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THE COMPLETENESS AND COMPACTNESS OF A
THREE-VALUED FIRST-ORDER LOGIC

Itala M.L. D'Ottaviano

ABSTRACT. The strong completeness and the compactness of a
three-valued first order predicate calculus with two distin-
guished truth-values are obtained. The system was introduced
in Sur un prcb leme de Jaskowski, I .M.L. D.'Ottaviano and N.C.
A. da Costa, C.R. Acad.Sc. Paris 270A (1970) ,pp.1349-1353,
and has several applications, especially in paraconsistent
logics.

1. INTRODUCTION.

A theory T is said to be inconsistent if it has as theorems a formula and
its negation; and it is said to be trivial if every formula of its language is
a theorem.

A logic is paraconsistent if it can be used as the underlying logic for in-
consistent but nontrivial theories.

Jaskowskl, motivated by some ideas of Lukasiewicz, was the first logician
to construct a system of paraconsistent propositional logic (see [11J, [12J and
[13]). His principal motivations were the following: the problem of the system-
atization of theories which contain contradictions, as it occurs in dialectics;
the study of theories in which there are contradictions caused by vagueness;
the direct study of some empirical theories whose postulates or basic assumptions
could be considered, under certain aspects, as contradictory ones (see [2J and
[3J ) .

Jaskowski proposed the problem of constructing a propositional calculus ha-
ving the following properties:

i.) an inconsistent system based on such a calculus should not be necces-
sarily trivial;

ii) ,the calculus should be sufficiently rich as to make posible most of
the usual reasonings;
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iii) the calculus should have an intuitive meaning.

.Jaskowski himself introduced a propositional calculus which he named "Dis-
cussi ve logic" and which was a solution to the problem. However he did recog-
nize it was not the only solution (or even the best); in [11] he states:

"Obviously, these conditions do not univocally determine the solution,
since they may be satisfied in varying degrees, the satisfaction of
condition (iii) being rather difficult to appraise objectively".

In a previous paper (see [loD, we presented a propositional system, denoted
by J3, which is another solution to Jaskowski's problem. A characteristic of
J3 is that it is a three-valued system with two distinguished truth-values. Fur-

thermore, it reflects some aspects of certain types of modal logics.
In the same paper, we extended J3 to the first-order predicate calculus

wi th equa li ty J;=
Some of these results about J3 were improved by J. Kotas and N.C.A. da Cos-

ta (see [15]).
Our aim here is to develop further the calculus J3·
In Sec. 2 we axiomatize J3 and establish relations between this calculus

and several ~10wn logical systems like, for example, intuitionism. Weespecial-
ly emphasize the close analogy between J 3 and Lukasiewicz ' three-valued propo-

si t ionaI calculus .£3"
Our solution to .Jaskowski 's problem is discussed in the latter part. of Sec 2.
In Sec. 3 we introduce the L3-Languages, amongwhose predicate symbols may

appear in addition to identity other equalities. Weaxiomatize J3-theories,
*which are three-valued extensions of J 3=' and we introduce a semantics for

them.
In Sec. 4, after obtaining some theorems about first-order J 3-theories, we •

de fine a strong equivalence which is compatible with tre fact that the matrices de-

fining J 3 have more than one distinguished truth-value. This relation allows

us to prove the Equivalence Theorems for J 3-theories and the Reduction Theorem
for non-Trivialization.

finally, in Sec.5, after giving a suitable definition of canonical struc-

ture, we present a Henkin-type proof for the Completeness Theorem and the Com-
pactness Theorem.

In this paper, definitions, theorems and proofs, when analogous to the cor-

responding classical ones, will be omitted.

TIle tvlodcl-theory we developed for J;3 allows us to obtain J3-versions of
the following classical results: tvbdel Extension Theorem, Lcs-Tarsk i Theorem,

Chang-bos Susko TIleorem, Tarski Cardinality Theorem, Lowenheim-SkolemTheorem,
Quantifier Elimination Theorem and many of the usual theorems on categoricity.

Someof the above results about J 3 were also extended to In -theories,

3", n ",Ro'
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The mentioned results about In-theories and Model-theory will appear else-

where.

2. THE CALCULUS J3.
The .propositional calculus J3 is given by the matrix M = <{O,~, 1}, {~, 1},

V, 'V,1>, where V, 'Vand 1 are defined as follows:

AVB A 0 ~
~~

A lA

0 0 ~ 0 0 0

~ lo ~ lo 1 ~ ~
1 1 0

The set of truth-values and the set of distinguished truth-values are de-
noted by Vand Vd respectively.

