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STUDIES IN PARACONSISTENT LOGIC IT: QUANTIFIERS
AND THE UNITY OF OPPOSITES

Newton C.A. da Costa and Robert G. Wolf

ABSTRACT. 1In this paper, the propositional logics intro-
duced in a previous work (N.C.A. da Costa and R.G. Wolf,
Studies in paraconsistent logic I: the dialectical princi-
ple of the unity of opposites, Philosophia 9(1980) ,pp.189-
217) are extended to first-order predicate calculi. Our
aim is to formalize certain aspects of dialectics, as they
are interpreted by McGill and Parry (V.J. McGill and W.T.
Parry, The unity of opposites: a dialectical principle,
Science and Society 12(1948),pp.418-444).

In da Costa and Wolf 1980, we constructed a sentential calculus DL whose
purpose was to formalize the dialectical principle of the unity of opposites,
as that principle has been interpreted by McGill and Parry. As we insisted,
such a sentencial logic is only a first step toward richer, more philosophical-
ly useful logics. Here we plan to extend DL (note, not the second system DL*
also formulated in da Costa and Wolf 1980) to a first-order predicate logic DLQ
and show that motivations have not been sacrificed in the move to DL, We shall
also indicate how DLQ can be extended, in a similar way as DL was previously,
to DLO*,

We shall assume that our previous paper is available and will not repeat
the motivating remarks we gave there nor some of the more easily adapted tech-
nical results. This paper will therefore be mere straighforwardly technical,
but such technicalities 2re, we feel, vital to the enterprise. Before moving
on to such technical aspects, we would like however to remark that this (and
the previous) paper is meant also to show the value of paraconsistent logics
-those logics intended to formalize non-trivial inconsistent theories- in
treating philosophical problems. Paraconsistent logics are as yet too little
known or appreciated within the logical community. Hopefully, successful ap-
plication of such logics will help change that situation.
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1. THE FORMALIZATION OF DLQ AND SOME METATHEOREMS.

LY has the following primitive symbols. 1- The connectives: =,a,V, and °.
2- The quantifiers: ¥ (for all) and 3 (there exists). 3- Individual variables:
an infinitely denumerable set of individual variables which we do not need to
specify. 4- Three disjoint sets of individual constants, A, B and C such that
i}U? Ug =D # #. 5- Three disjoint non-void sets, A', B! and g', containing con-
stant predicate symbols of any rank n, 0 <n < w. 6- For every n, 0 <n <w,
an infinite denumerable set of predicate variables of rank n. 7- Parentheses.
The individual variables and constants are called terms.

The common syntactical notions, for example those of formula, proof, the
symbol +, and deduction, are introduced as usual. The letters A, B and C, with
or without subscripts, will be employed as metalinguistic variables for formu-
las; x, y and z, with or without subscripts, will denote individual variables;
a, b and ¢ are syntactical variables for individual constants; t will denote
any term. The symbol of equivalence, =, is introduced in the usual way. The
metalinguistic abbreviations of implication and of equivalence are respectively
> and <>,

DLQ is an extension of DL, so we shall assume the axiom schemata given for
DL in da Costa and Wolf 1980 (note that we are using schemata). To get DLQ, we
add the following schemata and rules, which are subjected to the standard re-
strictions:

A18. C o A(X)/C 2 ¥xA(x)

A19. ¥xXA(x) o A(t)

A20. A(t) o 3IxXA(x)

AZT. A(x) = C/3xA(x) > C

A22. Wx(A(¥))®> (VxA(x))°

A23. ¥x(A())° > (3A(X))°

A24. If A and B are congruent formulas in the sense of Kleene 1952, p.153,

or onc is obtained from the other by suppression of vacuous quanti-

ficrs, then A = B is an axiom.

As before A22 and A23 insure that the stability operador © makes well-be-
haved formulas obey the laws of classical logic.

Theorem 1 of da Costa and Wolf 1980 generalizes to this new context.

