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SEPARABLY REAL CLOSED LOCAL RINGS

André Joyal and Gonzalo E. Reyes*

It is well known that several types of ''variable reals' arising in topos
theory (Dedekind reals, Cauchy reals, smooth reals, etc.) are not real closed,
in the sense that a polynomial (with "variable real' coefficients) may change
sign in an interval without having a zero in that interval.

This phenomenon stems from the fact roots of polynomials are not, in general
continuous functions of the coefficients, as the example of the cubic x3+px +q
shows. Indeed, there is no continuous function x(p,q) such that

3
x(p,a)~ *+ px(p,q) +q =10
in a neighbourhood of p = 0, q = 0. This is most easily visualized by looking at

the catastrophe map X (''the cusp')

x: {(p,q,x) = R:,’|x‘-5 +px +q=0}~ R?

defined by

x(p,q,x) = (p,q)-

surface x3 +px+q=0

* Researeh partially supported by the Natural Sciences and Engineering Research
Council of Canada, and the Ministére de £'Education, Gouvernement du Québec.

107



x curve 4p3 + 27q2 = 0.

It is obvious that X has no continuous sections in any neighbourhood of p = 0,
q =0 (just goaround a circle with centre (0,0) in the (p,q) plane).

This phenomenon has the following physical interpretation: the positions of
equilibrium of a dynamical system given by the potential

4 2

do not depend continuously on the parameters p, q. In pictures.

VW WV

For more information on this subject, the reader may consult Poston-Stewart

(1978) .

The question then arises as to the appropriate topos theoretic notion of
"real closed field". A.Kock (1979) has proposed the notion of '"separably real
closed local ring', meaning a commutative ring with unit which is local, Hense-
lian and has a real closed residue field. We recall (see e.g. Raynaud (1970))
that a ring A is local if it has exactly one proper maximal ideal m,. A is Hen-
selian if any simple root in its residue field kA = A/my of a polynomial
p € A[t] can be lifted to a (necessarily unique) root of p in A.

To show the appropriateness of his notion, Kock (loc.cit.) proves that

(i) it generalizes the notion of a real closed field, which is just a sepa-
rably real closed field,

(ii) various sheaves of continuous, C”, analytic,... real functions in appro-
priate spatial toposes are examples of this notion,

(iii) it is coherent (see e.g. Johnstone (1977) or Makkai-Reyes (1977) for this
notion),

(iv) it is --stable (or infinitesimally stable) in the sense of Kock (1979).



A.Kock (loc.cit.) also conjectured that the object of Dedekind reals, in an
arbitraty elementary topos with a natural number object, is a separably real
closed local ring (object). For the particular case of Grothendieck toposes,
this conjecture was verified by P. Johnstone (1979).

In this paper we prove Kock's conjecture, as well as related results about
Cauchy reals and smooth reals.

Our main tool is a strengthening of Tarski's theorem on elimination of quan-
tifiers in real closed fields, due to Coste and Coste-Roy, Delzell, Bocknak,
and Efroymson (see e.g. Coste and Coste-Roy (1979)). This result provides a new
coherent axiomatization of the notion of the title which is the key for the
whole proof.

Throughout the paper, we shall use the set theoretical language as described,
e.g. in Boileau-Joyal (1981).

1. THE COHERENT AXIOMATIZATION.

We say that a local ring A is ordered if it has an order relation, <, which
is compatible with the ring operations and. induces a linear order in its residue
field k, = A/mA. More explicity, < is assumed to satisfy the following axioms:

1>0

(x>0Ay>0) > (xty >0 A xy >0)

(x invertible) + (x > 0 v -x > 0)
We define x > y« x-y > 0.

Our axiomatization will be formulated in the language L of the theory of
ordered ring with +, -, «, 0, 1, > as non logical symbols.

If A is any ordered local ring and ¢ any formula of L whose free variables
are among X = (x1,...,xn), we let
' A(8) = {fa< A"A k ¢[a]}
be the "extension of ¢ in A",

The strengthening of the theorem of Tarski mentioned in the introduction

is the following.

THEOREM. Let ¢ be a formula of L whose free variables are among X = (x1,.
"’)S’l) . Assume that Rx(¢) < R® is open (in the usual topology). Then there is
a formula ¢o having the same free variables of ¢ and of the form

\i' J/\ Pij x) >0
where thé Pij are terms (t.e. polynomials) and such that K E y¥x(¢ ¢O), for
any real closed field K.
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The cructal property of such a formula LK is this: it is preserved and re-
flected by local homomorphisms (i.e. homomorphisms which reflect invertible el-

ements) between ordered local rings.

To state our main result, we shall identify a monic polynomial p(t) = t" o+
p]tn_1+.. P, with the sequence p = (p],. ..,pn) of its coefficients. Consider
the following formula of L:

8(p) = (p(0). p(1) < 0) A (p'(0) > 0) A (p' (1) > 0) A ¥x(0<x<1 > p' (x)>0).

