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ON INTUITIONISTIC SENTENTIAL CONNECTIVES I

E.G.K. Lopez-Escobar

INTRODUCTION.

Recently there have appeared a series of articles on a non-classical logic,
called the Heyting-Browser Logic (H-B L), see [2], [3], [S] and [6]. The H-B
Logics are obtained by the addition of new sentential connectives to intuition-
istic logic so that the resulting Lindenbaum algebras enjoy some duality prop-
erties.

In a pseudo-Boolean algebra A = <A, n, U,=> 0 >, the element a=>b is the
pseudo-complement of a relative to b and has the property that for every x e A:

x < a=b iff anx gb.

The dual notion to the pseudo-complement is the pseudo-difference. The pseudo-
difference of b and a is denoted, when it exists, by 'b = a' and it has the

property that for every xe A:
x>b=a iff aux > b.

As is well known, a Boolean algebra always has both pseudo-complements and
pseudo-differences. On the other hand, pseudo-Boolean algebras (also called Hey-
ting algebras) have pseudo-complements but may fail to have pseudo-differences.
The dual of Heyting algebras, the Brouwerian algebras, have pseudo-differences
but may fail to have pseudo-complements.

The fusion of Heyting algebras and Brouwerian algebras are called semi-Boo-
lean algebras; that is, A = <A,n, U,=>, =, 0, 1> is a semi-Boolean algebra iff
<A, N, U,=> 0> is a Heyting algebra and <A,N , U,~, 1> is a Brouwerian algebra.

The Heyting-Browver Sentential Calculus, H-B SC, is the extension of the
Intuitionistic Sentential Calculus, ISC, obtained by adding a new sentential
connective — to the language. The axioms and rules of inference were chosen so
that the resulting Lindenbaum algebras are semi-Boolean algebras.

An interesting development of the H-B SC, obtain by C. Rauszer in [6], is
that there is a complete and sound semantics for H-B SC in terms of Kripke
models. The condition for a formula (A = B) to be forced (or satisfied) at a

node N of Kripke model K = <K,<,...> is given by:
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K,N - (A=B) iff IN'y, <N[1(,1\1' = A& K,N' b~ B].
From the Kripke semantics for H-B SC it immediately follows that H-B SC is a
conscrvative extension of the ISC. Thus it would appear that - might be consid-

ered as a new intuitionistic connective.
Unfortunately in a (complete) semi-Boolean algebra we have the following

distributive law:
N;bua,) =bu ﬂiai
so that it is not surprising that in the H-B Predicate Calculus the schema:
¥X(B v Ax).> .B v ¥xAx,
is provable, and thus H-B PC is not a conservative extension of the Intuition-
istic Predicate Calculus, IPC. Thus we have second thoughts on whether = should

be considered as an intuitionistic sentential connective.

This lecads to the following problem:

PROBLEM. Suppose that S is a schema, essentially involving quantifiers,

such that S is provable in the Classical Predicate Calculus, CPC, but not in the

IPC. Then, (s there a sentential commective ® (with associated rules) so that
ISC + & i a conservative extension of ISC and IPC + & + S?

Possible examples for S are: [P >3xQx. >.3x(P 2 Qx)] and [vx 71 7Px.o.
T 1¥xPx]. A reason why we believe it may be possible, at least for some schemas
is the following observation (suggested to us by the corresponding property for

semi-Boolean algebras).

THEOREM. If H Zs an extension of the IPC such that there is a binary oper-
ation ¥ oon the formulas of H such that for all formulas A,B,C of the first-or-
der language:

H+ FAB)> C iff H+ A> (B v ();
then the schema (restricted to first-order formulas) :

yx(P v Qx). =2.P v ¥xQx
t5 provable in H.

Prnov4. lLet P,Qx be formulas of IPC and let a be an individual parameter

which does not occur in ¥x(P v Qx), nor in F(¥x(P v Qx),P). Then:

IPC + ¥x(P v Qx).2.P v Qa
HE ¥(PvQ.2.PvQa
H  F(¥yx(P v Qx),P) 2 Qa
H - ¥x[F(¥x(P v Qx),P) = Qx]
H — F(¥x(P v Qx),P) 2 ¥xQx



HF ¥x(P v Qx).>.P v ¥xQx.

1. SENTENTIAL CONNECTIVES IN INTUITIONISTIC LOGIC.

Before we can decide what it is meant by an intuitionistic sentential con-
nective, we must have some agreement on what is understood by intuitionistic
logic. And to define "intuitionistic logic" one must first define intituitionism
and intuitionistic mathematics. Troelstra [8] suggests the following:
"Intuitionistic mathematics" is mathematics consistent with L. E. J. Brouwer's
reconstruction of mathematics.

"Intuitionism' refers to the body of concepts used in the development of intui-
tionistic mathematics.
"Intuitionistic logic'" is a formalization of (a part of) intuitionism.

