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THE COMPLETENESS AND COMPACTNESS OF A
THREE-VALUED FIRST-ORDER LOGIC

Itala M.L. D'Ottaviano

ABSTRACT. The strong completeness and the compactness of a
three-valued first order predicate calculus with two distin-
guished truth-values are obtained. The system was introduced
in Sur wn probleme de Jadkowski, I1.M.L. D'Ottaviano and N.C.
A. da Costa, C.R. Acad.Sc. Paris 270A (1970) ,pp.1349-1353,
and has several applications, especially in paraconsistent
logics.

1. INTRODUCTION.

A theory T is said to be inconsistent if it has as theorems a formula and
its negation; and it is said to be trivial if every formula of its language is
a theorem.

A logic is paraconsistent if it can be used as the underlying logic for in-
consistent but nontrivial theories.

JaSkowski, motivated by some ideas of hukasiewicz, was the first logician
to construct a system of paraconsistent propositional logic (see [11], [12] and
[13]). His principal motivations were the following: the problem of the system
atization of theories which contain contradictions, as it occurs in dialectics;
the study of theories in which there are contradictions caused by vagueness;
the direct study of some empirical theories whose postulates or basic assumptions
could be considered, under certain aspects, as contradictory ones (see [2] and
(3D

JaSkowski proposed the problem of constructing a propositional calculus ha-
ving the following properties:

i) an inconsistent system based on such a calculus should not be necces-
sarily trivial;

ii) ;he calculus should be sufficiently rich as to make posible most of

the usual reasonings;
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iii) the calculus should have an intuitive meaning.

Jaskowski himself introduced a propositional calculus which he named "Dis-
cussive logic' and which was a solution to the problem. However he did recog-
nize it was not the only solution (or even the best); in [11] he states:

"Obviously, these conditions do not univocally determine the solution,

since they may be satisfied in varying degrees, the satisfaction of

condition (iii) being rather difficult to appraise objectively".

In a previous paper (see [10]), we presented a propositional system, denoted
by J., which is another solution to JaSkowski's problem. A characteristic of
Js is that it is a three-valued system with two distinguished truth-values. Fur-
thermore, it reflects some aspects of certain types of modal logics.

In the same paper, we extended J; to the first-order predicate calculus
with equality J2=.

Some of these results about J were improved by J. Kotas and N.C.A. da Cos-
ta (see [15]).

Our aim here is to develop further the calculus JS'

In Sec. 2 we axiomatize Jg and establish relations between this calculus
and several known logical systems like, for example, intuitionism. We especial-
ly emphasize the close analogy between J3 and bukasiewicz' three-valued propo-
sitional calculus .C3.

Our solution to Jadkowski's problem is discussed in the latter part of Sec2.

In Sec. 3 we introduce the L-Languages, among whose predicate symbols may
appear in addition to identity other equalities. We axiomatize Js-theories,
which are three-valued extensions of J§=, and we introduce a semantics for
them.

In Sec. 4, after obtaining some theorems about first-order J3-theories, we
define a strong equivalence which is compatible with the fact that the matrices de-
fining J; have more than one distinguished truth-value. This relation allows
us to prove the Equivalence Theorems for J;-theories and the Reduction Theorem
for non-Trivialization.

Finally, in Sec.5, after giving a suitable definition of canonical struc-
ture, we present a Henkin-type proof for the Completeness Theorem and the Com-
pactness Theorem.

In this paper, definitions, theorems and proofs, when analogous to the cor-
responding classical ones, will be omitted.

The Model-theory we developed for J3 allows us to obtain J3-versions of
the following classical results: Model Extension Theorem, Eo$-Tarski Theorem,
Chang-ko§ Susko Theorem, Tarski Cardinality Theorem, Lowenheim-Skolem Theorem,
Quantifier Elimination Theorem and many of the usual theorems on categoricity.

Some of the above results about J3 were also extended to Jn—theories,

3<n <R
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The mentioned results about Jn-theories and Model-theory will appear else-
where .

2. THE CALCULUS J,.
The propositional caleulus J; is given by the matrix M = <{0,%,1}, {%,1},
v, V, 1>, where V, V and 71 are defined as follows:

AVB A\{jo L 1 A| VA A|0A
olo x 1 00 K
s % 1 i 51 %
3 ST 1] 1o

The set of truth-values and the set of distinguished truth-values are de-
noted by V and Vq respectively.