THEOREM 1. ALl schemata and rules of classical positive predicate logic
arc valid in nL?.

Proog. Consequence of the postulates of DLQ.

In the next theorem, some notations of Kleene 1952 are employed:
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THEOREM 2. If A, B, Cy and Gy are formulas satisfying the conditions of
theorem 14 of Kleene 1952, pp. 151-152, we have: 1- If the occurence of A in
Ca 18 not within the scope of an occurrence of 71 or of O, then: A =B k-
ESPRERER CA = CB; 2- If the prime componentes of A, B, C are A1,A2,...Ak,
then: A?A(Z)A;: A=B - i, =G

Proof. As in Kleene 1952: the postulate of DLQ are selected partly so that
this theorem would hold.

Theorem 3 of da Costa and Wolf 1980 also generalizes to this new context:

THEOREM 3. Let T U {A} be a set of formulas of DLQ, in which © does not
oceur, and whose prime components are AphAy, . AL Then T + A in the clas-

steal predicate calculus iff T, A?,A‘z),. ..,/\2 - Ain DLQ.

It seems evident that theorem 3 can be generalized to cope with the case
in which the formulas of T U{A} belong to DLQ, without any restrictions on the

formulas.

THEOREM 4. DX is wndecidable.

Proof. Consequence of theorem 3 and of Church's result that the classical

predicate calculus is undecidable.

We can in an obvious way introduce strong negation ~ into DLQ just as was
done with DL. Then the corollary to theorem 7 of da Costa and Wolf 1980 also
generalizes to this new situation:

THEOREM 5. In DLQ, the symbols o,a,v,~,¥ and 3 satisfy all the postulates
of the classical predicate calculus. In particular, the following are provable:
(i) F(A>B)> ((A>~B)> ~A)

(i) A v~A

(ii) +~A> (A2 B)

(iv) F~~A = A

(V) F¥xA(X) = ~3x~A(x)
(vi) FIXA(X) = ~¥x~A(X)
(vil) F ¥x¥yA = ¥y¥xA

(vii)) - YxWAK,y) @ ¥zA(z,z)
(ix) +V¥zA(z,z) = 3xayA(x,y)
(x)  +~¥x¥y¥zA o 3x3y3z~A.

Proof. Left to the reader. We note that the reasons for having the classi-
cal predicate calculus interpretable as a subsystem of DL are the same as
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having the classical setential calculus interpretable as a subsystem of DL.

The concept of a k-transform of a formula (cf. Kleene 1952, p-178) is eas-
ily extended to the classical predicate calculus with individual constants and
also to DL, Definition of such a notion is useful to prove a motivationally

crucial conservative extension result.

THEOREM 6. IfT + A in DLQ, then any k-transform of A can be deduced in
DL from the k-transforms of the formulas of T.

Prood. Similar to the classical one, but taking into account the fact that
the prime propositional components of the formulas of DL will not be proposi-
tional symbols (variables or constants), but predicate symbols of rank n, fol-
lowed by n occurrences of the symbols (numerals) 1,2,3,...,k (0 <n < w).

The next theorem is crucial.

THEOREM 7. I)LQ ig a conservative extension of DL, i.e. schemata not valid

in DL are not valid in DLQ either.

Proog. Apply theorem 6.

The import of theorem 7 is that adding quantifiers to DL does not disturb
the intuitions underlying DL. If DLQ did not conservatively extend DL, then ei-
ther l)l,Q would verify a formula scheme, in the vocabulary of DL, which on the
intuitions that we are assuming is a false theorem; or DL would have been poor
ly formulated as it left out a theorem which it could have contained, since it
uscs only the connectives of DL, and which is on the same dialectical intui-
tions a true theorem. In one case DLQ would be branded false, since it would
lead from true assumptions to false conclusions; in the other, DL would be at
best inadequate, precisely in the area where we have claimed adequacy.