The 6ollmula!.> of J3 are constructed as usually from the propositional vari-

ables, by means of v, 'Vandl, and parentheses. To write the formulas, schemas,
etc. we use the conventions and notations of [14J, with evident adaptations.

The concept of a tY'Uth-function is the usual one. The truth-functions de-

fined by the tables above are denoted by Hv, HV' and H, .

A t-rutn-val.uat ion v for J3 and the trutn-val.ue v (A) for a formula A are de-

fined in the standard way; and we observe that A is valid in M if, for every

evaluation v, v(A) belongs to Vd (see, for example, [22]).
The following abbreviations will be used:

A &B =def'(IAV IB)

M=def''VIA
I*A =def''VA
A-- B =def 'VlA VB
A~ B =def(A>+ B)&(IB--lA)

A=>B=def''VAVB
A = B =def(A =>B)&(B=>A)

I is called weak negation or simply negation, 1* is called strong negation,

and =>basic implication of J3.

Wepresent (he tables of some of the non -primi ti ve connectives:

B
Ac>+B

A i*A A M A 0 lo

0 1 0 0 0

~ 0 lo 0 ~ ~
0 1 0 ~
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A:::J B
B

.!I 0 J,

0

" 0 "0 "

A = B
B

A 0 J,

0 1 0 0

" 0 " J,

0 ~

In the following theorems, we mention only those results which are useful

to the proofs of later theorems.

1111::01<01 2.1. The following echemae of J3 are valid in M:

l 1.1\ = 1\

'I *A :::J IA

1\ V 'll\

1 &\ i;'1 /\1

l\i;(13 V 113) = A

-I (1\ V 13):::J 'lA~ 113

\ V 13 = l ( If. (; I B)
I ~\ i; 3) = I ,\ V 113

V,\" 'Ie le\

(:\ :::JI.-\) :::J i1\

( l.-\ :::J .-\):::J A

'l (V,\ V iVA) :::J B

((A :::J13) :::JA):::J A

(.\:::J l\) :::J (.-\>+ B)

(1\» 13) :::J (IB>+ IA).

VA = A

VA = VVA

IA V VA

!\61A=iA6VA

A V VA = VA

I VA:::J (VA:::J B)

A:::J(IVA:::JB)

VG'\&B) = VA&VB

V(A v B) = VA v VB

A>+ (13)+ A)

(IA:>+ 113):>+ (13:>+ A)

(A:>+ 13):>+ ((13:>+ C):>+ (A>+ C))

(A:>+ 113) >+ A) >+ A

t> (A >+ B) >+ t,(M>+ t>B)

TIILOI(~~I 2.2. The following schemas are not valid in J3:,

11\ :::J (1\ :::J B)

A :::J (,;\ :::J 13)

1.!\:::J(A::>IR)

1\ ::>(II\=,B)

1\ i; 11\ :::J 13

1\&l;\::>IB

(A=I,\):::J B

(1\ = I A) ::> 113

(I\:::J 13) :::J ((A:::J 113) :::J IA).

(A:::J B) :::J (,B:::J I A)

( I A :::J I B) :::J (B ::> A)

(A:::J IB):::J (B:::J IA)

( I A :::J B) :::J (I B :::J A)

(A = B) ::> (I A = I B)

A V lB (; I B) = A

A:::JB"'Q\.&IB)

A:::JB=IAVB

l t can be veri fied that, instead of V, V and I it is possible to use only
I and >- as primitive connectives of J3, considering A V 13 and VA as abbre-
viations respectively of (A:>+13):>+ 13 and "lA>- A.
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So, there is a close analogy between J3 and bukasiewicz' three-valued prop-

ositional calculus .L3' defined by the matrix M' = <{O '''' 1}, {n,', >+>, in
which the Lukas iewi cz-Tarsk i operators "l and >- are given by the respective
tables of J3 (see [4]).
J3 can be axiomatized by:

Axiom 1
Axiom 2

Axiom ;3

Axiom 4

A:1;iom5

Rule R1

Rule R2

6(A:o+ (Be- A))
ts ((A::>+ B):>+ ((B;>+ C):» (A;>+ C)))

fI(( iA:>+iB);>+ (B»- A))

6 (( (A:>+, A):>+ A):>+ A)

6 (fl (A:>+ B) :>+ fI (M»- fiB)

A,6(A:>+B)
B

IlA
A

The completeness theorem for J3 is proved from the completeness of £3' due
to Wajsberg (see [4] and [23]), using the following theorem.

THEOREM 2.3. If A is a theorem of £y then flA is a theorem of J3.