The gommulas of J are constructed as usually from the propositional vari-
ables, by means of V, V and 1, and parentheses. To write the formulas, schemas,
etc. we use the conventions and notations of [14], with evident adaptations.

The concept of a truth-function is the usual one. The truth-functions de-
fined by the tables above are denoted by H,, Hy, and H .

A truth-valuation v for J3 and the truth-value v(A) for a formula A are de-
fined in the standard way; and we observe that A is valid in M if, for every
evaluation v, v(A) belongs to Vq (see, for example, [22]).

The following abbreviations will be used:

AGB =y T(TAV TIB)

AA =def TV A

A = TIA

A> B =3 VIA VB

A> B =4 (A= B)&(TIB>T1A)
A>B =, VAVB

AzB =y (A2 B)G(B>A)

T11is called weak negation or simply negation, 71* is called strong negation,

and > basie implication of JS'

We present the tables of some of the non-primitive connectives:

B A> B
A | TT*A Al AA N 0 % 1
011 010 011 hy1
10 510 ik 1 1
150 Tl i1 110 % 1



0ol 1 1 1 0 0
510 % 1 b o4
110 % 1 1 5 1

In the following theorems, we mention only those results which are useful

to the proofs of later theorems.

[HEOREM 2. 1. The following schemas of J are valid in M:

7 7A =2 A VA = A

T*A o 1A VA = WA

AV A JA Vv VA
1AGTA) A§GTIA = TIAGVA
AG(B vIB) = A AV VA = VA
T(A Vv B)2 IAG B VA o (VA > B)
AV B =1(A§7B) A > (11VA > B)

TAG3) =TIA vV TIB

VASB) = VA§VB

VA 2 TIATA

(A= 714 2 1A
(1A= 0> A

T(VA v TIVA) 2 B
((A=2B) @A) =A
(A= B) > (A> B)
(A>» B) @ (B> TA).

V(A VB) ZVAVVB
A>> (B> A)

(T1A>>1B) > (B> A)

(A>> B)>> ((B>> O)> (A> O))
(A>>TB) > A)>> A

A(A>> B) >> A(AA>> AB)

THEOREM 2.2. The following schemas are not valid in J3:-

(A> B) © (B> 7A)
(71A>11B) = (B 2 A)
(A>71B) @ (B> T1A)

(1A 2B)> (B> A)

9A o (A 2 B)
A> (T1A>B)
A o (A2 1B)
ASSTAE=TIB)

AGgTA oB (A=B)=> (1A =11B)
A§ IAD B AV B& TIB) = A

(A =7A)>'B A>B =1@A§7B)

(A =7A) > 1B A>B=T17AVB

(A= B) @ ((A=7B)>14A).

[t can be verified that, instead of V, V and 77it is possible to use only
7 and >> as primitive connectives of ‘IS’ considering A V B and VA as abbre-
viations respectively of (A>> B)> B and TTA> A.
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So, there is a close analogy between Js and kukasiewicz' three-valued prop-
ositional calculus L5, defined by the matrix M' = <{0,%,1}, {1},77,>>, in
which the Eukasiewicz-Tarski operators ~1and>> are given by the respective
tables of J; (see (4.

J. can be axiomatized by:

3
Axiom 1 : A(A> (B> A))

Axiom 2 @ A((A>> B)> ((B> C) > (A> C)))
Axiom 3 : A((TA>T1B) > (B> A))

Axiom 4 A(((A>>T1A) > A)>»> A)

Axiom 5 A(A(A>> B) > A(AA>> AB)

Rule R1 : A—A(-‘;—ﬁ-@-

A

Rule R2 :
¢ A

The completeness theorem for J, is proved from the completeness of .L‘z, due
to Wajsberg (see [4] and [23]), using the following theorem.

THEOREM 2.3. If A is a theorem of £3, then DA is a theorem of Js.

Proof. As the axioms 1 to 4 are the axioms of £3 preceeded by A, if A is an
axiom of LS’ then AA is a theorem of Jsz.

Let A be obtained from B and B> A by the rule w of £3. By induction
hypothesis, AB and A(B>> A) are theorems of Js. By axiom 5 and Ry we obtain
A(AB>» AA). Applying Ry, we have that AA is a theorem of Jz.

THEOREM 2.4. (Completeness theorem for J3) . A formula A is a theorem of
J3 if and only if A is valid in M.