The way in which we have added the quantifiers is not the only possible
way; indeed it might be valuable to try other options. The value of the ap-
proach taken here is that it makes oLl as close as possible to the classical
predicate logic (as indicated, the classical predicate calculus is close to
0 in another way; it can be interpreted as a subsystem of DLQ). For our pur-
poses, this is good for two reasons: 1- it facilitates proving metatheorems
and obtaining technical information about DLQ; and 2- it isclates the intui-
tions which separvate dialectical logic from classical logic from the intuitions
wnderlying other issues in the philosophy of logic. We do not need here to
fight intuitionistic, modal or relevant battles, though we may opt to do so

clsewhere.



To pinpoint some of the significance of theorem 7, we -«ic that the follow-
ing schemata are not valid in DLQ:

(xi) AAT7A.o B

(xii) AMT1A.o 1B

(xiit) 7TA > (A > B)

(xiv) A> (7A>B)

(xv) TA> (A>1B)
(xvi) A2 (TA>1B)
(xvi) (A= B) > MB>71A)
(xvii)) 171 A= £

(xix) T1(AA TA)

(xx) AATA

However DLQ also deviates from classical predicate logic on some properly
quantificational theorems.

THEOREM 8. In DLQ, the following schemata are not valid:

(xxi) T73x TAKX) = ¥xAX)
(xxii) T¥x TAX) = 3IXA(X).

Proog. Consider the k-transforms of the above schemata and apply theorem 6.

It is important to realize that we don't want either (xxi) or (xxii) to be
valid. If we consider cases where neither A(x) or 71A(x) is applicable, then
(xxi) and (xxii) should fail.

We now move on to the semantics for DLQ, which, as we shall see, is a gen-
eralization of that for DL. For similar semantics for predicate calculi, see
Arruda and da Costa 1977 and Alves and Moura 1978.

2. A SEMANTICS FoR pLY.

A sentence is a formula without free individual variables. In what follows,
I and A will always denote respectively a set of sentences and a sentence.

DEFINITION 1. Let D be a nonvoid set. An interpretation of DLQ in D is a
function i which associates to each individual constant of DLQ an element of D.
The diagram language of DLQ relative to D is denoted by DLQD. (See Schoenfield
1967.) A valuation of DLQ in D, having i as its base, is a function v of the
set of sentences DL on {0,1}, such that:

(1) v satisfies the conditions of a valuation of DL;
(2) v(¥xA(x)) = 1<>For every individual constant c of DLQD, v(A(c)) = 1;
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(3) v(3xA()) = 1<>For some individual constant c of DL, V(A()) = 1

(4) v(¥x(A(X))®) = T =v((¥AM))®) = v(EA)) = 1;

(5) If A and B are sentences satisfying the conditions of postulate A24,
then V(A) = v(B); )

(6) For any individual constants of DLQD, a and b, if i(a) = i(b), then
v(A(a)) = v(A(b)).

The valuation v satisfies a sentence A of DLQD (and of DL) if v(A) = 1.

DEFINITION 2. Suppose that I'U{A} is a set of sentences of i and that
v is any valuation; v is said to be a model of T if, for every element B of T,
v(B) = 1. A is called a semantic consequence of T', if every model v of T is
such that v(A) = 1. In this case, we write I EA. If T = f, wé write EA, and

A is said to be valid.

As in da Costa and Wolf 1980, these definitions are meant to be as unstart-
ling as possible. By paralleling previously studied cases, especially the clas-
sical one, our proofs also parallel, and can be presented very quickly.

We now move to prove L sownd and complete relative to the above semantics.

As typical, the soundness half is immediate.

THEOREM 9. In DLR: T — A =T EA.

Proog. By induction on the length of a deduction of A from T.

We now turn to the completeness half, which is very close to the classical

case, given the following definitions.