PMO 6. As the axioms 1 to 4 are the axioms of £3 preceeded by ts , if A is an

axiom of £3' then 6A is a theorem of J3'
Let A be obtained from B and B:>+A by the rule B,B; A of.£ 3' By induction

hypothesis, 6B and 6 (B:>+A) are theorems of J3' By axiom 5 and R1 we obtain

6(6B:>+M). Applying R" we have that 6A is a theorem of J 3'

THEOREM2.4. (Completeness theorem for J 3)' A formula A is a theorem of
J3 if and only if A is ual.i.d in M.

PJtoo6. A st raightforward induction shows that if A is a theorem of J3, then
A is valid.in M. On the other hand, if A is valid in M, then v(IlA) = 1 for eve-

ry truth -valuat;i.on v , By the axiomatization and completeness of .£3' both IlA

and MIlA:>+IlA) are theorems of £3' By the above theorem and R" IlA is a theorem

of J3' By Rz' A is a theorem of J3'

COROLLARY (MJdus Ponens Rule). If both A and A :::l B are theorems of J3>

then B is a theorem of J3.

However, contrary to 1.3' the Rule of MJdus Ponens is not valid with respect

to:>+.
For sone of the theorems that follow it will be convenient to assume that

the language of J3 contains, as primitive symbols, all the connectives intro-

duced so far. In particular we shall often identify J3 with the set of M-valid

formulas in the expanded language.
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The Iol lowi.ng theorems will be used in the proofs of many of the results

about J 3"

THEOREM 2.5. J
3

is a non-conservative extension of the classical positive

propositional calculus with ccnnecti.oee V, &, =>, =: •

THEORHI 2.6. J
3

is a conservative extension of the classical proposition-

al calculus with connectives I", V, &, =>and =:

TIIEOREM 2.7. J3 is a non-conservative extension of bukaseewicz' three-

oal.ued logic); 3 iai. th connectives -',:>+.

TIIEOREM 2.8. J3 is not functionaUy complete.

P~oo6. It is not possible to define a connective, from the primitive conec-

tives of J3, such that its truth-value is identically ~.

On the other hand, if we add the Slupecki T operador to the primitive con-

nectives of J3, the calculus becomes functionally complete (see [21J).

By Theorem 2.4, the formulas lA=> (A =>B), A=> (IA =>B), A=> (IA=>IB),
(A& IA) =>B, (A =>B)=>CCA=>IB)=>IA), A=> (B& IB) =: A, etc., are not theo-

rems of J3" So, in J3, in general, it is not possible to deduce any formula
whatsoever from a contradiction. Therefore, based on such a calculus we can
construct nontrivial inconsistent deductive systems, in the sense of [11J. S~,
J3 satisfies condition (i) of Jaskowski's problem.

By Theorem 2.5 to 2.8, J3 is quite a strong system, which evidently satisfies

.Jaskowski's condition (ii).
J3 admits intuitive interpretations. For instance, it can be used as the

underly ing logic of a theory whose preliminary formulation may involve certain
contradictions, which should be eliminated in a later reformulation. This can

be done as follows; among the truth-values of J3, 0 can represent falsity, 1

truth, and ~ can represent the provisional value of a proposition A, so that
both A and the negation of A are theorems of the theory, in its initial formu-
lation; in a later reformulation, the truth-value ~ should be reduced, at least

in principle, to 0 or to 1.
TI1erefore, J3 is a solution to Jaskowski's problem.

J3 can also be used as a foundation' for paraconsistent systems, in the

sense of da Costa (see [5J, [6J, [7] and [8]). In this case, the value 0 rep-
rcscnt s fa l si ty , 1 truth,and ~ represents the logic value of a formula that is
s imul t.mcous Iy true and false.
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Finally, as the calculus J3·was constructed from £3' it is possible cO ob-
tain similar calculi In, from Lukas iewi cz n-valued calculi £n' 3 ~ n < l(o'

3. SEMANTICS FOR FIRST-ORDER J3-THEORIES.

The symbols of a first-order L3-language are the individual variables, the

function symbols, the predicate symbols, the primi ti ve connectives I, V and 'V,

the quantifies 3 and lJ, and the parentheses.
The identity = must be amongthe predicate symbols. Other equalities can be

especified among the predicate symbols.

Weuse x,y,z and w as syntactical variables for individual variables; f and

g, for function symbols; p and q, for predicate symbols, and c for constants.
The definitions of term, atomic [ormul.a and [ormul a are the usual ones; a,

b,c, etc. are syntactical variables for terms and A,B,C, etc. for formulas.

By an L3-language we understand a first-order language whose logical sym-
bols include the ones mentioned above.

The symbols &,>+,:>+,::>, =, 1:1 and 1* are defined in the L3-languages, as

in J3.

