THE COMPLETENESS AND COMPACTNESS OF A THREE-VALUED FIRST-ORDER LOGIC

Itala M.L. D'Ottaviano

ABSTRACT. The strong completeness and the compactness of a three-valued first order predicate calculus with two distinguished truth-values are obtained. The system was introduced in *Sur un problème de Jaškowski*, I.M.L. D'Ottaviano and N.C. A. da Costa, C.R. Acad.Sc. Paris 270A (1970),pp.1349-1353, and has several applications, especially in paraconsistent logics.

1. INTRODUCTION.

A theory T is said to be *inconsistent* if it has as theorems a formula and its negation; and it is said to be *trivial* if every formula of its language is a theorem.

A logic is *paraconsistent* if it can be used as the underlying logic for inconsistent but nontrivial theories.

Jaśkowski, motivated by some ideas of Łukasiewicz, was the first logician to construct a system of paraconsistent propositional logic (see [11], [12] and [13]). His principal motivations were the following: the problem of the systematization of theories which contain contradictions, as it occurs in dialectics; the study of theories in which there are contradictions caused by vagueness; the direct study of some empirical theories whose postulates or basic assumptions could be considered, under certain aspects, as contradictory ones (see [2] and [3]).

Jaśkowski proposed the problem of constructing a propositional calculus having the following properties:

i) an inconsistent system based on such a calculus should not be neccessarily trivial;

ii) the calculus should be sufficiently rich as to make possible most of the usual reasonings; iii) the calculus should have an intuitive meaning.

Jaśkowski himself introduced a propositional calculus which he named "Discussive logic" and which was a solution to the problem. However he did recognize it was not the only solution (or even the best); in [11] he states:

"Obviously, these conditions do not univocally determine the solution, since they may be satisfied in varying degrees, the satisfaction of condition (iii) being rather difficult to appraise objectively".

In a previous paper (see [10]), we presented a propositional system, denoted by J_3 , which is another solution to Jaśkowski's problem. A characteristic of J_3 is that it is a three-valued system with two distinguished truth-values. Furthermore, it reflects some aspects of certain types of modal logics.

In the same paper, we extended J_3 to the first-order predicate calculus with equality $J_{z}^{\star}\!\!=\!\!.$

Some of these results about J_3 were improved by J. Kotas and N.C.A. da Costa (see [15]).

Our aim here is to develop further the calculus \mathbf{J}_3 .

In Sec. 2 we axiomatize J_3 and establish relations between this calculus and several known logical systems like, for example, intuitionism. We especially emphasize the close analogy between J_3 and Eukasiewicz' three-valued propositional calculus \mathcal{L}_3 .

Our solution to Jaśkowski's problem is discussed in the latter part of Sec 2.

In Sec. 3 we introduce the L_3 -Languages, among whose predicate symbols may appear in addition to identity other equalities. We axiomatize J_3 -theories, which are three-valued extensions of J_3^* =, and we introduce a semantics for them.

In Sec. 4, after obtaining some theorems about first-order J_3 -theories, we define a strong equivalence which is compatible with the fact that the matrices defining J_3 have more than one distinguished truth-value. This relation allows us to prove the Equivalence Theorems for J_3 -theories and the Reduction Theorem for non-Trivialization.

Finally, in Sec.5, after giving a suitable definition of canonical structure, we present a Henkin-type proof for the Completeness Theorem and the Compactness Theorem.

In this paper, definitions, theorems and proofs, when analogous to the corresponding classical ones, will be omitted.

The Model-theory we developed for J_3 allows us to obtain J_3 -versions of the following classical results: Model Extension Theorem, Łoś-Tarski Theorem, Chang-Łoś Susko Theorem, Tarski Cardinality Theorem, Löwenheim-Skolem Theorem, Quantifier Elimination Theorem and many of the usual theorems on categoricity.

Some of the above results about J_3 were also extended to J_n -theories, $3 \leqslant n \leqslant {\pmb R}_n.$

78

The mentioned results about $\boldsymbol{J}_n\mbox{-theories}$ and Model-theory will appear elsewhere.

2. THE CALCULUS J3.

The propositional calculus J_3 is given by the matrix $M = \langle \{0, \frac{1}{2}, 1\}, \{\frac{1}{2}, 1\}, \langle v, \nabla, \nabla, \nabla \rangle$, where V, ∇ and \neg are defined as follows:

AVB	AB	0	12	1	А	∇A	А	ПΑ
	0	0	1/2	1	0	0	0	1
	1/2	1/2	1/2	1	1/2	1	1/2	1/2
	1	1	1	1	1	1	1	0

The set of truth-values and the set of distinguished truth-values are denoted by V and $\rm V_d$ respectively.

The formulas of J_3 are constructed as usually from the propositional variables, by means of V, ∇ and \neg , and parentheses. To write the formulas, schemas, etc. we use the conventions and notations of [14], with evident adaptations.

The concept of a *truth-function* is the usual one. The truth-functions defined by the tables above are denoted by H_{ν} , H_{ν} , and H_{-} .

A truth-valuation v for J_3 and the truth-value v(A) for a formula A are defined in the standard way; and we observe that A is valid in M if, for every evaluation v, v(A) belongs to V_d (see, for example, [22]).

The following abbreviations will be used:

A & B = def
$$\neg (\neg A \lor \neg B)$$

 $\Delta A = def \neg \nabla \neg A$
 $\neg *A = def \neg \nabla A$
 $A \Rightarrow B = def \nabla \neg A \lor B$
 $A \Rightarrow B = def (A \Rightarrow B) \& (\neg B \Rightarrow \neg A)$
 $A \Rightarrow B = def \neg \nabla A \lor B$
 $A \equiv B = def (A \Rightarrow B) \& (B \Rightarrow A)$

 \exists is called weak negation or simply negation, \exists^* is called strong negation, and \exists basic implication of J_{a} .

We present the tables of some of the non-primitive connectives:

				B.	AJ	В	
А	A* 🗖	A	ΔA	A	0	1/2	1
0	1	0	0	0	1	1	1
12	0	1/2	0	12	12	1	1
1	0	1	1	1	0	1/2	1

$A \supset B$			A ≡ B					
AB	0	1_2	1		A	0	1 <u>2</u>	1
0	1	1	1		0	1	0	0
1/2	0	1_2	1		12	0	1 <u>2</u>	$\frac{1}{2}$
1	0	1/2	1		1	0	1/2	1

In the following theorems, we mention only those results which are useful to the proofs of later theorems.