DEFINITION 3. T is said to be trivial if for every sentence A, T FA;
otherwise T is called nontrivial. T is said to be inconsistent if there is a
sentence A such that ' A and I' + 7 A; otherwise I' is consistent. T is said
to be T-incomplete if there is a sentence A such that I ¥ Aand I' ¥ 71 A;
otherwise TI' is called T1-complete. T is maximally nontrivial if it is nontrivial

and is not properly contained in any nontrivial set.

DEFINITION 4. T is called a Henkin set if, for every formula A(x) having
x as its sole free individual variable, there exists an individual constant c
(of l)LQ) such that T  3IxA(x) @ A(c).

We now prove some crucial preparatory theorems.

THEOREM 10. If T Zs a nontrivial (Henkin) set, it is contained in a max-
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imal nontrivial (Henkin) set.

Proof. Similar to the classical proof.

THEOREM 11. Let T denote a nontrivial Henkin set; then, one has:

(1) T has all the properties of a maximal nontrivial set of DL;

(2) ¥xA(x) € T <> For every individual constant c (of DLQ) siA(c) €T3

(3) IxA(x) € ' <> There is an individual constant c (of DLQ) such that
A(c) = T;

(4) If A and B are sentences as in postulate A24, then A =BT,

Proof. The classical proof is immediately adaptable to the present situa-

tion.

THEOREM 12. Every (consistent or inconsistent; l-complete or Tl-incomplete)

nontrivial Henkin set has a model.

Proog. Analogous to the proof of the corresponding theorem for DL.
COROLLARY. A4ny nontrivial set of sentences of DLQ has a model.
We have now proven everything necessary for completeness.

THEOREM 13. m DIR: T = A =T — A.

Proog. Again, analogous to the classical case.

COROLLARY. T + A<>T EA.

Proog. See theorems 9 and 13.

As the model theory here is so close to the classical case, some results of
the usual model theory can be extended to DLQ. For example, though we shall
not prove it, a Lowenheim-Skolem theorem for any denumerable T in DLQ is: if T
has a model, then I has a infinite denumerable model. Such results are of
course of more than technical interest, as they indicate that we have enough
control over p? to use it in (later) applications, without worrying overmuch
as to DIQ behaving in a pathological manner, fouling up attempted proofs of in-
teresting results. It is worth while to observe that our semantics is a general-
ization of classical semantics; in particular, Tarski's scheme T remains valid.

We prove one last, motivationally important theorem:

THEOREM 14. DLQ is consistent and nontrivial.

Proof. Consequence of theorem 6 and of the fact that DL is consistent and
nontrivial.
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3. THE UNITY OF OPPOSITES, AND CONCLUSION.

We can (as with DL*) formulate the dialectical principle of the unity of op-
posities explicitly using the resources of DLQ (and also use some of the symbols
introduced way back at the beginning of the paper) .

We can formulate two important forms of the principle of the unity of opp.
sities (see da Costa and Wolf 1980) as follows:

First form (#S ~f McGill and Parry 1948): If ae A and P is a unary conctant
predicate symbol « A", Then:

A25'. 1 (P(a) « P(a)).

Second form (#6 of McGill and Pe Ty 1948): Suppose that b = and that Q is
a unary constant predicate symbol be onging to B'; under these conditions, we

have :

A26'. Q(b)A QD).

Finally in order to insure the existence of well-behaved formulas, we as-

sume
, o
A27'. Vx]xz...Vxn(R(x],xz,...,xn)) ,

where R is a constant predicate symbol of rank n, 0 < n < w, belonging to C.

A25' and A26' can obviously be generalized in various ways. DLQ* (DL +A25"
+ A26' + A27') is both inconsistent and nontrivial and presumably can be inter-
preted as a logic of vagueness without any real difficulty.

Ne conclude that DLQ (and DLQ*) is a well-motivated and technically well-
behaved logic which answers to (some of) the intuitions behind a dialectical
logic. Its development and investigation promises to be of interest to philos-
ephers interested in dialectical philosophy. Extension of il to get a tensed
dialectical predicate logic seems to offer no real difficulty.

On to tenses!
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