Free occurrence of a variable, open formula, closed fo~nula, variable-free

term and closure of a fomrula are used as in [22].
The definition of a is substitutible for x in A is also the usual one.

We let bXl, 00 • , Xn [a1' 00 • , an] be the term obtained from b by replacing all

occurrences of xl'" . ,xn by al, ... ,an respectively; and we let AX1,... ,Xn [al,
... , an] be the formula obtained from A by replacing free occurrences of xl" .

. , xn by a1'oo.,an respectively.

Whenever either of these is used, it will be implicitly assuned that xl'"

"xn are distinct variables and that, in the case ofAxl, ... ,Xn[al,· .. ,an], ai
is substitutible for Xi' i = l, ... ,n.

In the following definitions, let L be an L3-language.

DEFINITION 3.1. A structure al for a first-order L3-language L consists

of:

i) a nonernpty set Ja [, called universe of a. ;
ii) for each n-ary function symbol f of L, a function f from [al [n to [a I ;
iii) for each n-ary predicate symbol p of L, other than an n-ary predicate

Pa' such that Pa is a mapping from JalJx.oox[all to {O,~,l}.

As in [22], we construct the language L(al); define al (a) for each variable
free term of L(al), and define OL -instance of a formula A.

Weuse i and j as syntactical variable for the nanes of individuals of Ol .
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DEFINITION 3.2. The truth-value Ol (A) for each closed formula A in 1(a)

is given by:

i) if A is a = b, then Ol (A) = 1 iff Ol (a) = Ol (b); otherwise, a(A) = 0;

ii) if A is p(a1, ... ,an), where p is not =, then Ol(A) = p~(a(al),···a(an));
iii) if A is ..,B, then a (A) is H -, (Ol (B)) ;
iv) if A is IJB, then Ol(A) is HIJ(Ol(B));
v) if A is B V C, then OleA) is HV(Ol(B) , Ol(C));

vi) if A is a 3xB, then Ol (A) rnax{Ol (Bx[iJ)/i e:: L(Ol)};
vii) if A is a VxB, then Ol (A) = min{Ol (Bx[i])/i e:: L(Ol)}.

DEFINITION 3.3. (1) A fonnula B of L(Ol) is t.rue in Ol (or a is a model.

of B) iff a (B) e:: Yd'
(2) A fonnula A of L is valid in Ol iff for every Ol-instance A' of A, A'

is true in a .

*A first-order predicate calculus J3= is the formal system whose language
is an L3 plQS the following, with the usual restrictions (see [14J):

Axiom 6 Vx(x = x)

Axiom 7 x = Y '" (Alx] = A[y])
Axiom 8 Ax[a] '" 3xA
Axiom 9 VxA '" A [a]x
Axiom 10: 3xA = ..,Vx lA
Axiom 11: VxA = l3xlA
Axiom 12: '3xA = Vx ,A
Axiom 13: "l VxP. = 3XIA
Axiom 14: 1J3xA =]xIJA
Axiom 15: IJVxA= VxlJA

Rule R3 (3-in t.roduct ion Y'Ule) : A .:::> C
3xA '" C

Rule R4 (V-introduction rule) : C "'A
C "'lJxA

*THEOREM3.1. J3= is a conservative extension of J3.

PJtoo6. Weapply the Hilbert-Bernays theorem of k-t rans forms , that can be
extended to this case.

*THEOREM3.2. J3= is an extension of the classical predicate calculus,
with connectives ,*, V, &, "', =, 3 and V.

DEFINITION 3.4. A first-order J3-theory is a formal system T such that:

i) the language of T, L(T), is an L3-language;
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*ii) the axioms of T are the axioms of J3=, called the logical axioms of T, and
certain further axioms, called the non-logical axioms;

*iii) the rules of T are those of J 3=

A is a tiheoremof T, in symbols: ~ A, and B is a semantical consequence of
a set r of formulas of L(T) are defined in the standard way. If B is a seman-
tical consequence of f, then we shall also say that "B is valid in I'",

THEOREM3.3. (Validity Theorem): Every theorem of a J3-theory T is valid
in T.

4. SOME THEOREMS IN FIRST-ORDER J3-THEORIES AND THE EQUIVALENCE
THEOREM.
DEFINITION 4.'. A J3-theory T is finitely trivializable if there exists

a fixed formula F such that, for any formula A, F ::;)A is a theorem of T (see

[2]) .

THEOREM4.'. The J3-theories are finitely trivializable.

Pltoo6. Any formula ,(,VA V VA) trivializes a J3-theory.