Proog. A straightforward induction shows that if A is a theorem of J 3 then
A is valid in M. On the other hand, if A is valid in M, then v(VA) = 1 for eve-
ry truth-valuation v. By the axiomatization and completeness of .[.’3, both VA
and A(VA>> VA) are theorems of 'LS' By the above theorem and R1, VA is a theorem
of J3' By R,, A is a theorem of Js.

COROLLARY (Modus Ponens Rule). If both A and A =B are theorems of Js,
then B is a theorem of J3.

However, contrary to .C3, the Rule of Modus Ponens is not valid with respect
to>.

For some of the theorems that follow it will be convenient to assume that
the languflge of J contains, as primitive symbols, all the connectives intro-
duced so far. In particular we shall often identify J; with the set of M-valid

formulas in the expanded language.



The following theorems will be used in the proofs of many of the results

about J3.

THEOREM 2.5. J3 is a non-conservative extension of the classical positive
propositional calculus with comectives V, & o, = .
THEOREM 2.6. Jz is a conservative extemsion of the classical proposition-

al calceulus with connectives 1%, V, § > and =

IHEOREM 2.7. J3 is a non-conservative extension of kukaseewicz' three-

alued logie ‘E} with comnectives 71,>>.

TIHHEOREM 2. 8. J3 18 not functionally complete.

Proo§. It is not possible to define a connective, from the primitive conec-

tives of JS’ such that its truth-value is identically %.

On the other hand, if we add the Stupecki T operador to the primitive con-

nectives of J;, the calculus becomes functionally complete (see [21]).

By Theorem 2.4, the formulas TA > (A =B), A= (T7A>B), A= (JA=1B),
(A& 1A) @ B, (A>B)> ((A=>71B)> 11A), A 2 (B§ 11B) = A, etc., are not theo-
rems of Js. So, in Js, in general, it is not possible to deduce any formula
whatsoever from a contradiction. Therefore, based on such a calculus we can g
construct nontrivial inconsistent deductive systems, in the sense of [11]. So,
J. satisfies condition (i) of JaSkowski's problem.

By Theorem 2.5 to 2.8, Jz is quite a strong system, whichevidently satisfies

3

JaSkowski's condition (ii).

J3 admits intuitive interpretations. For instance, it can be used as the
wnderlying logic of a theory whose preliminary formulation may involve certain
contradictions, which should be eliminated in a later reformulation. This can
be done as follows; among the truth-values of J3, 0 can represent falsity, 1
truth, and % can represent the provisional value of a proposition A, so that
both A and the negation of A are theorems of the theory, in its initial formu-
lation; in a later reformulation, the truth-value % should be reduced, at least
in principle, to 0 or to 1.

Therefore, J; is a solution to JaSkowski's problem.

J can also be used as a foundation for paraconsistent systems, in the
sense of da Costa (see [5], [6], [7] and [8]). In this case, the value 0 rep-
resents falsity, 1 truth,and % represents the logic value of a formula that is

simultaneously true and false.



83

Finally, as the calculus JS was constructed from £3, it is possible 1o ob-

tain similar calculi J_, from bukasiewicz n-valued calculi 'En’ 3¢<nc«< 30.

3. SEMANTICS FOR FIRST-ORDER J,-THEORIES.

The symbois of a first-order L-language are the individual variables, the
function symbols, the predicate symbols, the primitive connectives 71, V and V,
the quantifies 3 and ¥, and the parentheses.

The identity = must be among the predicate symbols. Other equalities can be
especified among the predicate symbols.

We use Xx,y,z and w as syntactical variables for individual variables; f and
g, for function symbols; p and q, for predicate symbols, and ¢ for constants.

The definitions of term, atomic formula and formula are the usual ones; a,
b,c, etc. are syntactical variables for terms and A,B,C, etc. for fomulas.

By an Ls-Zanguage we understand a first-order language whose logical sym-
bols include the ones mentioned above.

The symbols §,>,>*, 5, =, A and 1% are defined in the L3-languages, as
in JS‘

Free occurrence of a variable, open formula, closed formula, variable-free
term and closure of a formula are used as in [22].

The definition of a is substitutible for X im A is also the usual one.

We let bx; ... x,[2p,---,3,] be the term obtained from b by replacing all
occurrences of XysenesXy by Apseeerdy respectively; and we let AX1,,, J ,xn[a1 3
,an] be the formula obtained from A by replacing free occurrences of Xy
S by Ayyeeerdy respectively.

