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STUDIES IN PARACONSISTENT LOGIC II: QUANTIFIERS
AND THE UNITY OF OPPOSITES

Newton C.A. da Costa and Robert G. Wolf

ABSTRACT. In this paper, the propositional logics intro-
duced in a previous work (N.C.A. da Costa and R.G. Wolf,
Studies in paraconsistent logic I: the dialectical princi-
ple of the unity of opposites, Philosophia 9(1980) ,pp.189-
217) are extended to first-order predicate calculi. 0 u r
aim is to formalize certain aspects of dialectics, as they
are interpreted by McGill and Parry (V.J. McGill and W.T.
Parry, The unity of opposites: a dialectical principle,
Science and Society 12(1948) ,pp.418-444).

In da Costa and Wolf 1980, we constructed a sentential calculus DLwhose

purpose was to fonl~lize the dialectical principle of the unity of opposites,
as that principle has been interpretedby-~~Gill and Parry. As we insisted,
such a sentencial logic is only a first step toward richer, more philosophical-
ly useful logics. Here we plan to extend DL (note, not the second system DL*
also formulated in da Costa and Wolf 1980) to a first-order predicate logic DLQ

and show that motivations have not been sacrificed in the move to DLQ.Weshal1

also indicate how DLQcan be extended, in a similar way as DLwas previously,
to DLQ*..

Weshall assume that our previous paper is available and will not repeat

the motivating remarks we gave there nor some of the more easily adapted tech-

nical results. This paper will therefore be more straighforwardly technical,
but such technicalities ure, we feel, vital to the enterprise. Before moving

on to such technical aspects, ,,'e would like however to remark that this (and
the previous) paper is meant a1.so to show the value of paraconsistent logics
-those logics intended to fonnalize non-t.r i.v.ial inconsistent theories- in
treating philosophical problems. Paraconsistent logics are as yet too little

~~OhTI or appreciated within the logical community. Hopefully, successful ap-

plication of such logics will help change t.hat situation.
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1. THE FORMALIZATION OF DLQ AND SOME METATHEOREMS.
DLQhas the follow"ng primitive symbols. 1- The connectives: ~,A,V, and o.

2- TIle quantifiers: V (for all) and 3 (there exists). 3- Individual variables:
an infinitely denumerable set of individual variables whiQh we do not need to

specify. 4- Three disjoint sets of individual constants, ~, ~ and f such that
.!:-U~Uf = Q t- 0.5- Three disjoint non-void sets, ~',~' and f', containing con-
stant predicate symbols of any rank n, 0 < n < w. 6- For every n, 0 < n < w,
an infinite denumerable set of predicate variables of rank n. 7- Parentheses.

The individual variables and constants are called terms.
The commonsyntactical notions, for example those of formula, proof, the

symbol f-, and deduction, are introduced as usual. The letters A, Band C, with
or wi thout subscripts, wi Ll be employed as metalinguistic variables for formu-
las; x, y and z, with or without subscripts, will denote individual variables;

a, b llild care s}ntactical variables for individual constants; t will denote

any tenn. The symbol of equivalence, =, is introduced in the usual way. The
metalinguistic abbreviations of implication and of equivalence are respectively

-and<=>-.
DLQ is an extension of DL, so we shall assume the axiom schemata given for

LJLin da Costa and Wolf 1980 (note that we are using schemata). To get DLQ, we
add the following schemata and rules, which are subj ected to the standard re-

strictions:

A18. C ~ A(x)/C ~ VxA(x)
;\19. VxA(x)~ A(t)
/\20. A(t) ~ 3xA(x)

A21. A(x) ~ C/3xA(x) ~ C
A22. Vx(A(x)) 0 ~ (VxA(x))0
1\23. Vx(A(x))o ~ (3xA(x))0

/\24. If /\and B are congruent formulas in the sense of Kleene 1952, p. 153,
or one is obtained from the other by suppression of vacuous quant i-
fiers, then A = B is an axiom.

As before /\22 and A23 insure that the stability operador 0 makes well-be-
haved formulas obey the laws of classical logic.

"11leorem1 of da Costa and Wolf 1980 generali zes to this new context.

af't!

'l'IIEORHl 1. All schemata and rules of classical positive predicate logic
valid in DLQ.