The following results hold in any J 3-theory T:

Generalization Rule: If fy A, then fy VxA.
Subebi tut.ion Rule: Is l'A and A' is an instance of A, then f.:r A'.
Substitution Theorem: a) fy Ax" ,xn [a" ... ,an]::;) 3X,,,. xnA

b) fy lJx, V~A::;) Ax"". ,~[a" ... ,an]

Distribution Rule: If fy A::;)B, then fy 3 xA::;) 3 xB and 'r VxA => Vl!B.

Closure Theorem: If A' is the closure of A, then fy A if and only if 'r A' .

TheoY'emon Constants: If T' is a J3-theory obtained from T by adding new

constants (but no new nonlogical axioms), then for every formula A of T and

every sequence e" ... ,en of new constants, fy A if and only if hrlAx" ... ,xn
[e"".,en]·

In the case of classical logic, the equivalence = behaves as a congruence
relation with respect to the other logical synbols. Unfortunately this is not

the case in J3-theories, for it is possible to have 'r A = B and "'rIA = ,B.
Howeverwe can introduce a stronger equivalence, =*, which is a J;-con-

gruence r~lation and thus allow us to prove a J 3-version of the ecui valence

theorem (see [22]).
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DEFINITION 4.2. A ,,* 13 =def(A " 13)&( ,A ",B).

THEOREM 4.2. If T is a J3-theory and

fy 8.

*fy A " B, then 'r A if and only if

TIII,OR[~' 4.3. (Equivalence Theorem). Let T be a J3-theory and let A' be
obtained from A by replacing some occurrences of B1, ... ,Bn by B;, ... ,B~ respea-

* * I * 1tivcJly. If fr131 x" 8'" ... ,fyBn" Bn, then 1'A" A.

P~oon, After considering the special case when there is only one such occur-

rence and it is all of A, we use induction on the length of A.

For f\ atomic, the result is obvious.

1\ is ,C and A' is ,C', where C' results from C by replacements of the

type described in the theorem. By induction hypothesis, l' C ,,* C', that is,

hy C " C' and 'r iC "iC'. As by Theorem 2.4, l' C "i IC and l' C' "i iC',

we h.ivc i ,C " 'iC'. So iC ,,* -'C'.
* .A is 'VC rm d A' is 'VC', with l' c" C'. From hr C " C', It follows that

fr -;*C ,,' *C', by Theorem 2.6. Also from l' C " C' it follows that 'r 'VC " \lC',
*since fr \lC " C by Theorem 2.4. The re fo re , hr 'VC" 'VC'.

A is Cv n and A' is C' V 0', with T-C ,,* C and f:rD ,,* D'. As by theorem

2.0,
l' ((C = C') &(D " 0')) ::::>((C V D) " (C' V D'))

and

hy ((,C ",C')&(,D =,D'))::::> ((,C&,D) ,,(,C'&,D')

we have that 'T C V D" C' V 0' and 1'i(C V D) "'(C' VD') .

..\ is 3xCandA' is 3xC', with C ,,* C'. By Distribution Rule, l' ~xC" 3xC'

and 'r Vx 1C " lJx, C'. Using Axiom 12 we complete the proof.

*I' ,\ is VxC and A' is VxC'; with 'r C" C', the proof is similar.

In the sp i r i t of the equivalence theorem, we have the following corollaries

:l/ld rcma rk .

Cll!WI.1.1\](Y 1. In a J3-theory T, it is possible to replace:

i) "i\ hy A;

j i) l'" 1"'.1\ hy ,,"A;
iii) ,(A V B) bv 1!\& 113;

i v) "\1\ V13) by ,*/1& 1 *8;

v) VX1\ by ,3X'i\;

vi) 13x/\ by lJx l;\;

vii) l Vx,\ I,,' ax l ;\;

viii) 'V3X'\ by 3x'V;\;

i x ) 'VVx1\hy Vx'V/\.
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* * * * *PIL00n. It is enough to verify that hr"A:= A, hr' I A:= " A, etc.

COROLLARY2. In a J3-theory 'C if fr x = y, then, for every formula A,
A(x) can be replaced by A(y).

REMARK.Although hr' * I *A :=A, it is not possible, in general, to replace
l * ,*A by A.

DEFINITION 4.3. A formula A' is a variant of A just in case A' has been

obtained from A by renaming bound variables.

*THEOREM4.4. (Variant Theorem). If A' is a variant of A, then 'r A:= A'.

PILoo6. In view of Theorem 4.3 and Corollary 1, it is enoughto observe that

fr 3xB :=* 3YBJy].

Let T[r] be the J3-theory whose non-logical axioms are those of T plus the
formul as of the set r.

THEOREM4.5. (Reduction Theorem). Let f be a set of formulas in the J3-
theory T and let A be a formula of T.
there is a theorem of T of the form
closure of a formula in r.