Using the previous theorem and the fact that Rp(a) c R is open (in the usual
topology), there is another formula 80 of L of the form v A Pij (p) > 0 such
that K E v¥p(§+ 60) , for any real closed field K. 1)

PROPOSITION. If A is any ordered local ring, them A E Vp((So + §).

Proof. Assume that A E 60[p]. From the theor$m and the crucial property of
8, we conclude that ]-(A E 6[(iorA) (p)] where A l>kA is the canonical map
and kA 2 P RA is the inclusion of kA in its real closure IEA. A fortiori,
ky F 8[ty(p)] and this implies that A k &[p].

THEOREM. The following is a (coherent) axiomatization of the notion of a
separably real closed local ring:
(i) commutative ring with unit axioms,

(ii) lZocalness:
=

(0 =1)
{(X invertible) v (1-X invertible),
(iil) order:
1>0
(x>0 A y>0) > (x+y > 0 A x*y > 0)
(x invertible) + (x>0 v -x>0),

(iv) do(p)~>3x(0<x<1 A p(x)=0 A p'(x)>0).

(Notice that, since p = (pl,. .. ,pn) is a sequence of n elements, (iv) is actual-
ly an infinite set of axioms,one for eachn = 1,2,...)

Proo§. Assume (i) - (iv). Let p ckA[t] be either p = tz—d, with § > 0 or
a monic polynomial of odd degree such that (p,p') = 1. Going over to the real
closure kA L, RA’ we find a simple root y of p in IZA. In pictures:
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for some interval (a,B) such that p' > 0 throughout that interval (this is al-
ways possible, by changing p to -p, if necessary). Using the transformation
ut o+(B-a)u, we may assume that o« =0, B =1,y «(0,1), i.e.

. ky B 8 [i].
By the crucial property of 60 (reflection under local homomorphisms between or-
dered local rings)
Ak 8 [p],

where p « A[t] is any lifting of p to A.

From (iv), P has a simple root in A whose image in kA is a (simple) root of
p = k,[t]. This shows that k, is real closed.

To show that A is Henselian, let a « k, be a simple root of p = A[t]. Since
ky is real closed (as just proved), k, F SO[TA(p)] (using a transformation of
the form u+ a+(B-a)u again). Hence A E GO[p] and so there is a simple root
ae Aof p. If TA(a) = a, there is nothing else to prove; if not, write p =
(t-a)q in A[t] and use induction on the degree of p.

The proof in the other direction is obvious.

2. APPLICATIONS TO VARIABLE REALS.

COROLLARY 1. (Kock's conjeture). The object RD of Dedekind reals in any
elementary topos with an object of natural numbers is a separably real closed

local ring.

Proof. It is well known that RD satisfies axioms (i) - (iii) (see, e.g.
Johnstone (1977)). Assume that RD I=<So[p]. Since 60 + § is (equivalent to) a
coherent sequent and is true for all local ordered rings (whose theory is co-
herent), then it is true in RD by the Metatheorem of Makkai-Reyes (1977). There-
fore RD k= &[p] and the result follows from the following.

R
LEMMA. Let f e RD D pe q locally uniformly continuous funetion such that
(1) x <y~ £(x) < £(y)
(2d):£(%8) 5/

(iii) £(-=) = _w} in the obvious sense.
Then £ is a homeomorphism.

Proof. Just check that, for each r < R, the pair {a € Q|f(a) < 1},
{a € Q|f(a) > r} constitutes a Dedekind cut.

COROLLARY 2. The (object of) Cauchy reals, RD’ in any elementary topos E

with natural number object is a separably real closed local ring.

Proo§. Let Sh(NU{=}) be the E-topos of sheaves over the Alexandroff com-
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pactification of N e E. The (object of) Dedekind reals (resp. the algebraic
reals) will be denoted, in both toposes, by RD (resp. AR) . Let R € Sh(NU {=})
be defined by

R=1{xe RDHIX e AR] o N}

More precisely
R(V) = {xe C°(V,Ry) | vxe NnV(a(x) = Ap)}

for all Ve O(NU{=}). As an €tale space, R has the following representation:

AD{

\

. . . « s+ e s s s e s s e

0 1 2 3 n *

It is immediate that R e g, the germ at », is isomorphic to the ring of
Cauchy sequences of AR modulo of Frechet filter of cofinite subsets of N.
Since every algebraic real has a decimal expansion, a diagonal argument shows
that the quotient of R by the Cauchy sequences converging to 0 may be identified
with the Cauchy reals:

R —«»RCE .

lurthermore, since separably real closed local rings are closed under non-
trivial quotient, it is enough to prove that R, is such a ring. On the other
hand, since this notion is coherent and the operations of taking germs preserves
coherent logic, we only need to prove that R e Sh(NU {»}) is separably real -

closed. This is a consequence of the following.

LEMMA. Let Ry > R, be a local monomorphism between separably re.l closed

local rings. Then R = {x « R/,|[[x = R]]] c U} Zs again such a ring, for all U > 1.

Proof. Only axiom (iv) needs a proof. Let p «R[t] be a monic polynomial of
degree n such that R k& _[p]. Since R, is separably real closed, the unique root

in (0,1) =R, of any monic polynomial satisfying 60 defines a morphism

n
£: {p= Ry | Ry, F8 [p]}—~ R,

whose restriction to R']1 Ties in Ry (given that Ry is separably real closed).