P/tuo 6. Consequence of the postulates of DLQ.

In the next theorem, some notations of Kleene 1952 are employed:
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THEOREM 2, If A> B, CA and C13 are formulas satisfying the---cendit.ions of
theorem 14 of Kleene 1952> pp. 151-152, we have: 1- If the occurence of A in

CA is not within the scope of an occurrence of --, or of 0, then: A:: B f-

x1,· .. ,xn CA:: CB; 2- If the prime componentes of A, B, C"are Al'Az, ... Ak,

th . AO A~ ~o A - B x1""'xn C - Cen. l"'L'''''''k' = f- A = B'

P~oon. As in Kleene 1952: the postulate of DLQare selected partly so that

this theorem would hold.

Theorem 3 of da Costa and Wolf 1980 also generalizes to this new context:

THEOREM 3. Let r U {A} be a set of formulas of DLQ, in which 0 does not

occur, and whose prime components are A1'Az,""~' Then r f- A in the clas-
sical predicate calculus iff r, A~,A~, ... ,~ f- A in DLQ.

It seems evident that theorem 3 can be generalized to cope with the case
in which the formulas of r U {A} belong to DLQ, without any restrictions on the

formulas.

THEOREM 4. DLQ is undecidable,

Pnoo n. Consequence of theorem 3 and of Church's result that the classical
predicate calculus is undecidable.

We can in an obvious way introduce strong negation - into DLQ just as was
done with DL. Then the corollary to theorem 7 of da Costa and Wolf 1980 also

generalizes to this new situation:

THEOREM 5. In DLQ, the symbols=>,II,v,-,V and 3 satisfy all the postulates
of the classical predicate calculus. In particular, the following are provable:
(i) f- (A =>B)=> ((A =>-B) => -A)

(ii) f-A v - A

(ill) f- -A => (A =>B)

(iv) f- --A:: A
(v) f-VxA(x):: -s x-Af x)
(vi) HxA(x) :: -Vx-A(x)

(vii) f- VxVyA:: VyVxA
(viii) f- VxVyA(x,y)=> VzA(z,z)

(ix) f-VzA(z,z) :: 3x3yA(x,y)

(x) f- _VxVyVzA=>3x3Y3z-A.

P~ot. Left to the reader. We note that the reasons for having the classi-
cal predicate calculus interpretable as a subsystem of DLQare the same as



having the classical setential calculus interpretable as a subsystem of OL.

TI1econcept of a k-transfo~ of a formula (cf. Kleene 1952, p.178) is eas-

ily extended to the classical predicate calculus with rndi.vi dual constants and
also to OLQ. Definition of such a notion is useful to prove a motivationally

crucial conservative extension result.

TIIEOREM 6. If r I-- A in OLQ, then any k-transfo~ of A can be deduced in

OL [rom the k-trans[o~s o[ the [ormul.ae of r.

P!loo6. Similar to the classical one, but taking into account the fact that
the prime propositional components of the formulas of OL will not be propos i-
t ional symbols (variables or constants), but predicate symbols of rank n, fo I-
10\veJ by n occurrences of the symbols (numerals) 1,2,3, ... .k (0 < n < w).

'J11c next theorem is crucial.

TJIEORE~'1 7. OLQ is a conservative extension of OL, i.e. schemata not valid

ill DL. are not valid in OLQ either.

P!loo6. Apply theorem 6.

The import of theorem 7 is that adding quantifiers to OL does not disturb
the intuitions underlying OL. If OLQ did not conservatively extend OL, then ei-

the r m.Q IvOU]d verify a fonnula scheme, in the vocabulary of OL, which on the
intui t ions that Ive are assuming is a false theorem; or OL would have been poor-

ly Iormulated as it left out a theorem which it could have contained, since it
uses only the connectives of OL, and which is on the same dialectical in t u r-
tions a true theorem. In one case OLQ would be branded false, since it would

Icud from true assumpt i.ons to false conclusions; in the other, OL would be at
hcs t inadequate, precisely in the area where we have claimed adequacy.