THEOREM 2.1. The following schemas of ${\bf J}_{\bf 3}$ are valid in M:

$\neg \neg A \equiv A$	$\nabla A \equiv A$
A ⊃ ¬A	$\nabla A \equiv \nabla \nabla A$
Αν ΊΑ	A V ∇A
Т (А Ę П А)	Aξ⊐A ≡ ⊐Aξ∇A
$A \xi (B \vee \neg B) \equiv A$	$A \lor \nabla A \equiv \nabla A$
$\neg (A \lor B) \supset \neg A \And \neg B$	$\neg \nabla A \supset (\nabla A \supset B)$
А ∨ В ≡ ⊣ (⊣А ξ ⊣ В)	$A \supset (\neg \nabla A \supset B)$
¬(АξЗ) ≡ ¬А ν ¬В	$\nabla (A \xi B) \equiv \nabla A \xi \nabla B$
VA ≡ ⊐∆⊐A	$\nabla(A \lor B) \equiv \nabla A \lor \nabla B$
$(A \supseteq \uparrow A) \supseteq \neg A$	$A \rightarrow (B \rightarrow A)$
$(\neg A \supset A) \supset A$	$(\neg A \Rightarrow \neg B) \Rightarrow (B \Rightarrow A)$
$\neg (\nabla A \lor \neg \nabla A) \supseteq B$	$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$
$((A \supseteq B) \supseteq A) \supseteq A$	$(A \Rightarrow \neg B) \Rightarrow A) \Rightarrow A$
$(A \supset B) \supset (A \Rightarrow B)$	$\Delta(A \Rightarrow B) \Rightarrow \Delta(\Delta A \Rightarrow \Delta B)$
$(A \rightarrow B) \supset (\neg B \rightarrow \neg A).$	

THEOREM 2.2. The following schemas are not valid in $\mathbf{J}_{\mathbf{z}}$:

$\neg A \supset (A \supset B)$	$(A \rhd B) \supset (\neg B \rhd \neg A)$
$A \supset (\neg A \supset B)$	$(\neg A \supset \neg B) \supset (B \supset A)$
$\neg A \supset (A \supset \neg B)$	$(A \supset \neg B) \supset (B \supset \neg A)$
$\Lambda \supset (\neg \Lambda = \neg B)$	$(\neg A \supset B) \supset (\neg B \supset A)$
$A \xi \neg A \Rightarrow B$	$(A \equiv B) \supseteq (\neg A \equiv \neg B)$
ΑξΊΑ⊃ΊΒ	A V (B ξ ⊣B) ≡ A
$(A \equiv \neg A) \supset B$	$A \supset B \equiv \neg (A \notin \neg B)$
$(A \equiv \neg A) \supset \neg B$	$A \supseteq B \equiv \neg A \lor B$
$(A \supset B) \supset ((A \supset TB) \supset TA).$	

It can be verified that, instead of V, ∇ and \neg it is possible to use only \neg and \rightarrow as primitive connectives of \mathbf{J}_3 , considering A V B and ∇ A as abbreviations respectively of $(A \rightarrow B) \rightarrow B$ and $\neg A \rightarrow A$.

So, there is a close analogy between J_3 and Eukasiewicz' three-valued propositional calculus \mathcal{L}_3 , defined by the matrix $M' = \langle \{0, \frac{1}{2}, 1\}, \{1\}, \neg, \rangle \rangle$, in which the Eukasiewicz-Tarski operators \neg and \Rightarrow are given by the respective tables of J_3 (see [4]).

 $\mathbf{J}_{\mathbf{X}}$ can be axiomatized by:

 $\begin{array}{rcl} Axiom \ 1 & : & \Delta(A \Rightarrow (B \Rightarrow A)) \\ Axiom \ 2 & : & \Delta((A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))) \\ Axiom \ 3 & : & \Delta((\neg A \Rightarrow \neg B) \Rightarrow (B \Rightarrow A)) \\ Axiom \ 4 & : & \Delta(((A \Rightarrow \neg A) \Rightarrow A) \Rightarrow A) \\ Axiom \ 5 & : & \Delta(\Delta(A \Rightarrow B) \Rightarrow \Delta(\Delta A \Rightarrow \Delta B)) \\ Rule \ R1 & : & \frac{A, \Delta(A \Rightarrow B)}{B} \\ Rule \ R2 & : & \frac{\nabla A}{A} \end{array}$

The completeness theorem for J_3 is proved from the completeness of \mathcal{L}_3 , due to Wajsberg (see [4] and [23]), using the following theorem.

THEOREM 2.3. If A is a theorem of \mathcal{L}_{z} , then ΔA is a theorem of \mathbf{J}_{z} .

Proof. As the axioms 1 to 4 are the axioms of \mathcal{L}_3 preceeded by Δ , if A is an axiom of \mathcal{L}_3 , then ΔA is a theorem of J_3 .

Let A be obtained from B and $B \Rightarrow A$ by the rule $\frac{B,B \Rightarrow A}{A}$ of \mathcal{L}_3 . By induction hypothesis, ΔB and $\Delta(B \Rightarrow A)$ are theorems of J_3 . By axiom 5 and R_1 we obtain $\Delta(\Delta B \Rightarrow \Delta A)$. Applying R_1 , we have that ΔA is a theorem of J_3 .

THEOREM 2.4. (Completeness theorem for \mathbf{J}_3). A formula A is a theorem of \mathbf{J}_3 if and only if A is valid in M.

*Proo*₆. A straightforward induction shows that if A is a theorem of \mathbf{J}_3 , then A is valid in M. On the other hand, if A is valid in M, then $v(\nabla A) = 1$ for every truth-valuation v. By the axiomatization and completeness of \mathcal{L}_3 , both ∇A and $\Delta(\nabla A \Rightarrow \nabla A)$ are theorems of \mathcal{L}_3 . By the above theorem and R_1 , ∇A is a theorem of \mathbf{J}_3 . By R_2 , A is a theorem of \mathbf{J}_3 .

COROLLARY (Modus Ponens Rule). If both A and A \supset B are theorems of J_3 , then B is a theorem of J_3 .

However, contrary to \mathcal{L}_3 , the Rule of Modus Ponens is not valid with respect to \rightarrow .

For some of the theorems that follow it will be convenient to assume that the language of J_3 contains, as primitive symbols, all the connectives introduced so far. In particular we shall often identify J_3 with the set of M-valid formulas in the expanded language.

The following theorems will be used in the proofs of many of the results about J_z .

THEOREM 2.5. J_3 is a non-conservative extension of the classical positive propositional calculus with connectives V, ξ , \neg , \exists .