Whenever either of these is used, it will be implicitly assumed that Xq5ee
.,X, are distinct variables and that, in the case of Axb_“’xn[av. «v585] 8y
is substitutible for X;» 1. & 1. ..500

In the following definitions, let L be an L3-language.

DEFINITION 3.1. A structure O. for a first-order L3—language L consists
of:
i) a nonempty set |0L|, called universe of OL;
ii) for each n-ary function symbol f of L, a function £ from |CL " to |a|;
ii) for each n-ary predicate symbol p of L, other than =, an n-ary predicate

Py » such that py is a mapping from |ot|x...xjot| to {0,%,1}.

As in [22], we construct the language L(CL); define OI (a) for each variable
free term of L(0L), and define O -instance of a formula A.
We use 7 and j as syntactical variable for the names of individuals of 0.
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DEFINITION 3.2. The truth-value OL (A) for each closed formula A in L(Q)
is given by:
i) if Ais a=b, then oL (A) = 1 iff d (a) = & (b); otherwise, A(A) = 0;
ii) if A is p(al,...,an), where p is not =, then (L (A) = Pg (@(ay),...a (an));
iii) if A is 7B, then @ (A) is H.](Ol (B));
iv) if A is VB, then (I (A) is Hy (O (B));
v) if A is B v C, then 0L (A) is Hy(a@ (B), a (C));
vi) if A is a 3xB, then L (A) = max{al (B,[Z])/i « L(@)};
vii) if A is a ¥xB, then O (A) = min{a (Bx[i])/i eL(@)}.

DEFINITION 3.3. (1) A formula B of L(0L) is true in Ol (or d is a model
of B) iff @ (B) Vd‘
(2) A formula A of L is valid in Ol iff for every Ol-instance A' of A, A'

is true in & .

A first-order predicate calculus J;= is the formal system whose language
is an l.3 plus the following, with the usual restrictions (see [14]):

Axiom 6 : ¥x(x = Xx)

Aziom 7 @ x =y o> (Alx] = Aly])
Axiom 8 : Ax[a] 5 3IxXA

Axiom 9 : ¥xA o ;\x[a]

Axziom 10: 3xA = TIyxTIA
Axiom 11: ¥xA = T13x7IA
Axiom 12: T13IXA = ¥xTIA
Axtom 13: T1yxA = 3x 1A
Axiom 14: V3ixA =3xVA
Axiom 15: VYXA = ¥xVA

: -7 3 . A_DC_
Rule R3 : (3-introduction rule): SR =T
; . w o . CoA
Rule R4 : (Y-introduction rule): ToSVA
*
THEOREM 3.1. J3= 18 a conservative extension of J3.

Proo§. We apply the Hilbert-Bernays theorem of k-transforms, that can be
extended to this case.

THEOREM 3.2. J§= is an extension of the classical predicate calculus,

with connectives "I*, vV, §, o, =, 3 and V.

DEFINITION 3.4. A first-order J3—theor'y is a formal system T such that:
i) the language of T, L(T), is an L3-1anguage;
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*
ii) the axioms of T are the axioms of J==, called the logical axioms of T, and
certain further axioms, called the non-logical axioms;
iii) the rules of T are those of J§=.

A is a theorem of T, in symbols: ITTA, and B is a semantical consequence of
a set T of formulas of L(T) are defined in the standard way. If B is a seman-
tical consequence of T, then we shall also say that '"B is valid in I'.

THEOREM 3. 3. (Validity Theorem): Every theorem of a Jz-theory T is valid

in T.

4. SOME THEOREMS IN FIRST-ORDER J3-THE0RIES AND THE EQUIVALENCE
THEOREM.

DEFINITION 4.1. A J3-theory T is finitely trivializable if there exists
a fixed formula F such that, for any formula A, F o A is a theorem of T (see

2]).

THEOREM 4.1. The Js-theories are finitely trivializable.

Proof. Any formula T1(7IVA vV VA) trivializes a Js-theory.

The following results hold in any J;-theory T:

Generalization Rule: If b A, then b ¥xA.

Substitution Rule: Is }T A and A' is an instance of A, then I—T— A'.

Substitution Theorem: a) br Axq, ... ’xn[a1,.. : ,an] 2 3Xp... XA

b) kr Vx1...Van:> AX1,.,_,xn[a1,...,an]

Distribution Rule: If b A > B, then br3XA= 3xB and br YxA > VaB.

