOREM 8. (i) Nz Nx,Ny kX =qy 5 (Xx=12>y =112)
(1) Nx,Ny Fx =1y o QX =1Qqy
(i) Nx T(0 =4 Q)
(iv) NxNy HQx = Qy > X =1qy.

Proof. By Theorem 2, (A)

FAHx, FAHy HH(x =,y)

and FAHX b FAH(Q;x)

it is easy to show that on the basis of the assumptions all the formulas to the
right of + are propositions; (i) then follows by the definition of Q1 and (ii)
and (iv) follow directly from (i); (iii) follows by the definitions of Q] and 0.0

The four parts of Theorem 8 correspond to the first four Peano type axioms
given by Mendelson [8]. To prove the next one:

NX - x+0=1Xx,

however seems to be impossible with + defined contextually as it is.

The alternative is to define addition (and also multiplication) by recursion.
The recursion operator has been defined in [6] in terms of an ordered pair oper-
ator, which is also defined in [6] and a predecessor function which is also defi-
nable in terms of combinators. We can however define the predecessor rela-
tion in terms of terms definable using Z, A and H, in a much simpler fashion.

DEFINITION. [n] =iz AX-ZA(Ay*yx A zy) .
We can then prove:

THEOREM 9. (i) FAHz +FAH([7]z)
(ii) FAHt H[m] (1) =qt
(iii) +[n]0 =q0.
Prood. (i) By (A), FAHz, Ax, Ay HH(yx A zy)
so FAHz, Ax, + H(ZA(QAysyx A zy))
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1.6 FAHz +FAH([7]z).
(ii) [n] (Qt) = Ax*ZA(Ay*yx A Qqty), so by (A) and Theorem 2

Ay,Ax FH(yx)

and FAHt ,Ay ,Ax I—H(Q1ty)

. FAHt , Ax, [1] (Qqt)x Ftx

i.e. FAHt ,Ax = [1] (Qt)x = tx.

Also Ax,tx,FAHt I-tx A Qitt,

SO Ax,tx,FAHt ZA(Ay yX A Q1ty),

and so Ax,FAHt tx o [1] (Qqt)x.

B2 Ax, FAHE +[1] (Qqt)X oo tX

S0 FAHt FAX o [1] (Qqt)x « tx

i.e. FAHt - [n] (Qqt) =4 t.
(iii) [v]Ox = TA(xy-yx A Oy).

But Ay = T'(0y)

so FAX o xI‘([n]Ox)

and so I—Q1([1r]0)0. O

The ordered pair operator D can now be defined by:
DEFINITION D. D = AxAyAzAu.(T(ZAz) > xu) A (zAz > y([7]x)u).

To prove all the expected results for this however, we need the following
stronger form of (E2), which is however still weaker than (E1) and seems to a-

void the anomalies mentioned earlier.
AXIOM (B). + Au > uFAHZ ::ZFAHt DtQ1zu o tu> tz.

This gives in particular:

THEOREM 10. (i) Au, FAHz, Qzu Az
(ii) Nu, FAHz, Q2u FNz,

and also the basic properties of D:

THEOREM 11. (i) FZ(FAH)AH)', FAHx l—Fz(FAH)AH(Oxy)
(ii) FAHx, F,(FAH)AHy HDxy0 =4 X
(iid FAHx, F,(FAH)AHy, At kDxy(Qqt) =4 yt.
Proog. (i) By Theorem 9 (i) and (A),-
FZ(FAH)AHy, Au, FAHx l—H(y([n]x)u)
also FAHz —H(ZAZ),
s0 F,(FADAHy, Au, FAHx, FAHz, —H(Dxyzy)
FZ(F;\H)AH)', FAHX I-—FZ(FAH)A(DX)')