'1118way in which we have added the quantifiers is not the only possible
way; indeed it might be valuable to try other options. The value of the ap-
proach tnken here is that it makes OLQ as close as possible to the classical

preuicate logic (as indicated, the classical predicate calculus is close to
J)J.Q in ancthe r way; it can be interpreted as a subsystem of OLQ). For our pur-

poses, this is good for two reasons: 1- it facilitates proving metatheorems
and obt ai ning tcchn ical information about OLQ; and 2- it isolates the int ui-

t ions which separate dialectical logic from classical logic from the intuitions
undc r l y ing other issues in the philosophy of logic. Wedo not need here to
fi ght intuitionistic, modal or relevant batt Ie s , though we may opt to do so

C' L scwhc rc ,



To pinpoint sorre of the significance of theorem 7, we '.(',8 that the follow-

ing schemata are not valid in DLQ:

(xi) A/I -, A, :::>B

(xii) A/I I A. :::>-, B

(xiii ) -, A :::>(A :::>B)

(xiv) A:::>(IA:::> B)

(xv) "I A:::>(A:::>I B)
(xvi ) A:::>(, A :::>, B)

(xvii) (A:::>B) :::>(, B :::>-, A)

(xviii) -, -, A:= P
(xix) -, (A/I I A)

(xx) A /II A

However DLQalso deviates from classical predicate logic on sorre properly

quantificational theorems.

THEOREM8. In DLQ, the following schemata are not valid:

(xxi) "l 3X .1 A(x) - lIxA(x)
(xxii ) "I vx. I A(x) _ 3xA(x) .

P!Wo6. Consider the k-transforms of the above schemata and apply theorem 6.

It is important to realize that we dOn't want either (xxi) or (xxii) to be

valid. If we consider cases where neither A(x) or I A(x) is applicable, then

(xxi) and (xxii) should fail.
We now move on to the semantics for DLQ, which, as we shall see, is a gen-

eralization of that for DL. For similar semantics for predicate calculi, see
Arruda and da Costa 1977 and Alves and ~ura 1978.

2. A SEMANTICS FOR DLQ.
A sentence is a formula without free individual variables. In what follows,

r and A will always denote respectively a set of sentences and a sentence.

DEFINITION 1. Let D be a nonvoi d set. An interpretation of DLQin D is a

function i which associates to each indi vidua Lconst ant of DLQan element of D.
The diagram language of DLQ relative to D is denoted by DLQD. (See Schoenfield

1967.) A valuation of DLQin D, having i as its base, is a function v of the

set of sentences DLQDon {O,l}, such that:

(1) ~ satisfies the conditions of a valuation of DL;
(2) v(lIxA(x)) = 1-For every individual constant c of DLQD,v(A(c)) 1-,
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(3) v(3xA(x)) = 1-- For sorre individual constant c of DLQD, v(A(c)) = 1;

(4) v(Vx(A(x))o) = 1 =>v((VxA(x))o) = V((3xA(X))0) = 1;
(5) If A and B are sentences satisfying the conditions of postulate A24,

then V(A) = v(B);
(6) For any individual constants of DLQD,a and b, if i(a) = i(b), then

v(A(a)) = v(A(b)).

The valuation v satisfies a sentence A of DLQD(and of DL) if v(A) = 1.

DEFINITION Z. Suppose that r U{A} is a set of sentences of DLQand that

v is any valuation; v is said to be a model of r if, for every element B of r,
v(B) = 1. A is called a semantic consequence of r, if every model v of r is
such that v(A) = 1. In this case, we write r FA. If r = 0, we write FA, and

A is said to be valid.

As in da Costa and Wolf 1980, these definitions are rreant to be as unstart-

ling as possible. By paralleling previously studied cases, especially the clas-
sical one, our proofs also parallel, and can be presented very quickly.

Wenow move to prove DLQ sound and complete relative to the above semantics.

As typical, the soundness half is immediate.

THEOREM9. In DLQ: r I- A~r FA.

P/too 6. By induction on the length of a deduction of A from r.

Ne now turn to the completeness half, which is very close to the classical
c3se, given the following definitions.