Closure Theorem: 1f A' is the closure of A, then br A if and only if by A,

Theorem on Constants: 1f T' is a J-theory obtained from T by adding new
constants (but no new nonlogical axioms), then for every formula A of T and
every sequence ey, ...,e, of new constants, by A if and only if FreAxy, . ,xp

[e1,...,en].

In the case of classical logic, the equivalence = behaves as a congruence
relation with respect to the other logical symbols. Unfortunately this is not
the case in J3-theories, for it is possible to have b A = B and WA =71B.

However we can introduce a stronger equivalence, E*, which is a J;-con—
gruence relation and thus allow us to prove a J 3—version of the equivalence
theorem (see [22]).
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o -* = = =
DEFINITION 4.2. A= B _dcf(A = B)&( JA =71B).

* : a
THEOREM 4.2, If T is a Js-theory and }T A =B, then br A if and only if
IT B.

THEOREM 4.3. (Equivalence Theorem). Let T be a Js-theory and let A' be
...,Bn by B',...,BI'1 respec-

obtained from A by replacing some occurrences of B
'
A

. ) . % , :* 1
tively. I ETB] = B]"""’T'Bn = Bn’ then lTA

Puoof. After considering the special case when there is only one such occur-

%

rence and it is all of A, we use induction on the length of A.

For A atomic, the result is obvious.

A ‘s C and A' s 1C', where C' results from C by replacements of the
type described in the theorem. By induction hypothesis, b ol ol , that is,
b C 2 Cand b C 27C". As by*Theorem 2.4, I C =7 Cand K C' =7172C,
we have 7171C = 7171C'. So 71C = 71C'.

A s VC and A' i C', with by C = C'. From by C = C', it follows that
'
*

b *C EW*L?', by Theorem 2.6. Also from b C=C
since b VC = C by Theorem 2.4. Therefore, b vC = VvC'.
Az CV Dand A' is C'V D', with k£ C = Cand kD =* p'. As by theorem

it follows that by vC = vC',

205

1

b ((C = C)&MD =D")) = ((CvD = (C VD))

and

br ((C 27CN)&(D =7D") = ((TCED) = (1C'§7D')

we have that b CvD=zC' VD' and !T"I(C V:D)/= 7 (C* v=D\).
A 7o CandA' 4e 3xC', with C =¥ C'. By Distribution Rule, by 3xXC = 2xC'
and br Yx1C = ¥x7C'. Using Axiom 12 we complete the proof.

A e ¥XC and A' is ¥xC'; with bt =y C', the proof is similar.

In the spirit of the equivalence theorem, we have the following corollaries

and remark.

COROLLARY 1. In a Js-theary T, it is possible to replace:

i) A by A;

i) 1A by A,

iii) 1(A V B) by 1AG 1B;

iv) 7°(A v B) by 1*Ag17B;
v)  ¥xA by T13x7TA;

vi) 13xXA by ¥xTIA;

vii ) IV by 3x A

viii) V3xA by 3xVA;

1x) V¥xA by ¥xVA.
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Proog. It is enough to verify that b ST A A, ITF-T*T*A E*"!‘I*A, etc.
COROLLARY 2. In a Js—theory 4 S 7 IT X =y, then, for every formula A,
A(X) can be replaced by A(y).

REMARK. Although l—]-."!*'l*A = A, it is not possible, in general, to replace
7% 1*A by A.

DEFINITION 4.3. A formula A' is a variant of A just in case A' has been
obtained from A by renaming bound variables.

*
THEOREM 4.4 . (Variant Theorem). If A' <s a variant of A, then 'T Az A,

Proog. In view of Theorem 4.3 and Corollary 1, it is enoughto observe that
*
bp3xB = 3yB [y].
Let T[T] be the J-theory whose non-logical axioms are those of T plus the
formulas of the set T.

THEOREM 4.5. (Reduction Theorem). Let [ be a set of formulas in the J-
theory T and let A be a formula of T. A is a theorem of T[T] if, and only if,
there is a theorem of T of the form B1 D LD Bn o A, where each Bi is the

closure of a formula in T.