A is a theorem of T[r] if, and only if,
Bj :::J ... :::J Bn:::J A, where each Bi is the

Given a non-empty set r of formulas we let:

r V ,l,'\l = {B I B is a disjunction of negations of closures of fcrmul as of
the type \lA, with A ~ r}

r V lllV {C I C is a disjunction of negations of formulas of the type \lA',

where A' is the closure of a fo rmul a of r}

THEOREM4.6. (Reduction Theorem for non-t r ivialization). Let r be a non-
empty set of formulas in a J3-theory T. Then the extension T[r] is trivial, if

and only if, there is a theorem of T which belongs to rV I VI7'

PlLOo6. The corollary to the replacement theorem gives us that every formu-

la of r V ,l,''il is strongly equivalent to a fonnula of I'v., 'ill," The p roo f of the
theorem can be completed using the properties of strong negation.

COROLLARY. If A' is the closure of A, then the formula A is a theorem
ofT if, and only if, T[I*A'] is trivial.
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5. THE COMPLETENESS AND THE COMPACTNESS THEOREMS FOk J3-THEORIES
We study certain aspects of the J3-theories and present a Henkin-type proof

of the completeness theorem for this type of many-valued theories.

DEFINITION 5.'. If T is a J3-theory containing a constant, and if a and

b are variable-free terms of T, then:

i) a '" b =def fy a = b;
ii) aO

= {bla '" b}.

DEFINITION 5.2. A canonical structure for the J3-theory T is the struc-

ture Ol :
i)
j i)

iii)

whose universe lOll is the set of all equivalence classes unde r :»;
o 0 0

fOl (a" ,an) = (f(a" ... ,an)) ;
Poz(a~, ,ag) is in Vd iff hycp(a" ... ,an)·

Observe th0t (iii) could have been replaced by

( 0 0) 0 1"ffPOl a" ... ,an =

THEORE~I5.'. If Ol is a canonical structure for T and p(a" ... ,an) is a
variable-f'ree atomic formula in L(T), then:

r ) 0l(p(a1, ,an)) = 0 iff Ifrp(a" ,an)
ii) OZ(p(a" ,an)) = ~ iff 1'p(a" ,an) and 1"p(a" ... ,an);
iii) OZ(p(a" ,an)) =, iff 1'p(a" ,an) and h!r,p(a"oo.,an).

PfLoo6. i i.) If OZ(p(a" ... ,an)) = ~ then OZ(lp(a" ... ,an)) = ~. By the last'

definition, 1'p(a"oo.,an) and fylp(a".oo,an).
On the other hand, if 1'p(a"oo.,an) and 1"p(a" ... ,an), also by.Def i-

ni t ion 5.2, Ol(p(a"oo.,an) and OZ(lp(a" ... ,an)) belong to Vd. Then, OZ(p(a"
.... ,an)) = ~.

iii) If Ol(p(a" ,an)) = " then Ol(ip(a" ... ,an)) = 0; then,fyp(ap'oo

.,an) and I"r'p(a" ,an).

On the other hand, if 'r p(a" ... ,an) and "r,p(a" ... ,an)' we have that
OZ(p(al'".,an)) belongs to Vd and OZ(lp(a"".,an)) does not belong to Vd;

if OZ(p(a" ... ,an) = ~ then a (lp(a" ... ,an)) = ~ and, so, l'lp(a" ... ,an)'

Then, OZ(p(a"oo.,an)) = 1.
Now, (i) is immediate.

As a consequence of the theorem we obtain that there is exactly one cano-

nical structure for a J3-theory. Furthermore, as in the calssical case, in
order for a canonical structure to characterize the theorems of a theory, tIle

theory n~st be in some sense maximal, for there nlay be a closed formula A such
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*that hfA, hf IA and bf I A.

DEFINITIOI, 5.3. A fonnula A of a J3-theory T is undecidable in T if ne i-

ther A not I*A is '1 theorem of T. Otherwise, A is decidable in T.

DEFINITION 5.4. AJ3-theory T is complete if it is non-trivial and if

every closed formula of T is decidable in T.

THEOREM5.2. A J3-theory T is complete if, and only if, T maximal in the
class of nontrivial theories.

DEFINITION 5.5. AJ3-theory T is a Henkin J3-theory if for every closed

formula 3xA of T, there is a constant e such that 3xA :::>'\ere] is a theorem of T.

THEOREH5.3. If T is a Henkin J3-theory, then for every closed formula
VxA in T there is a constant e such that Ax[e] :::>VxA is a theorem of T.

PJr.oon. As T is a Henkin J3-theory, there is e, such that hr ]x "*A:::>l*~[el.