(ii) Au,FAHx,F,(FAH)AHy, DxyOu kxu

and by (i)
FAHX, FZ(FAH)AHy, Au FDxyOu > xu.
Also FAHx, F,(FAH)AHy, Au +xu > DxyOu
so FAHx, FZ(FAH)AHy FAu o Qe DxyOu
i.e. FAHX, F,(FAH)AHy +Dxy0 =4 x.
(iii) As At -Q,tt
At FIA(Q1) (7
Au,FAHx, F, (FAH)AHy,At,Dxy(Qqt)u Fy([7](Q;t))u. (8)
Now as Ar - FAHTr
we have FZ(FAH)AHy,Ar,Au —H(yru)
i€ FZ(FAH)AHy,Ar,Au —H(Cyur)
and .. FZ(FAH)AHy, Au  FAH(Cyu).
By (A) and Theorem 9 (i) At HFAH([7](Qt))
and by Theorem 9 (ii) At +[n] Q) =1t

. by (B) and (S):
Au,FAHx,FZ(FAH)AHy,At,ny(Q1t)u Fytu.
Similarly using (B)
Au,FAHx, F, (FAH) Ay ,At,ytu by ([7] (Q;t))u

so by (7),
Au,FAHX, F,(FAH)AHy, At,ytu HDxy(Q;t)u,

and the result can be proved. O
Now we define the recursion operator:
DEFINITION R. R = Ax\y.Y(B(Dx)(Sy)).

A result such as that in parts (i) of Theorems 9 and 11, about the funcion-
ality (or type) of R seems to be impossible. We have

Rxy = Dx(Sy(Rxy)),
so to determine, for given x and y, the type of Rxy from that of D we need first
the type of Rxy.

Altematively, we need to know a type for y; however, this is known to be
not derivable from the types for K and S. (These "types' in fact constitute the
two basic axioms of the kind of system that we are dealing with - they allow
the proof of the deduction theorem for Z - see [1], and for a discussion of the
relation between axioms and types see [6]).

We can however postulate a type for y that does not conflict with those for
K and S and which will lead to a type for R.

(¥)  + F{F[F(FAH) (FAH)] [F(FAH) (FAH)] } [F(FAH) (FAH)]Y.
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(+EF(FTT)TY is reasonable for any T as then FTTZ +T(¥Z) and FITZ —T(Z(YZ)).
3clow we only need the above special case) .

We can now prove:

THEOREM 12. (i) F,(FAH) (FAH) (FAH)y, FAHt, FATIX - FAH(Rxyt)
(i1) I‘ (I"AH)(]AH)(FAH)y FAHX FRxy0 =9 X
(iii) F (FAIT) (FAH) (FAH) y , FAHX, At l—ny(Q1t) = yt(Rxyt) .

Prood. F(FAL) (FAH) u, FAIlv = FAH(uv)
and F, (1 Al (EAT) (FAD y, FAHV - F(FAI) (FAH) (yv)
5, L (EN) (FAT) (FAH) y , F(FAH) (FAH) U, FAHY  FAH (yv (uv))
and 50 S (EAT) (T Al (FAH) y, F(TAH) (FAH)u l—F7(IAH)AH(Syu)

. by Theorem 11 (i):

I ,(1 A (FAID (DAL, F(FAH) (FAH) u, FAHIX T (FAH)AH(DX(Syu))
and so S (END (D) (ENDy, FATIX +F[F(FA) (FAD ] [rZ(FAmAH] (BDx(Sy)) -
Now L (ENDAL = F(END (PN, so by (Y) and Definition R:

) F, (FAID (FAH) (FAID y, FAlX - F(FAL) (FAH) (Rxy)
o the result fo?]ons.
(ii) As = NI, we have by (i) that
I_,\l-'.\ll)Llf.-\H)(F/\H)y,liAHx =TT (Rxy0) .

S P = ¥Y(B(IX) (Sy))0
= B(Dx) (Sy) (Rxy)0
Dx(Sy (Rxy)) 0.
Now L (P (BN (PN y, FAu = F(FAH) (FAH) (yu)
s0 by (i) N (FAD) (END y, BN, FALIu = EALL(yu (Reyu) )
I (EA (BN (EA) y, FATI FF, (ENDA(Sy (Rey)). (9

S0 by theorem 11 (i)

n

IS (END (BN (PN v, FALIX - Dx(Sy (Rxy)0)=1 x,
and the result holds.
(iii) This holds by (9) and Theorem 11 (iii). O
Newe we can define addition.