Given a non-empty set T of formulas we let:

FV'IVV = {B | B is a disjunction of negations of closures of formulas of
the type VA, with A T}

FV'IVV = {C | C is a disjunction of negations of formulas of the type VA',
where A' is the closure of a formula of T}

THEOREM 4.6. (Reduction Theorem for non-trivialization). Let I be a non-
empty set of formulas in a Js-bheory T. Then the extension T[I‘] is trivial, if
and only if, there is a theorem of T which belongs to Ty ayw-

Proo§. The corollary to the replacement theorem gives us that every formu-
la of Ty w
theorem can be completed using the properties of strong negation.

is strongly equivalent to a formula of Ty quy The proof of the

COROLLARY. If A' is the closure of A, then the formula A is a theorem
of T if, and only if, T[V*A'] is trivial.
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5. THE COMPLETENESS AND THE COMPACTNESS THEOREMS FOK J3-THE0RIES

We study certain aspects of the J3-theories and present a Henkin-type proof

of the completeness theorem for this type of many-valued theories.

DEFINITION 5.1. If T is a J;-theory containing a constant, and if a and

b are variable-free terms of T, then:

. a‘o,\l b.=def h-f a=b;
ii) a® = {bla v b}.

DEFINITION 5.2. A canonical structure for the Js-theory T is the struc-

ture @ :

i) whose universe |0l | is the set of all equivalence classes under 'v;
0 Oy _ (e, o,

ii) f{)i(dP""an) = (t(a1,...,an)) 5

iii) Py (a?,...,nrol) is in Vd iff b p(a1,...,an).
Observe that (iii) could have been replaced by

Pa (a?,...,ag) =0 iff Ifrp(av...,an).

THEOREM 5.1. If Ol is a canonical structure for T and p(a1,. ‘s ,an) is a

variable-free atomic formula in L(T), then:

i) a(p(ay,...,a))) =0 <iff I/rp(a1,...,an)
ii) UZ§1>(;11,...,an)) =% iff lTp(a1,...,an) and hr-‘lp(a1,...,an);
iii) OZ(p(a1,...,an)) =1 2ff ITp(a],...,an) and Hr‘lp(a1,...,an).

Proog. ii) If A (p(a],...,an)) = 1 then 01('Ip(a1,...,an)) = 1. By the last
definition, pr(a1,...,an) and LT‘Ip(aP...,an).

On the other hand, if l—T-p(a1,...,an) and IT'lp(a1,...,an), also by Defi-
nition 5.2, OZ(p(aP...,an) and OZ(Wp(al,...,an)) belong to Vg Then, 01(p(a1,
.«..,an)) =% .

iii) If OZ(p(a],...,an)) = 1, then Ol("lp(ap...,%)) =0; then,lTp(ap,..
.,an) and MTr‘lp(a1,...,an).

On the other hand, if I~Tp(a1,...,an) and h%'lp(a],...,an), we have that
OZ(p(a],...,an)) belongs to Vd and OZ(‘1p(a1,...,an)) does not belong to Vd;
if 01(p(a1,...,an) =1 then O ('Ip(a],...,an)) =% and, so, IT‘Ip(a1,...,an).
Then, OZ(p(a],...,an)) = 1.

Now, (i) is immediate.

As a consequence of the theorem we obtain that there is exactly one cano-
nical structure for a J:,)-theory. Furthermore, as in the calssical case, in
order for a canonical structure to characterize the theorems of a theory, the
theory must be in some sense maximal, for there may be a clocsed formula A such
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*
that W= A, WA and Wo 1A,

DEFINITION 5.3. A formula A of a Js-theory T is undecidable in T if nei-
ther A nor T1*A is a theorem of T. Otherwise, A is decidable in T.

DEFINITION 5.4. AJi-theory T is complete if it is non-trivial and if
every closed formula of T is decidable in T.

THEOREM 5.2. 4 J3-theory T 28 complete if, and only if, T maximal in the

class of nontrivial theories.

DEFINITION 5.5. A J3—theory T is a Henkin Jo-theory if for every closed
formula 3xA of T, there is a constant e such that 3xA oA [e] is a theorem of T.

THEOREM 5.3. If T is a Henkin Js-theory, then for every closed formula
WA in T there is a constant e such that &[e] D ¥xA is a theorem of T.

Proog. As T is a Henkin J -theory, there is e, such that by 3x '1*A:>'I*Ax[e1.
We obtain the desired result, by successive applications of Theorem 2.6.

THEOREM 5.4. If T is a complete Henkin J3—theory and (L is the canonical
structure for T, then for all closed formulas A of L[T]:

i) () =0 iff HA
i1) A(A) =% iff bp A and by TIA
i) @(A) =1 iff by Aand H TIA.