Weobtain the desired result, by successive applications of Theorem 2.6.

THEOREM5.4. If T is a complete Henkin J3-theory and CJl is the canonical
structure for T, then for all closed formulas A of L[T] :
i) CJl (A)

ii) CJl (A)

iii) a (A)

o iff I-f A
~ iff 'r A and hr IA

1 iff 'r A and hf IA.
PMOn. By induction on the height of A. For atomic A, the result follows

from Theorem 5. 1.
Case: A is lB. i) If OZ (A) = 0, then OZ (B) = 1. Thus I-f IB, that is

hIr A. On the other hand if hf A, then since T is conpl ete Ir I*A, and then

.hrIA, fyllB, fyB. Thus we have that IrB and ~'B, from which if follows
that OZ (B) = 1 and that CJl (A) = O.
ii) If Ol: (A) = ~, then Ol: (B) = ~. Thus 'r B and 'r I B, from which it fol-

lows that Ir..,A and 'r A, the converse is analogous.
iii) If a (A) = 1, then OZ (B) = 0 and thus ~ B. Since T is comple te ,

hrl*B and thus hr-'B. Since ~B, we obtain that hr..,-'B, inothetwords, we

have that 'r A and l·flA.
Assure next that If A and 'r A, that is, hfT1B and hr..,B. Then IIr B, and

so by induction ol. (B) '" 0, from which it follows that OZ (A) ~ 1.

Case: A is B V C. I) If OZ (A) = 0 then OZ (B) = a and one) = O. Hence

"r C and hIr B, from which it follows, since T is conp Ie te , that ~ B V C. The

converse is analogous.
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ii ) If (Jl (A) ~,then either: a (B) = ~ and (Jl (C) = ~,

or (Jl (B) = ~ and (Jl (C) = 0,
or (Jl (3) = 0 and (Jl (C) = !~.

Let us only consider the situation when (Jl(B) = ~ and Ol(C)·= 0 (the others are

analogous). The induction hypothesis giv S ,5 that

'r B, hr IB, f.f C.
Since T is complete we obtain that 'r I *C and hr"1C. From 'r B we get fr B V C,
and from hr I B and hr 1 C we may conclude that fr 1 (B V C) .

Conversely, suppose that 'r B V C and 'r I (B V C). The latter gives us that

'r 1B and 'r I C. From the former, since T is complete, we obtain that ei they
hr B or hr C. The induction hypothesis allows us then to conclude that
a (B V C) = y,.

iii) If (Jl (A) 1, then ei the r :

a (B) 1 and a (C) = 0,

or (Jl (B) 1 and Ol (C) = ~,
or a (B) 1 and a (C) 1 ,

or a (B) 0 and a (C) 1,

or a (B) = ~ and a (C) 1.
Wewill only consider the case when (Jl (B) 1 and (Jl (C) = ~. The induction

hypothesis gives us that

hr B, iIr IB, 'r C, 'r IC.
From the first we obtain that ~(B V C). Suppose on the other hand that

". I (B V C). Then 'r (, B fI I C), from which it would follow that 1y"1B, contra-.
dieting that 1ft I B. Thus 1ft I (B V C) .

On the other hand, suppose that fr(B V C) and "T" 1 (B V C). Then from the
con~leteness of T we obtain that either

fr B or hr C.
From f"r 1 (B V C), we obtain that

Ihr lB and Ihr IC.
The induction hypothesis then gives us that (Jl (B V C) = 1.

Case: A is VB. i) If Ol (VB) = O. Then (Jl (B) = O. Thus "r B; from which it
follows that Ifr VB. Converse, analogous.

ii) Ol (VB) is never ~.
iii) (Jl (VB) = 1 then either (Jl (B) = ~ or (Jl (B) = 1.

Subcase:Ol(B) =~. Then hr Band IyIB, from which we obtain hr VB and

'r 'liB. Using that T is complete we conclude 'r VB, and 't IVB.

Subcase :Ol (B) = 1. Then ,.. B and '*r 'lB. Suppose that hr I VB. Then since
hr B, we should obtain that T is trivial, which we are assuming it is not. Thus
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pose that

hr VB and IT I VB.

Then 'r B, and either 'r IB or hf B. In one case the induction hypothesis gives
that Ol (B) = lo, and in the other that Ol: (B) = 1. Thus Ol (VB) = 1 in both. That
is Ol (A) = 1.