THEOREM 2.6. J_3 is a conservative extension of the classical propositional calculus with connectives $\exists *, \forall, \xi, \Rightarrow and \equiv$

THEOREM 2.7. J_3 is a non-conservative extension of Eukaseewicz' threevalued logic L_3 with connectives \neg, \rightarrow .

THEOREM 2.8. J_3 is not functionally complete.

Proof. It is not possible to define a connective, from the primitive conectives of J_3 , such that its truth-value is identically $\frac{1}{2}$.

On the other hand, if we add the Słupecki T operador to the primitive connectives of J_3 , the calculus becomes functionally complete (see [21]).

By Theorem 2.4, the formulas $\neg A \supset (A \supset B)$, $A \supset (\neg A \supset B)$, $A \supset (\neg A \supset \neg B)$, $(A \notin \neg A) \supset B$, $(A \supset B) \supset ((A \supset \neg B) \supset \neg A)$, $A \supset (B \notin \neg B) \equiv A$, etc., are not theorems of \mathbf{J}_3 . So, in \mathbf{J}_3 , in general, it is not possible to deduce any formula whatsoever from a contradiction. Therefore, based on such a calculus we can construct nontrivial inconsistent deductive systems, in the sense of [11]. So, \mathbf{J}_3 satisfies condition (i) of Jaśkowski's problem.

By Theorem 2.5 to 2.8, J_3 is quite a strong system, which evidently satisfies Jaśkowski's condition (ii).

 J_3 admits intuitive interpretations. For instance, it can be used as the underlying logic of a theory whose preliminary formulation may involve certain contradictions, which should be eliminated in a later reformulation. This can be done as follows; among the truth-values of J_3 , 0 can represent falsity, 1 truth, and $\frac{1}{2}$ can represent the provisional value of a proposition A, so that both A and the negation of A are theorems of the theory, in its initial formulation; in a later reformulation, the truth-value $\frac{1}{2}$ should be reduced, at least in principle, to 0 or to 1.

Therefore, J_{z} is a solution to Jaśkowski's problem.

 J_3 can also be used as a foundation for paraconsistent systems, in the sense of da Costa (see [5], [6], [7] and [8]). In this case, the value 0 represents falsity, 1 truth, and $\frac{1}{2}$ represents the logic value of a formula that is simultaneously true and false.

Finally, as the calculus J_3 was constructed from \mathcal{L}_3 , it is possible to obtain similar calculi J_n , from Łukasiewicz n-valued calculi \mathcal{L}_n , $3 \le n < \aleph_0$.

3. SEMANTICS FOR FIRST-ORDER J₃-THEORIES.

The symbols of a first-order L_3 -language are the individual variables, the function symbols, the predicate symbols, the primitive connectives \neg , V and ∇ , the quantifies \exists and \forall , and the parentheses.

The *identity* = must be among the predicate symbols. Other equalities can be especified among the predicate symbols.

We use x,y,z and w as syntactical variables for individual variables; f and g, for function symbols; p and q, for predicate symbols, and c for constants.

The definitions of *term*, *atomic formula* and *formula* are the usual ones; a, b,c, etc. are syntactical variables for terms and A,B,C, etc. for formulas.

By an ${\rm L}_3$ -language we understand a first-order language whose logical symbols include the ones mentioned above.

The symbols $\{, \nleftrightarrow, \nleftrightarrow, \neg, \exists, \Delta \text{ and } \neg^* \text{ are defined in the } L_3^{-1} \text{ languages, as in } J_3^{-1}$.

Free occurrence of a variable, open formula, closed formula, variable-free term and closure of a formula are used as in [22].

The definition of a is substitutible for x in A is also the usual one.

We let $b_{x_1,...,x_n}[a_1,...,a_n]$ be the term obtained from b by replacing all occurrences of $x_1,...,x_n$ by $a_1,...,a_n$ respectively; and we let $A_{x_1,...,x_n}[a_1, ...,a_n]$ be the formula obtained from A by replacing free occurrences of $x_1,...,x_n$ by $a_1,...,a_n$ respectively.

Whenever either of these is used, it will be implicitly assumed that x_1, \ldots, x_n are distinct variables and that, in the case of $A_{x_1}, \ldots, x_n[a_1, \ldots, a_n]$, a_i is substitutible for x_i , $i = 1, \ldots, n$.

In the following definitions, let L be an L_3 -language.

DEFINITION 3.1. A structure Ol for a first-order L_3 -language L consists of:

i) a nonempty set |Ol|, called universe of Ol;

ii) for each n-ary function symbol f of L, a function f from $|\alpha|^n$ to $|\alpha|$;

iii) for each n-ary predicate symbol p of L, other than =, an n-ary predicate

 p_{σ} , such that p_{σ} is a mapping from $|\sigma| \times \ldots \times |\sigma|$ to $\{0, \frac{1}{2}, 1\}$.

As in [22], we construct the language $L(\mathcal{A})$; define \mathcal{A} (a) for each variable free term of $L(\mathcal{A})$, and define \mathcal{A} -instance of a formula A.

We use i and j as syntactical variable for the names of individuals of \mathcal{A} .

DEFINITION 3.2. The truth-value $\mathcal{O}(A)$ for each closed formula A in L(α) is given by:

i) if A is a = b, then $\mathcal{A}(A) = 1$ iff $\mathcal{A}(a) = \mathcal{A}(b)$; otherwise, $\mathcal{A}(A) = 0$; ii) if A is $p(a_1, \dots, a_n)$, where p is not =, then $\mathcal{A}(A) = p_{\mathcal{A}}(\mathcal{A}(a_1), \dots, \mathcal{A}(a_n))$; iii) if A is $\neg B$, then $\mathcal{A}(A)$ is $H_{\gamma}(\mathcal{A}(B))$; iv) if A is ∇B , then $\mathcal{A}(A)$ is $H_{\gamma}(\mathcal{A}(B))$; v) if A is B v C, then $\mathcal{A}(A)$ is $H_{\gamma}(\mathcal{A}(B), \mathcal{A}(C))$;

vi) if A is a $\exists xB$, then $\mathcal{O}(A) = \max\{\mathcal{O}(B_{x}[i])/i \in L(\mathcal{O})\};\$

vii) if A is a $\forall xB$, then $\mathcal{O}(A) = \min\{\mathcal{O}(B_x[i])/i \in L(\mathcal{O})\}$.

DEFINITION 3.3. (1) A formula B of $L(\mathcal{A})$ is true in \mathcal{A} (or \mathcal{A} is a model of B) iff $\mathcal{A}(B) \in V_d$.

(2) A formula A of L is valid in \mathcal{O} iff for every \mathcal{O} -instance A' of A, A' is true in \mathcal{A} .