DEFINITION 3. r is said to be tPivial if for every sentence A, r I-A;

otherwise r is called nont r-iiri al , r is said to be inconsistent if there is a

sentence A such that r I-A and r I- ..,A; otherwise r is consistent. r is said
to be I-incomplete if there is a sentence A such that r If A and r II ...,A;

othe rwi se r is called ...,-compl.et:e, r is maximally nontPivial if it is nontrivial
3nd is not properly contained in any nontrivial set.

DEFINITION 4. r is called a Henkin set if, for every fonnula A(x) having

x as its sole free individual variable, there exists an individual constant c
(of ilLQ) such that r I- 3xA(x) ::> A(c).

\lie now prove sorre crucial preparatory theorems.

THEOREM10. If r is a nontrivial (Henkin) set, it is contained in a max-
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imal nontrivial (Henkin) set.

P~aa6. Similar to the classical proof.

THEOREM11. Let r denote a nontrivial Henkin set; then, one has:
(1) r has all the properties of a maximal nontrivial set of DL;
(2) VxA(x) e: r~ For every individual constant c (of DLQ), A(c) e: I";
(3) 3x1\(x) EO r <=0> There is an individual constant c (of DLQ) such that

A(c) e: r;
(4) If A and B are sentences as in postulate A24, then A := B e: r.

P~aa6. The classical proof is immediately adaptable to the present situa-

tion.

THEOREM12. Every (consistent or inconsistent; ""-complete or ""-incomplete)
nontrivial Henkin set has a model.

Pnaa6. Analogous to the proof of the corresponding theorem for DL.

COROLLARY.Any nontrivial set of sentences of DLQhas a model.

Wehave now proven everything necessary for completeness.

THEOREM13. In DLQ:r 1= A -r ~ A.

Pnaa6. Again, analogous to the classical case.

COROLLARY. r ~ A_r 1= A.

P~aa6. See theorems 9 and 13.

As the' model theory here is so close to the classical case, sone results of

the usual nodel theory can be extended to DLQ. For example, though we shall
not prove it, a 1Owenheim-Skolemtheorem for any denunerable r in DLQ is: if r
has a model , then r has a infinite demarerab le rmdel . Such results are 0 f
course of IIDre than technical interest, as they indicate that we have enough
control over DLQto use it in (later) applications, without worrying overmuch

as to DLQ behaving in a pathological manner, fouling up attempted proofs of in-

teresting results. It is worth while to observe that our semantics is a general-

ization of classical semantics; in particular, Tarski's schene T remains valid.

Weprove one last, motivationally important theorem:

THEOR,EM14. DLQ is consistent and nontrivial.

P~aa6. Consequence of theorem 6 and of the fact that DL is consistent and
nontrivial.
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3. THE UNITY OF OPPOSITES, AND CONCLUSION.
\'Ie can (as with DL*) formulate the dialectical principle of the unity of op-

posities explicitly using the resources of DLQ(and also use some of the symbols

introduced way back at the beginning of the paper) .
\'Ie can fonnulate two important forms of the principle of the unity of oW·

sities (see da Costa and Wolf 1980) as follows:
First forrn (ff~ r,f t4::Gill and Parry 1948): If aE 6 and P is a unary cr,;-,.~rant

predicate symbol' ~', Then:

AZS'. I (P(a) -,P(a)) .

Second form (ff6 of McGill and P2 'ry 1948): Suppose that b E ~ and that Q is

a unary constant predicate symbol be, :meing to ~'; under these conditions, we

have:

AZ6'. Q(b) A IQ(b).

Finally in order to insure the existence of well-behaved formulas , we as-

s umc :

o\/x1xZ' .. \/xn(R(x1 ,xz, ... ,xn)) ,

whcre R is a constant predicate symbol of rank n, 0 < n < w, belonging to ~.
AZS' and AZ6' can obviously be generalized in various ways. DLQ* (DL+ AZS'

+ AZ6' + AZ7') is both inconsistent and nontrivial and presLUHablycan be inter-

preted as a logic of vagueness without any real difficulty.
~e conclude that DLQ (and DLQ*) is a well-motivated and technically well-

behaved logic which answers to (some of) the intuitions behind a dialectical

logic. Its development and investigation promises to be of interest to phi l os-
ephers interested in dialectical. philosophy. Extension of DLQ to get a tensed
dialectical predicate logic seems to offer no real difficulty.

On to tenses!

A27' .
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