Proof. By induction on the height of A. For atomic A, the result follows
from Theorem 5.1.

Case: A iz TIB. i) If 0L (A) = 0, then L (B) = 1. Thus »% 7B, that is
Iﬁ-A. On the other hand if I-f A, then since T is complete IT'I*A, and then
4 1A, b 17B, by B. Thus we have that by B and L%‘IB, from which if follows
that 0L (B) = 1 and that d (A) = 0.

ii) If OL(A) = %, then 0L (B) = %. Thus br B and br 1B, from which it fol-
lows that k1A and b A, the converse is analogous.

iii) If CL(A) = 1, then 0L (B) = 0 and thus H B. Since T is complete,
lT"l *B and thus I-TﬂB. Since k{- B, we obtain that IT'I 7B, in other words, we
have that by A and I-‘f.‘IA.

Assume next that Ht A and kr A, that is, HTTB and ky71B. Then ier, and
so by induction 0L (B) = 0, from which it follows that OL(A) = 1.

Case: AZe BV C. i) If A(A) =0 then 00(B) = 0 and 02(C) = 0. Hence
Hr C and e B, from which it follows, since T is complete, that Hr B v C. The

converse is analogous.
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ii) If 0L (A) =%, then either: @ (B) = % and (L (C) =%,

or OL(B) =% and O (C) =0,

or OL(B) =0 and & (C) = %.
Let us only consider the situation when (I (B) =% and C (C)-= 0 (the others are
analogous). The induction hypothesis gives @ that

l-T- B, I»T AB; Hfr C.
Since T is complete we obtain that i—f’l *C and I-T‘IC. From b B we get by Bvc(,
and from iT'IB and D-T'IC we may conclude that iTW(B vV Q).

Conversely, suppose that l—T B v C and I-TW (B v C). The latter gives us that
IT_lB and br1C. From the former, since T is complete, we obtain that either
b B or b C. The induction hypothesis allows us then to conclude that
aBvC =Lk,

iii) If a2 (A) = 1, then either:

. (B) =1 and L (C) =0,
or 0 (B) = 1and & (C) = %,
or 0L(B) = 1and 00 (C) = 1,

L1}

or ¢ (B) = 0 and a (C) 1.
or 0L (B) =% and @ (C) |
We will only consider the case when (L (B) = 1 and O (C) = %. The induction
hypothesis gives us that

I

brB, ¥ 1B, b C, b TIC
From the first we obtain that kx(B vV C). Suppose on the other hand that
&T"l (B v C). Then b (B A1C), from which it would follow that bT'IB, contra-
dicting that VT-TB. Thus HT-W BvQO.
On the other hand, suppose that IT(B vV C) and I-ﬁr7 (B VvV C). Then from the
completeness of T we obtain that either

|TB or iTC.

From VT'I(B vV C), we obtain that

b% 1B and UT- A,

The induction hypothesis then gives us that Z (B V C) = 1.

Case: A 2s VB. 1i) If & (VB) = 0. Then L (B) = 0. Thus l#r B; from which it
follows that lﬁTVB. Converse, analogous.

ii) @ (VB) is never .

iii) 0L (VB) = 1 then either 0L (B) =% or L (B) = 1.

Subcase: 0L (B) =%. Then b B and D-TWB, from which we obtain 'T VB and
br V7B, Using that T is complete we conclude by VB, and by VB,

Subcase: (L (B) = 1. Then lTB and MT"IB. Suppose that I»T'IVB. Then since
bt B, we should obtain that T is trivial, which we are assuming it is not. Thus



MT‘IVB and b VB. On the other hand, suppose that br A and VT"[A. That is sup-
pose that
}TVB and b(r- VB,

Then br B, and either lT1B or .1fr B. In one case the induction hypothesis gives
that 0L (B) = %, and in the other that 0L (B) = 1. Thus ¢ (VB) = 1 in both. That
isa @ = 1.

Case: A 7g 3IxB. i) If A (A) = 0, then for every variable-free term b,

0 (B, [b]) = 0, and by induction hypothesis this is equivalent to My B [b]. As
T is a Henkin theory this gives us that Wy 3xB. The converse does not need to
use that T is a Henkin theory.

ii) If @ (A) = %. Then for all b we have that @ (B,[b]) < %. The inductimn
hypothesis then tells us that

(1) for those b such that of (Bx[b}) =1 (and there is at least one such):
br B, [b] and ;1B [b].