A first-order predicate calculus J_3^* is the formal system whose language is an L_3 plus the following, with the usual restrictions (see [14]):

THEOREM 3.1. $\mathbf{J}_{\mathbf{z}}^{\mathbf{x}}$ is a conservative extension of $\mathbf{J}_{\mathbf{z}}$.

 $\ensuremath{\textit{Proof.}}$ We apply the Hilbert-Bernays theorem of k-transforms, that can be extended to this case.

THEOREM 3.2. \mathbf{J}_{3}^{\star} is an extension of the classical predicate calculus, with connectives \neg^{\star} , V, ξ , \neg , \equiv , \exists and \forall .

DEFINITION 3.4. A first-order J_3 -theory is a formal system T such that: i) the language of T, L(T), is an L_3 -language; ii) the axioms of T are the axioms of J_3^{*} , called the logical axioms of T, and certain further axioms, called the non-logical axioms;

iii) the rules of T are those of J_{7}^{*} =.

A is a theorem of T, in symbols: $\vdash_{\overline{T}} A$, and B is a semantical consequence of a set F of formulas of L(T) are defined in the standard way. If B is a semantical consequence of F, then we shall also say that "B is valid in F".

THEOREM 3.3. (Validity Theorem): Every theorem of a $\rm J_3\mathchar`-theory T$ is valid in T.

SOME THEOREMS IN FIRST-ORDER J₃-THEORIES AND THE EQUIVALENCE THEOREM.

DEFINITION 4.1. A J_3 -theory T is *finitely trivializable* if there exists a fixed formula F such that, for any formula A, F \supset A is a theorem of T (see [2]).

THEOREM 4.1. The J_{z} -theories are finitely trivializable.

Proof. Any formula $\neg (\neg \nabla A \lor \nabla A)$ trivializes a J_3 -theory.

The following results hold in any J_z -theory T:

b) $\vdash_{\overline{T}} \forall x_1 \dots \forall x_n A \supset A_{x_1}, \dots, x_n[a_1, \dots, a_n]$

 $\textit{Distribution Rule: If } H_{\overline{T}} A \supset B, \textit{ then } H_{\overline{T}} \exists xA \supset \exists xB \textit{ and } H_{\overline{T}} \forall xA \supset \forall xB.$

Closure Theorem: If A' is the closure of A, then $\vdash_{\overline{T}} A$ if and only if $\vdash_{\overline{T}} A'$. Theorem on Constants: If T' is a J_3 -theory obtained from T by adding new constants (but no new nonlogical axioms), then for every formula A of T and every sequence e_1, \ldots, e_n of new constants, $\vdash_{\overline{T}} A$ if and only if $\vdash_{T'} A_{x_1}, \ldots, x_n$ $[e_1, \ldots, e_n]$.

In the case of classical logic, the equivalence \equiv behaves as a congruence relation with respect to the other logical symbols. Unfortunately this is not the case in J₃-theories, for it is possible to have $\vdash_T A \equiv B$ and $\vdash_T \neg A \equiv \neg B$.

However we can introduce a stronger equivalence, \bar{z}^* , which is a $J_3^{=}$ -congruence relation and thus allow us to prove a J_3 -version of the equivalence theorem (see [22]).

DEFINITION 4.2. A $\equiv^* B =_{def} (A \equiv B) \xi (\neg A \equiv \neg B)$.

THEOREM 4.2. If T is a J_3 -theory and $\vdash_{\overline{T}} A \equiv^* B$, then $\vdash_{\overline{T}} A$ if and only if $\vdash_{\overline{T}} B$.

THEOREM 4.3. (Equivalence Theorem). Let T be a J_3 -theory and let A' be obtained from A by replacing some occurrences of B_1, \ldots, B_n by B'_1, \ldots, B'_n respectively. If $\vdash_{\overline{T}} B_1 \equiv^* B'_1, \ldots, \vdash_{\overline{T}} B_n \equiv^* B'_n$, then $\vdash_{\overline{T}} A \equiv^* A'$.

Proof. After considering the special case when there is only one such occurrence and it is all of A, we use induction on the length of A.

For A atomic, the result is obvious.

A is $\neg C$ and A' is $\neg C'$, where C' results from C by replacements of the type described in the theorem. By induction hypothesis, $\mathbf{H}_{\overline{T}} \subset \mathbf{E}^*$ C', that is, $\mathbf{H}_{\overline{T}} \subset \mathbf{E}$ C' and $\mathbf{H}_{\overline{T}} \cap \mathbf{C} = \neg C'$. As by Theorem 2.4, $\mathbf{H}_{\overline{T}} \subset \mathbf{C} = \neg \mathbf{C}$ and $\mathbf{H}_{\overline{T}} \subset \mathbf{C} = \neg \mathbf{C}'$, we have $\neg \neg C \equiv \neg \Box'$. So $\neg C \equiv^* \neg \mathbf{C}'$.

A is ∇C and A' is $\nabla C'$, with $\vdash_{\overline{T}} C \equiv {}^{*} C'$. From $\vdash_{\overline{T}} C \equiv C'$, it follows that $\vdash_{\overline{T}} \neg^{*}C \equiv \neg^{*}C'$, by Theorem 2.6. Also from $\vdash_{\overline{T}} C \equiv C'$ it follows that $\vdash_{\overline{T}} \nabla C \equiv \nabla C'$, since $\vdash_{\overline{T}} \nabla C \equiv C$ by Theorem 2.4. Therefore, $\vdash_{\overline{T}} \nabla C \equiv {}^{*} \nabla C'$.

A is C V D and A' is C' V D', with $\frac{1}{T} C \stackrel{=}{\equiv} ^{*} C$ and $\frac{1}{T} D \stackrel{=}{\equiv} ^{*} D'$. As by theorem 2.6,

$$\overline{T} ((C \equiv C') \& (D \equiv D')) \supset ((C \lor D) \equiv (C' \lor D'))$$

and

$$H_{\overline{T}} ((\neg C \equiv \neg C') \& (\neg D \equiv \neg D')) \supset ((\neg C \& \neg D) \equiv (\neg C' \& \neg D')$$

we have that $I_{\overline{T}} C \lor D \equiv C' \lor D'$ and $I_{\overline{T}} \urcorner (C \lor D) \equiv \urcorner (C' \lor D')$.

A is $\exists x C and A'$ is $\exists x C'$, with $C \equiv * C'$. By Distribution Rule, $\vdash_{\overline{T}} \exists x C \equiv \exists x C'$ and $\vdash_{\overline{T}} \forall x \neg C \equiv \forall x \neg C'$. Using Axiom 12 we complete the proof.