But [p e R'I’I] > U and so [&(p) e R‘]] o2pe R’]]]] 2 U, i.e. the wique root of
p in (0,1) lies in R. O

To formulate our next result, let ¢ eE be the (internal) theory < =
{R": n e N} whose n-ary operations are CRMR) < RRn, the (internal) smooth
fuctions from R into R. (We are using R to denote the object of Dedekind reals
V) =
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A (C-ring in E is an (internal) functor A e EC"0 which preserves products.
A is local if and only if A(R) is a local ring (object) in E.

COROLLARY 3. 4ny local Cm-rring in € is separably real closed.

Proog. There are two sources of difficulties in this proof. First, the the-
ory of separable real closed local rings was formulated by using < as a non-log-
ical relation symbol. We need to relate > with smooth functions, which are all
what Cw-rings know about. This is easily done, by constructing ( as usual) a
"'characteristic' function of the open set {x e R|x > 0}, i.e. a function
X e Cw(R,R) such that

x>0 iff x(x) invertible.

We now reformulate the axioms for a separably real closed local rings in terms
of x:
(i), (ii) as before,

(1ii) x(1) invertible
(X(x) invertible ax(y) invertible) » (X(x+y) invertible a X(X.y) invertible)
(x invertible) + (X(x)+X(-X) invertible)
(X(x) Znvertible) > (X invertible)

(iv) replace "x > 0" by "x(x) <nvertible" throughout.

Now comes the second difficulty: our axioms are not equations and hence do
not hold, a priori, in a Coo-ring. Our solution (lemma 3) is to show that axioms
of this type are consequences of equations true in R.

We need some auxiliary results.

LEMMA 1. (Existence of bump functions). For all e«R, € > 0 there is
1% Cm(R,R) such that
0Zf |x] > ¢
r (x4 >0 if |x| <e
=14f x=0.

In particular, 1_(x) s invertible if and only if |x| < e.

Proo§. The usual proof which starts from the function
2
e i x>0
f(x) =
if x € 0.
is constructive and valid in E. Furthermore, such an f is clearly defined on Q

and is uniformly continuous. Hence, it has a unique extension to R.

LEMMA 2. et ¢ = C(RY) and U = {x € R*| ¢(x) invertible}. Then
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R /yo -1 = ).
Proof. Let p: Cm(Rn) + €(U) be the 'restriction" map defined by

PECR,Y) = £(X,30)-

We claim that p is surjective, i.e. any h e C"(U) may be "extended" to some
fe L“(Rnﬂ) . The argument below was suggested by Ngo van Qué.

let h e C°(U). Define, for e > 0,

r_(y- ﬂ)‘(T)h(x) if ¢(x) invertible
f(x,y) =
if |ye()-1] > e[¢(x)].

Using the fact that R is an ordered local ring, one easily checks that

fe Cm(RnH). Indeed either |¢(x)| < ETI]y_I and hence |y¢(x)-1| > e|¢(x)| or

[¢(x)]| > T(e_;lLyT , which implies that ¢(x) invertible. Clearly,

h(x) = f(x,%@—) for all x e U.

Assume now that f e Ker(p). Using Hadamard's lemma for f e Cw(RHXR,R):
1
£Oot) - £(x,8) = (t-5) [ 2E(x, s+ (t-s)u)du
0

we conclude the existence of some f1 S C°°(Rn+z) such that

U 1
f(x,y) - HX’W) = 5o 1Y 5 -
Define
% if y¢(x)-1 invertible
v(x,y) = &t Ly
x!)’) i ;
_1_______x__ if ¢(x) invertible
o(x)
Once again, it is easily checked that v Cw(Rn”). Therefore, f(x,y) =
v(x,y) (yo(x)-1) e (yo(x)-1).

LEMMA 3. Let ¢(x), 6(x,z), V(xX,t) be smooth functions. Assume the exis-
tonce of some h € (fm(U) such that 8(x,h(x) = 0 and Y(x,h(x)) invertible, for
all x € U, where U= {x € R? | $(x) invertible}. Then any Cw—m'ng satisfies the
sentence:

¥x(¢(x) Znvertible » 3z(0(x,z)=0 A Y(x,z) invertible)).
Preof. By Lemma 2, we can '"extend" h(x) to f(x,y) in such a way that
8(x,f(x,y)) = 0modulo (y$(x)-1)
and

v(x,f(x,y)) invertible modulo (y¢(x)-1).

In other words, there are smooth fumctions v, Yy and U)1 such that the following
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ions are valid in R:
8(x,£(x,y)) = v(x,y) (yo(x)-1)
‘P(X,f(xy)’))‘lﬁ (X,Y)'1 = V1(X,)’) (Y@’(X)'U-

Any Cm-ring is a model of these equations.

To finish the proof of Corollary 3, we notice that all axioms for separably

real closed local rings, as reformulated in terms of X, are of the form stated

in Lemma 3. The result thus follows from Corollary 1.
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