Case: A is 3xB. i) If Ol(A) = 0, then for every variable- free 'term b,

(Jl (Bx[bJ) = 0, and by induction hypothesis this is equivalent to IJr Bx[b]. As
T is a Henkin theory this gives us that '*F 3xB. 'The converse does not need to

use that T is a Henkin theory.

ii) If (Jl (A) = lo. Then for all b we have that (Jl (Bx[bJ) ~~. The inductim
hypothesis then tells us that

(1) for those b such that Ol: (B [bJ) = ~ (and there is at least one such) :x
hyBx[b] and hyIBx[b].

(2) for the remaining b ' s : IkTB [b] and (because T is complete) bTiB [e].x x
Thus we have that for all constants b: 'r IBx[b]; from which it follows that

t-r lJxiB, i.e. f-:r 3xB. From (1) we obtain 73xB.
Conversely, suppose that for A and hyI A; that is hy 3xB and hr 13xB. Using

that T is a Henkin theory and induction, we obtain an e such that 'r BX[e],
hr"iBx[e], and thus a (Bx[e]) =~. A proof by contradiction shows that there
is no b such that Ol: (Bx[b]) = 1. Hence Ol (3xB) = ~.

iii) If (Jl (A) = 1, then there is at least one b such that (Jl (Bx[b]) = 1.

From the induction hypothesis, we obtain that hy B)b] and � I Bx[b]. From the
fonner, we obtain that hy 3xB. Suppose next contrary to what we want to show,

that hr'3xB. Then hr'3xlB and thus hrIBx[bJ, a contradiction. Thus Llri3xB.

COROLLARY 1. Let T be a complete Henkin J3-theory, Ol the canonical
et ruct.ure for T and A a closed fomrula of T; then, a (A) belongs to Vd if and

qnly if A is a theorem of T.

COROLLARY 2. If T is a complete Henkin J3-theory, then the canonical

stY'Ucture for T is a model of T.

By the above corollary, to prove the completeness of a J3-theory T, as in

the classical case, it is enough to show that it is possible to extend T to a

complete Henkin J3-theory.
Thus, given a nontrivial J 3-theory T, we will first extend it, conservative-

ly, ~o a Henkin J3-theory Tc' and then extend it to a complete Henkin J3-theo-

ry Tt·
Given a J3-theory T with language I., we proceed as in [22J and define the



special constants of level n, the language Lc with the special constants, and

introduce the special axioms for the special constants.

DEFINITION 5.6. Let T be a J3-theory with language L: Then Tc is the Hen-

kin J3-theory whose language is Lc and whose nonlogical axioms are the nonlogi-
cal axioms of T plus the special axioms for the special constants of Lc'

THEOREM5.5. Tc is a conservative extension of T.

PlWo6. By Theorem 4.4 and by Theorem 5.3, the proof is similar to the clas-

sical one.

THEOREM5.6. (Lindenbaum's Theorem). If T is a nontrivial J3-theory, then
T admits a complete simple extension.

Finally, we can obtain the completeness theorem for J3-theories.

THEOREM5.7. (Completeness Theorem). A J3-theory T is nontrivial if, and
only if, it has a model:

PIWO 6. If Ol is a model of T and A is a closed formula in T, then
Ol(A& l *A) = O. So, by the validity Theorem, A&l *A is not a theorem in T. Then
T is nontrivial.

If T is nontrivial, then we extend T to Tc' which is a non-trivial Henkin

J3-theory. By Lindenbaum's Theorem, we can extend Tc to a complete J-fnkin J3-.
theory I'. By Corollary 2 to Theorem 5.4, T' has a model Ol. Therefore,c .c
Ol [L(T) is a model of T.

THEOREM5.8. (COdeI 's Completeness Theorem). A formula A in the J3-theo-
"ry T is a theorem in T if, and only if, it is valid in T.

PlWo6. By supposing that the closed formula A is a theorem in T and using
the above Completeness Theorem, we shall show that there is no model of T in
~lich A is not valid.

Therefore, suppose that the closed formula A is a theorem in T.

By the corollary to the Reduction Theorem for non-Trivialization, hrA if
and only if T[ TvA] is trivial; which, by Theorem 5.7, is equivalent to T[ lVA]
not having a model.

On the other hand, a model of T[ l VA] is a model Ol of T in which "' VA is
valid, that is, a structure Ol such a( -, VA) = 1. This is quivalent to Ol (VA)
= 0, and so Ol (A) = O.
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Therefore, 'r A if and only if A is valid in T.

COROLLARY 3. If T and T' are J3-theories with the same language, then T'
is an extension of T if, and only if, every model of T' is a model of T.

THEOREM 5.9. (Compactness Theorem). A formula A in a J3-theory is valid

in T if, and only if, it is valid in some finitely axiomatized part of T.

COROLLARY 4. A J3-theory T has a model if, and only if, every finitely

axiomatized part of T has a model.
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