If A is $\forall xC \text{ and } A'$ is $\forall xC'$, with $\vdash_T C \equiv^* C'$, the proof is similar.

In the spirit of the equivalence theorem, we have the following corollaries and remark.

COROLLARY 1. In a J_3 -theory T, it is possible to replace:

- i) ארר by A; ii) ארר *A by ה'*A; iii) הר (A V B) by הרא אר; iii) ה ארר א B;
- iv) ¬^{*}(A V B) by ¬*****Ақ ¬*****В;
- v) ¥xA by ¬∃x¬A;
- vi) ¬∃xA by ¥x ¬A;
- vii) ´xA by ∃x ¬A;
- viii) ∇∃xA by ∃x⊽A;
- ix) ⊽¥xA by ¥x⊽A.

Proof. It is enough to verify that $\vdash_{\overline{L}} \neg A \equiv^* A$, $\vdash_{\overline{L}} \neg^* A \equiv^* \neg^* A$, etc.

COROLLARY 2. In a J_3 -theory T, if $\vdash_{\overline{T}} x = y$, then, for every formula A, A(x) can be replaced by A(y).

REMARK. Although $\vdash_{\overline{T}} \neg^* \neg^* A \equiv A$, it is not possible, in general, to replace $\neg^* \neg^* A$ by A.

DEFINITION 4.3. A formula A' is a *variant of* A just in case A' has been obtained from A by renaming bound variables.

THEOREM 4.4. (Variant Theorem). If A' is a variant of A, then $\vdash_{\overline{T}} A \equiv^* A'$. *Proof.* In view of Theorem 4.3 and Corollary 1, it is enough to observe that $\vdash_{\overline{T}} \exists xB \equiv^* \exists yB_x[y]$.

Let $T[\Gamma]$ be the J_3 -theory whose non-logical axioms are those of T plus the formulas of the set Γ .

THEOREM 4.5. (Reduction Theorem). Let Γ be a set of formulas in the J_3 -theory T and let A be a formula of T. A is a theorem of $T[\Gamma]$ if, and only if, there is a theorem of T of the form $B_1 \supset \ldots \supset B_n \supset A$, where each B_1 is the closure of a formula in Γ .

Given a non-empty set Γ of formulas we let:

- $\Gamma_{V \neg V \nabla} = \{B \mid B \text{ is a disjunction of negations of closures of formulas of the type <math>\nabla A$, with $A \in \Gamma\}$
- $\Gamma_{\mathbf{V} \neg \nabla \mathbf{V}} = \{ C \mid C \text{ is a disjunction of negations of formulas of the type } \nabla A', \\ \text{where } A' \text{ is the closure of a formula of } \Gamma \}$

THEOREM 4.6. (Reduction Theorem for non-trivialization). Let Γ be a nonempty set of formulas in a \mathbf{J}_3 -theory T. Then the extension $T[\Gamma]$ is trivial, if and only if, there is a theorem of T which belongs to $\Gamma_{\mathbf{V}_1 \cup \mathbf{V}_2}$.

Proof. The corollary to the replacement theorem gives us that every formula of $\Gamma_{V \neg V \overline{V}}$ is strongly equivalent to a formula of $\Gamma_{V \neg V \overline{V}}$. The proof of the theorem can be completed using the properties of strong negation.

COROLLARY. If A' is the closure of A, then the formula A is a theorem of T if, and only if, $T[\neg^*A']$ is trivial.

5. THE COMPLETENESS AND THE COMPACTNESS THEOREMS FOR J3-THEORIES

We study certain aspects of the J_3 -theories and present a Henkin-type proof of the completeness theorem for this type of many-valued theories.

DEFINITION 5.1. If T is a J_3 -theory containing a constant, and if a and b are variable-free terms of T, then:

i) $a \sim b = \det \overline{T} a = b;$ ii) $a^{0} = \{b | a \sim b\}.$

DEFINITION 5.2. A canonical structure for the ${\bf J}_3$ -theory T is the structure ${\cal A}$:

- i) whose universe $|\mathcal{A}|$ is the set of all equivalence classes under \sim ;
- ii) $f_{OL}(a_1^0, ..., a_n^0) = (f(a_1, ..., a_n))^0;$
- iii) $p_{\sigma}(a_1^0,\ldots,a_n^0)$ is in V_d iff $\vdash_T p(a_1,\ldots,a_n)$.

Observe that (iii) could have been replaced by

 $\mathbf{p}_{\mathcal{O}}(\mathbf{a}_1^0,\ldots,\mathbf{a}_n^0) = 0 \quad \text{iff} \quad \forall_{\mathbf{T}} \mathbf{p}(\mathbf{a}_1,\ldots,\mathbf{a}_n).$

THEOREM 5.1. If Ol is a canonical structure for T and $p(a_1, \ldots, a_n)$ is a variable-free atomic formula in L(T), then:

Proof. ii) If $\mathcal{A}(p(a_1,\ldots,a_n)) = \frac{1}{2}$ then $\mathcal{A}(\neg p(a_1,\ldots,a_n)) = \frac{1}{2}$. By the last definition, $\vdash_{\overline{T}} p(a_1,\ldots,a_n)$ and $\vdash_{\overline{T}} \neg p(a_1,\ldots,a_n)$.

On the other hand, if $\vdash_{\overline{T}} p(a_1, \ldots, a_n)$ and $\vdash_{\overline{T}} \neg p(a_1, \ldots, a_n)$, also by Definition 5.2, $\mathcal{A}(p(a_1, \ldots, a_n))$ and $\mathcal{A}(\neg p(a_1, \ldots, a_n))$ belong to V_d . Then, $\mathcal{A}(p(a_1, \ldots, a_n)) = {}^{l_2}$.

iii) If $\mathcal{A}(p(a_1,\ldots,a_n)) = 1$, then $\mathcal{A}(\neg p(a_1,\ldots,a_n)) = 0$; then, $\vdash_{\overline{T}} p(a_p,\ldots,a_n)$ and $\nvdash_{\overline{T}} \neg p(a_1,\ldots,a_n)$.

On the other hand, if $\vdash_{\overline{T}} p(a_1, \ldots, a_n)$ and $\vdash_{\overline{T}} p(a_1, \ldots, a_n)$, we have that $\mathcal{O}(p(a_1, \ldots, a_n))$ belongs to V_d and $\mathcal{O}(\neg p(a_1, \ldots, a_n))$ does not belong to V_d ; if $\mathcal{O}(p(a_1, \ldots, a_n) = \frac{1}{2}$ then $\mathcal{O}(\neg p(a_1, \ldots, a_n)) = \frac{1}{2}$ and, so, $\vdash_{\overline{T}} \neg p(a_1, \ldots, a_n)$. Then, $\mathcal{O}(p(a_1, \ldots, a_n)) = 1$.