(2) for the remaining b's: ¥y B [b] and (because T is complete) kx71B [b].
Thus we have that for all constants b: by 1B [b]; from which it follows that
PTVX B, i.e. l—,l—, 3xB. From (1) we obtain br 3xB.

Conversely, suppose that |.TA and iT'TA; that is b 3xB and IT-HXB. Using
that T is a Henkin theory and induction, we obtain an e such that kB, [e],
I-T'IBx[e], and thus O (Bx[e]) = 1. A proof by contradiction shows that there
is no b such that 0L (B [b]) = 1. Hence 0L (3xB) = %.

iii) If & (A) = 1, then there is at least one b such that Ol(Bx[b]) = 1.
From the induction hypothesis, we obtain that b B [b] and ¥:71B, [b]. From the
former, we obtain that b 3xB. Suppose next contrary to what we want to show,
that bx73xB. Then by 3x 1B and thus kp71B,[b], a contradiction. Thus ¥r713xB.

COROLLARY 1. Let T be a complete Henkin Js—theory, O the canonical
structure for T and A a closed formula of T; then, A (A) belongs to Vd if and
only <f A is a theorem of T.

COROLLARY 2. If T ig a complete Henkin J3-theory, then the canonical
structure for T is a model of T.

By the abeve corollary, to prove the completeness of a JS-theory T, as in
the classical case, it is enough to show that it is possible to extend T to a
complete Henkin J S-theory.

Thus, given a nontrivial J 3-theory T, we will first extend it, conservative-
ly, to a Henkin J 3-theory Tc’ and then extend it to a complete Henkin J3-theo-
ry T;. -

Given a Js—theoxy T with language L, we proceed as in [22] and define the



special constants of level n, the language L. with the special constants, and
introduce the special axioms for the special constants.

DEFINITION 5.6. Let T be a Js-theory with language L." Then T_ is the Hen-
kin J;-theory whose language is L. and whose nonlogical axioms are the nonlogi-
cal axioms of T plus the special axioms for the special constants of L..

THEOREM 5.5. TC is a conservative extension of T.

Proo§. By Theorem 4.4 and by Theorem 5.3, the proof is similar to the clas-

sical one.

THEOREM 5.6. (Lindenbaum's Theorem). If T <s a nontrivial J3-theory, then

T admits a complete simple extension.
Finally, we can obtain the completeness theorem for J3-theories.

THEOREM 5.7. (Completeness Theorem). 4 Js-theory T s nontrivial if, and
only if, it has a model.

Proog. If 0L is a model of T and A is a closed formula in T, then
oL (A§ ‘I*A) = 0. So, by the validity Theorem, A&'!*A is not a theorem in T. Then
T is nontrivial.

If T is nontrivial, then we extend T to T., which is a non-trivial Henkin
Js-theory. By Lindenbaum's Theorem, we can extend TC to a complete Henkin J3-
theory Té. By Corollary 2 to Theorem 5.4, T'C has a model 0. Therefore,

a [L(T) is a model of T.

THEOREM 5.8. (Gddel's Completeness Theorem). 4 formula A in the J 5-theo-

‘ry T is a theorem in T if, and only if, it is valid in T.

Proog. By supposing that the closed formula A is a theorem in T and using
the above Completeness Theorem, we shall show that there is no model of T in
which A is not valid.

Therefore, suppose that the closed formula A is a theorem in T.

By the corollary to the Reduction Theorem for non-Trivialization, b A if
and only if T[ IVA] is trivial; which, by Theorem 5.7, is equivalent to T[ 1VA]
not having a model.

On the other hand, a model of T[ 1VA] is a model GLof T in which -1VA is
valid, that is, a structure 0L such @(VA) = 1. This is equivalent to OL (VA)
=0, and so & (A) = 0.
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Therefore, b A if and only if A is valid in T.

COROLLARY 3. If T and T' are Js-thearies with the same language, then T'

is an extension of T if, and only if, every model of T' is a model of T.

THEOREM 5.9. (Compactness Theorem). 4 formula A in a Jz-theory is valid

in T 2f, and only if, it is valid in some finitely axiomatized part of T.

COROLLARY 4. 4 Js—theory T has a model if, and only if, every finitely

axitomatized part of T has a model.
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