PLIINITION +. #xy = x + y = Rx(KQpy.

[HLOREM 15, (1) FAk Bx + 0 =4 X
(i) FAI,Ay X+ Qpy =4 Q](x+y)
(ii1) Nx,Ny EN{(x+y).
Procd. (1) By (), TNV, Aw l—il(Q1vw)
i, VI, NIV - FATRQquv)
and <o 1 (5N (END (D (KQ)) a6



. By (A) and Theorem 12 (ii)
FAHx I—Rx(KQ1)0 =X
i.e. FAHx Fx+0 =
(ii) By (10) and Theorem 12 (iii),
FAHX,Ay Fx+Qy =1 KQqy (x*y)
S0 FAHX, Ay x+Qqy =, Q (x+y).
(iii) Theorem 12 (i) ~ FAH(x+0), so by (i) and Theorem 10 (ii)
Nx +N(x+0)
HAX o xNx > N(x+0).
Now Ax :)J\lx o N(x+y) ,Ax,Nx FN(x+y)
so by Theorem 4,
Ax :)J\lx:: N(x+y) ,Ax,Nx l—N(Q1 (x+y)),

also then Ax > Nx> N(xty) ,Ax,Nx FA(Qq(x+y)).
Now Ay HFAH(Qqy)
so by Theorem 12 (i)  Ay,FAHx FAH(x+Qqy)
by (ii) and Theorem 10 (ii)

Ax > Nx > N(x+y) ,Ax,Ay,Nx l—N(x+Q1y)

so Ay :y[Ax > Nx > N(x+y)] = [Ax o X = N(X4Q1Y)] .

So by the corollary to Theorem 3

Ny +Ax :xNx > N(x+y)
so Nx,Ny -N(x+y). D

Clearly (i) and (ii) of this theorem have as special cases:
NX Fx+0 =9 X
Nx,Ny Fx#Qpy =1 Q(x#).

We now define the multiplication:
DEFINITION X. Xxy = x*y = RO(K(+x))y.

THEOREM 14. (i) FAHx kx0 =, 0
(ii) FAHX,Ay FXxQqy =4 X * Xy
(iid Nx,Ny — N(x-y)

Proof. (i) By Theorem 12 (i), FAHx,FAHy K FAH(x+y)
so FAHu, FAHx,FAlly — FAH(K(+x)uy)

FAHx +F, (FAH) (FAH) (FAH) (K(+x))
then by Theorem 12 (ii) FAHx FRO(K(+x))0 =
so (i) follows.

(ii) By (11) and Theorem 12 (iii)

FAHX,Ay FXx* (Q1y) =, K(+x)y(x-y)

S0 FAHX,Ay X+ (Qqy) =4 x+x°y.

41
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(iii) By (i) and Theorem 10 (i1)
Nx N(x*0)
SO Ax :>xNx S>N(x*0),

Ax > Nx = N(x+y) ,Ax,Nx FN(xy)
by Theorem 13 (iii)
AX :,)J\]x; N(x*y) ,Ax,Nx N(x-y + x).
Now by Theorem 12 (i), (2) and Definition X
FAHx, FAHy l——FAH(x-Q1y)
by Theorem 10 (ii) and (ii)
Ax ::XNx o N(x+y) ,Ax,Nx,Ay l—N(x-Q1y)
- Ay :y[/\x > Nx 2 N(x+y)] = [Ax o Nx > Nx=Qpy)]
so by the corollary to Theorem 3
Ny HAx :xNx > N(x*y)
Nx,Ny FN(x+y). O

Thus given the extra axioms (B) and (¥) which we have had to introduce, we
can develop all the Peano type axioms of [8], and hence Mendelson's development

of formal number theory can be carried out here.
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