Now, (i) is immediate.

As a consequence of the theorem we obtain that there is exactly one canonical structure for a J_3 -theory. Furthermore, as in the calssical case, in order for a canonical structure to characterize the theorems of a theory, the theory must be in some sense maximal, for there may be a closed formula A such

88

that $\nvdash_T A$, $\nvdash_T TA$ and $\nvdash_T T^*A$.

DEFINITION 5.3. A formula A of a J_3 -theory T is undecidable in T if meither A nor \exists^*A is a theorem of T. Otherwise, A is decidable in T.

DEFINITION 5.4. A J_3 -theory T is *complete* if it is non-trivial and if every closed formula of T is decidable in T.

THEOREM 5.2. A J_3 -theory T is complete if, and only if, T maximal in the class of nontrivial theories.

DEFINITION 5.5. A J_3 -theory T is a Henkin J_3 -theory if for every closed formula $\exists xA$ of T, there is a constant e such that $\exists xA \supset A_x[e]$ is a theorem of T.

THEOREM 5.3. If T is a Henkin J_3 -theory, then for every closed formula VxA in T there is a constant e such that $A_r[e] \supset VxA$ is a theorem of T.

Proof. As T is a Henkin J_3 -theory, there is e, such that $\vdash_{\overline{T}} \exists x \exists^* A \exists \forall^* A_x[e]$. We obtain the desired result, by successive applications of Theorem 2.6.

THEOREM 5.4. If T is a complete Henkin J_3 -theory and Cl is the canonical structure for T, then for all closed formulas A of L[T]:

i) $\mathcal{O}(A) = 0$ iff $H_{T}A$

ii) $\mathcal{O}(A) = \frac{1}{2}$ iff $\vdash_{\overline{T}} A$ and $\vdash_{\overline{T}} \neg A$

iii) $\mathcal{A}(A) = 1$ iff $\vdash_{\overline{T}} A$ and $\vdash_{\overline{T}} \neg A$.

Proof. By induction on the height of A. For *atomic* A, the result follows from Theorem 5.1.

Case: A is $\exists B$. i) If $\mathcal{O}(A) = 0$, then $\mathcal{O}(B) = 1$. Thus $\vdash_{\overline{T}} \exists B$, that is $\vdash_{\overline{T}} A$. On the other hand if $\vdash_{\overline{T}} A$, then since T is complete $\vdash_{\overline{T}} \exists^*A$, and then $\vdash_{\overline{T}} \exists A$, $\vdash_{\overline{T}} \exists B$, $\vdash_{\overline{T}} B$. Thus we have that $\vdash_{\overline{T}} B$ and $\vdash_{\overline{T}} \exists B$, from which if follows that $\mathcal{O}(B) = 1$ and that $\mathcal{O}(A) = 0$.

ii) If $\mathcal{O}(A) = \frac{1}{2}$, then $\mathcal{O}(B) = \frac{1}{2}$. Thus $\vdash_{\overline{T}} B$ and $\vdash_{\overline{T}} \neg B$, from which it follows that $\vdash_{\overline{T}} \neg A$ and $\vdash_{\overline{T}} A$, the converse is analogous.

iii) If $\mathcal{O}(A) = 1$, then $\mathcal{O}(B) = 0$ and thus $H_{\underline{T}}^{\prime} B$. Since T is complete, $H_{\underline{T}}^{\ast} B$ and thus $H_{\underline{T}}^{\ast} B$. Since $H_{\underline{T}}^{\prime} B$, we obtain that $H_{\underline{T}}^{\ast} A$ in other words, we have that $H_{\underline{T}}^{\ast} A$ and $H_{\underline{T}}^{\ast} A$.

Assume next that H_T A and H_T A, that is, H_T B and H_T B. Then H_T B, and so by induction O(B) = 0, from which it follows that O(A) = 1.

Case: A *is* B V C. i) If $\mathcal{O}(A) = 0$ then $\mathcal{O}(B) = 0$ and $\mathcal{O}(C) = 0$. Hence $\mathcal{H}_T C$ and $\mathcal{H}_T B$, from which it follows, since T is complete, that $\mathcal{H}_T B \vee C$. The converse is analogous.

ii) If $\mathcal{O}(A) = \frac{1}{2}$, then either: $\mathcal{O}(B) = \frac{1}{2}$ and $\mathcal{O}(C) = \frac{1}{2}$,

or
$$\mathcal{O}(B) = \frac{1}{2}$$
 and $\mathcal{O}(C) = 0$,

$$r \mathcal{O}(B) = 0 \text{ and } \mathcal{O}(C) = \frac{1}{2}.$$

Let us only consider the situation when $\mathcal{A}(B) = \frac{1}{2}$ and $\mathcal{A}(C) \cdot = 0$ (the others are analogous). The induction hypothesis gives us that

Hy B, Hy ¬B, Hy C.

Since T is complete we obtain that $\vdash_{\overline{T}} \urcorner^* C$ and $\vdash_{\overline{T}} \urcorner C$. From $\vdash_{\overline{T}} B$ we get $\vdash_{\overline{T}} B \lor C$, and from $\vdash_{\overline{T}} \urcorner B$ and $\vdash_{\overline{T}} \urcorner C$ we may conclude that $\vdash_{\overline{T}} \urcorner (B \lor C)$.

Conversely, suppose that $\vdash_{\overline{T}} B \lor C$ and $\vdash_{\overline{T}} \cap (B \lor C)$. The latter gives us that $\vdash_{\overline{T}} \cap B$ and $\vdash_{\overline{T}} \cap C$. From the former, since T is complete, we obtain that either $\vdash_{\overline{T}} B$ or $\vdash_{\overline{T}} C$. The induction hypothesis allows us then to conclude that $\mathcal{A}(B \lor C) = \vdash_{2}$.

iii) If 𝒯 (A) = 1, then either: 𝒯 (B) = 1 and 𝒯 (C) = 0, or 𝒯 (B) = 1 and 𝒯 (C) = ½, or 𝒯 (B) = 1 and 𝒯 (C) = ½, or 𝒯 (B) = 0 and 𝒯 (C) = 1, or 𝒯 (B) = ½ and 𝒯 (C) = 1.

We will only consider the case when $\mathcal{O}(B) = 1$ and $\mathcal{O}(C) = \frac{1}{2}$. The induction hypothesis gives us that

 $\mathbf{H}_{T} \mathbf{B}, \mathbf{H}_{T} \mathbf{T} \mathbf{B}, \mathbf{H}_{T} \mathbf{C}, \mathbf{H}_{T} \mathbf{T} \mathbf{C}.$

From the first we obtain that $\vdash_{\underline{T}}(B \lor C)$. Suppose on the other hand that $\vdash_{\underline{T}} (B \lor C)$. Then $\vdash_{\underline{T}} (\neg B \land \neg C)$, from which it would follow that $\vdash_{\underline{T}} \neg B$, contradicting that $\vdash_{\underline{T}} \neg B$. Thus $\vdash_{\underline{T}} \neg (B \lor C)$.

On the other hand, suppose that $H_{\overline{T}}(B \lor C)$ and $H_{\overline{T}} \urcorner (B \lor C)$. Then from the completeness of T we obtain that either

$$\mathbf{H}_{\mathbf{T}} \mathbf{B}$$
 or $\mathbf{H}_{\mathbf{T}} \mathbf{C}$.

From $H_{T} \urcorner (B \lor C)$, we obtain that

$$H_{\overline{T}}$$
 \neg B and $H_{\overline{T}}$ \neg C.

The induction hypothesis then gives us that $\mathcal{O}(B \lor C) = 1$.

Case: A is $\forall B$. i) If $\mathcal{A}(\forall B) = 0$. Then $\mathcal{A}(B) = 0$. Thus $\bigvee_T B$; from which it follows that $\bigvee_T \forall B$. Converse, analogous.

ii) $\mathcal{O}(\nabla B)$ is never $\frac{1}{2}$.

iii) $\mathcal{O}(\nabla B) = 1$ then either $\mathcal{O}(B) = \frac{1}{2}$ or $\mathcal{O}(B) = 1$.

Subcase: $\mathcal{O}(B) = \frac{1}{2}$. Then $\vdash_{\overline{T}} B$ and $\vdash_{\overline{T}} \neg B$, from which we obtain $\vdash_{\overline{T}} \nabla B$ and $\vdash_{\overline{T}} \nabla \neg B$. Using that T is complete we conclude $\vdash_{\overline{T}} \nabla B$, and $\vdash_{\overline{T}} \neg \nabla B$.

Subcase: $\mathcal{O}(B) = 1$. Then $\vdash_{\overline{T}} B$ and $\vdash_{\overline{T}} \neg B$. Suppose that $\vdash_{\overline{T}} \neg \nabla B$. Then since $\vdash_{\overline{T}} B$, we should obtain that T is trivial, which we are assuming it is not. Thus

 $\frac{1}{T} \neg \nabla B$ and $\frac{1}{T} \neg B$. On the other hand, suppose that $\frac{1}{T} \land$ and $\frac{1}{T} \neg A$. That is suppose that

 $\vdash_{\overline{T}} \nabla B$ and $\vdash_{\overline{T}} \neg \nabla B$.

Then $\vdash_{\overline{T}} B$, and either $\vdash_{\overline{T}} \neg B$ or $\vdash_{\overline{T}} B$. In one case the induction hypothesis gives that $\mathcal{O}(B) = \vdash_2$, and in the other that $\mathcal{O}(B) = 1$. Thus $\mathcal{O}(\nabla B) = 1$ in both. That is $\mathcal{O}(A) = 1$.

Case: A is $\exists xB$. i) If α (A) = 0, then for every variable-free term b, α (B_x[b]) = 0, and by induction hypothesis this is equivalent to \mathcal{H}_T B_x[b]. As T is a Henkin theory this gives us that \mathcal{H}_T $\exists xB$. The converse does not need to use that T is a Henkin theory.

ii) If $\mathcal{A}(A) = \frac{1}{2}$. Then for all b we have that $\mathcal{A}(B_{X}[b]) \leq \frac{1}{2}$. The induction hypothesis then tells us that

(1) for those b such that $\mathcal{O}(B_{\chi}[b]) = \frac{1}{2}$ (and there is at least one such): $\vdash_{\overline{T}} B_{\chi}[b]$ and $\vdash_{\overline{T}} \exists B_{\chi}[b]$.

(2) for the remaining b's: $\underbrace{\#_T} B_x[b]$ and (because T is complete) $\underbrace{\#_T} B_x[b]$. Thus we have that for all constants b: $\underbrace{\#_T} B_x[b]$; from which it follows that $\underbrace{\#_T} A_x B$, i.e. $\underbrace{\#_T} A_x B$. From (1) we obtain $\underbrace{\#_T} A_x B$.

Conversely, suppose that $\vdash_{\overline{T}} A$ and $\vdash_{\overline{T}} \exists A$; that is $\vdash_{\overline{T}} \exists xB$ and $\vdash_{\overline{T}} \exists xB$. Using that T is a Henkin theory and induction, we obtain an e such that $\vdash_{\overline{T}} B_{x}[e]$, $\vdash_{\overline{T}} \exists B_{x}[e]$, and thus $\mathcal{O}(B_{x}[e]) = l_{2}$. A proof by contradiction shows that there is no b such that $\mathcal{O}(B_{x}[b]) = 1$. Hence $\mathcal{O}(\exists xB) = l_{2}$.

iii) If $\mathcal{A}(A) = 1$, then there is at least one b such that $\mathcal{A}(B_{\mathbf{X}}[b]) = 1$. From the induction hypothesis, we obtain that $\vdash_{\overline{T}} B_{\mathbf{X}}[b]$ and $\vdash_{\overline{T}} \exists B_{\mathbf{X}}[b]$. From the former, we obtain that $\vdash_{\overline{T}} \exists \mathbf{X} B$. Suppose next contrary to what we want to show, that $\vdash_{\overline{T}} \exists \mathbf{X} B$. Then $\vdash_{\overline{T}} \exists \mathbf{X} B$ and thus $\vdash_{\overline{T}} \exists B_{\mathbf{X}}[b]$, a contradiction. Thus $\vdash_{\overline{T}} \exists \mathbf{X} B$.

COROLLARY 1. Let T be a complete Henkin J_3 -theory, A the canonical structure for T and A a closed formula of T; then, A (A) belongs to V_d if and only if A is a theorem of T.

COROLLARY 2. If T is a complete Henkin ${\bf J}_3\text{-theory}$, then the canonical structure for T is a model of T.

By the above corollary, to prove the completeness of a J_3 -theory T, as in the classical case, it is enough to show that it is possible to extend T to a complete Henkin J_3 -theory.

Thus, given a nontrivial J_3 -theory T, we will first extend it, conservatively, to a Henkin J_3 -theory T_c , and then extend it to a complete Henkin J_3 -theory T_c' .

Given a J_3 -theory T with language L, we proceed as in [22] and define the

special constants of level n, the language L_c with the special constants, and introduce the special axioms for the special constants.

DEFINITION 5.6. Let T be a J_3 -theory with language L. Then T_c is the Henkin J_3 -theory whose language is L_c and whose nonlogical axioms are the nonlogical axioms of T plus the special axioms for the special constants of L_c .

THEOREM 5.5. T is a conservative extension of T.

Proof. By Theorem 4.4 and by Theorem 5.3, the proof is similar to the classical one.

THEOREM 5.6. (Lindenbaum's Theorem). If T is a nontrivial J_3 -theory, then T admits a complete simple extension.

Finally, we can obtain the completeness theorem for J_3 -theories.

THEOREM 5.7. (Completeness Theorem). A J_3 -theory T is nontrivial if, and only if, it has a model.

Proof. If \mathcal{A} is a model of T and A is a closed formula in T, then $\mathcal{A}(A \in \mathbb{T}^*A) = 0$. So, by the validity Theorem, $A \in \mathbb{T}^*A$ is not a theorem in T. Then T is nontrivial.

If T is nontrivial, then we extend T to T_c , which is a non-trivial Henkin J_3 -theory. By Lindenbaum's Theorem, we can extend T_c to a complete Henkin J_3^- theory T'_c . By Corollary 2 to Theorem 5.4, T'_c has a model α . Therefore, $\alpha \mid L(T)$ is a model of T.

THEOREM 5.8. (Gödel's Completeness Theorem). A formula A in the J_3 -theory T is a theorem in T if, and only if, it is valid in T.

Proof. By supposing that the closed formula A is a theorem in T and using the above Completeness Theorem, we shall show that there is no model of T in which A is not valid.

Therefore, suppose that the closed formula A is a theorem in T.

By the corollary to the Reduction Theorem for non-Trivialization, $\vdash_{\overline{T}} A$ if and only if T[$\neg \nabla A$] is trivial; which, by Theorem 5.7, is equivalent to T[$\neg \nabla A$] not having a model.

On the other hand, a model of $T[\neg \nabla A]$ is a model \mathcal{A} of T in which $\neg \nabla A$ is valid, that is, a structure \mathcal{A} such $\mathcal{A}(\neg \nabla A) = 1$. This is equivalent to $\mathcal{A}(\nabla A) = 0$, and so $\mathcal{A}(A) = 0$.

Therefore, $\vdash_{T} A$ if and only if A is valid in T.

COROLLARY 3. If T and T' are J_3 -theories with the same language, then T' is an extension of T if, and only if, every model of T' is a model of T.

THEOREM 5.9. (Compactness Theorem). A formula A in a J_3 -theory is valid in T if, and only if, it is valid in some finitely axiomatized part of T.

COROLLARY 4. A J_3 -theory T has a model if, and only if, every finitely axiomatized part of T has a model.

REFERENCES.

- [1] R. Ackermann, Introduction to many-valued logics, Dover, N. York, 1967
- [2] A.I. Arruda, A survey of paraconsistent logic, Mathematical logic in Latin America, North-Holland, Amsterdam, 1980, pp.1-41.
- [3] A.I. Arruda, Aspects of the historical development of paraconsistent logic, to be published.
- [4] L. Borkowski (Ed.), Selected works of J. Lukasiewicz, North-Holland, Amsterdam, 1970.
- [5] N.C.A. da Costa, Sistemas formais inconsistentes, (Tese), Universidade Federal do Paraná, Curitiba, 1963.
- [6] N.C.A. da Costa, Calculus propositionneles pour les systèmes formels inconsistants, C.R. Acad. Sc. Paris 257 (1963), 3790-3793.
- [7] N.C.A. da Costa, Calculus de prédicats pour les systèmes formels inconsistants, C.R. Acad. Sc. Paris 258 (1964), 27-29.
- [8] N.C.A. da Costa, Calculus de prédicats avec égalité pour les systèmes formels inconsistants, C.R. Acad. Sc. Paris 258 (1964), 1111-1113.
- [9] N.C.A. da Costa, On the theory of inconsistent formal systems, Notre Dame Journal of Formal Logic XV (1974), 497-510.
- [10] I.M.L. D'Ottaviano e N.C.A. da Costa, Sur un problème de Jaśkowski, C.R. Acad. Sc. Paris 270A (1970), 1349-1353.
- [11] S. Jaśkowski, Propositional calculus for contradictory deductive systems, Studia Logica XXIV (1969), 143-157 (English version of [12]).
- [12] S. Jaśkowski, Rachunek zdán dla sustemów dedukcyjnych sprzecznych, Studia Societatis Scientiarum Torunensis, Sec. A, I, № 5 (1948), 55-57.
- [13] S. Jaśkowski, O konjunkcji dyskusyjnej w rachunku zdan dla systemów dedukcyjnuch spr zeczcych, Studia Societatis Scientiarum Torunensis, Soc. A,I, Nº 8 (1949), 171-172.
- [14] S.C. Kleene, Introduction to metamathematics, Van Nostrand, N. York, 1952.
- [15] J. Kotas e N.C.A. da Costa, On the problem of Jaśkowski and the logics of Lukasiewicz, Mathematical Logic, Marcel Dekker, N.York (1978), 127-139.

- [16] J. Łukasiewicz, Philosophische Bemerkungen zu mehrwertigen systemen des Aussagenkalkülls, C.R. Soc. Sci. Lett. Varsovie 23 (1930), 51-57.
- [17] J. Łukasiewicz and A. Tarki, Untersuchungen uber den Aussagenkalküll, C.R. Soc. Sci. Lett. Varsovie 23 (1930), 39-50 (English Version in [4], 131-152).
- [18] H. Rasiowa, An algebraic approach to non-clasical logics, North Holland, Amsterdam, 1974.
- [19] H. Rasiowa and R. Sikorski, The mathematics of metamathematics, Warsaw, 1963.
- [20] N. Rescher, Many-valued logics, McGraw-Hill, N. York, 1969.
- [21] J.B. Rosser and A, Turquette, Many-valued logics, North-Holland, Amsterdam. 1952.
- [22] J.R. Shoenfield, Mathematical logic, Addison Wesley, Reading, 1967.
- [23] M. Wajsberg, Aksjomatyzacja trójwartósciowego rachunku zdań, (Axiomatization of three valued sentential calculus), C.R. Soc. Sci. Lett. Varsovie 24 (1931), 126-148.

F. W. Galer, do Chief the Sector Land

IMECC

Universidade Estadual de Campinas Campinas, São Paulo, Brazil.