It would thus appear that the place to look for intuitionistic connectives
is in "Intuitionism' rather than in Intuitionistic Mathematics or Intuitionis-
tic Logic. Since the principal activity in Intuitionistic Mathematics is obtain-
ing constructions (that prove, or justify, mathematical assertions),we find
that the concept "the construction c proves A" is one of the fundamental con-
cepts of Intuitionism. Or in other words, Intuitionism encompasses some, per-
haps informal, theory of constructions T. We shall further assume that in T

there are (possibly partial) predicates of the form:

w(c,r61) read: the construction c proves 0

nA(c) read: the construction C proves A,
and (possibly partial) operations of the form:

c'd = the result of applying the construction c to d ,

c:d = the ordered pair of the constructions c and d (also a construction).

1.1. Intuitionistic sentential connectives.
L]

The conditional is usually the most problematic of the.connectives. However
in classical logic, once one accepts the truth tables then the mysticism of the
conditional, as well as of the other connectives, disappears.

Similarly for intuitionistic logic. The intuitionistic conditional (A = B)
is explained by giving the conditions under which a construction proves (A= B);
1ve.

LN LR SLICRNGCRENCEDE
And correspondingly for the other connectives v, a, L. For "new' connectives we

can then proceed as follows:

Suppose that P is a sentential parameter and that Cp(a) is a formula of the
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theory T of constructions in which there is at least one occurence of p- Then
Cp(a) can be used to define a unary sentential connective C by stipulating that
for all formulae A of the extended language:

TTQA(c:d) iff 7(c, Cy(d"),
where CA(d) is the formula obtained from Cp(a) by replacing all occurrences of
P by A, and all occurrences of a by d.

Given a language L, then by L + C we understand the extension of L obtained
by adding the (unary) sentential connective C ; SC is the sentential language
with the connectives A, v,5, and L.

NISC is the natural deduction axiomatizacion of ISC, in the language SC (see
Prawitz [1]).

1.1.1. DEFINITION. 4 sentential comnective (, is axiomatizable w.r.t. T
Lff there is a [inite set R of rules such that for every formula A of SC + C ;

72f NISC + R A then there is a construction c such that in T, NA(C).

1.1.2. DEFINITION. Suppose that C is an axiomatizable comnective,R its
associated rules and H an extension of intuitionistic logic not containing the
connective C . Then the connective ( is an intuitionistic sentential connective

w.r.t. H Zff (H*R) is a conservaiive extension of H.

1.1.3. DEFINITION. C and ite associated rules, is an intuitionistic sen-
tential connective iff C Zs an intuitiomistic sentential connective W.T.t. every

intuitwonistic logic H such that H does not contain C.

?. THE SENTENTIAL CONNECTIVES r, O, < AND MODELLINGS.

In the H-B PC the unary connective ™ can be defined by mA = (( Lo1)-A)
and the corresponding condition in the Kripke models is:
KN = mALs] iff ANy, (KN e ATS]D,
where s is an assignment of the individual parameters of A to the individuals
at the node N. It is almost immediate from the above that for it to make sense
the Kripke model must be one of constant domains, otherwise K,N' j~Afs] might
fail for the wrong reasons. And it is well known that the formulae valid in all
Kripke models with constant domains is not a conservative extension of the IPC.
Thus any attempt to discover, through the use of Kripke models, if there is
an intituitionistic connective corresponding to [~ appears to be doomed from
the start. Nevertheless the Kripke models give us a hint of what to look for.

Ihe interpretation of Kripke models as stages of positive research (see [6],
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page 30) give us: to assert MA at stage N we need to know that there exists
an earlier stage N' such that our information about A is not sufficient to ver-
ify A at stage N'.

Since under most interpretations, c and d come before c:d, the above remarks
suggest that a possible formula Cp(a) for the connective ™ is ‘lnp(a) so that:

mepc:d) Aiff m(c, Tam (@)7). (%

Unfortunately, if we wish to use (*) in order to discover an axiomatization
for r we must first develop part of the theory T of constructions and the cur-
rently available theories of constructions are quite complicated.

Thus we shall use a more ad hoc method for obtaining an axiomatization.
Namely, we take the Beth semantics, which is complete and sound for IPC and
which uses constant domains, and try to accomodate the connective . The seman-
tics then suggest a set R of rules so that NISC+R is sound and complete. Once
we have a set R of rules we can return to the theory T of constructions and ver-
ify that R is indeed an axiomatization (in the sense of definition 1.1.1).

As a matter of fact, the Beth semantics leads us to another connective
(which is inter definable with ™) and which, in certain respects, is much more

natural.

2.1. Beth models for SC+I .

We extend the usual definition of satisfaction (forcing) in Beth structures
to formulae of SC+I™ by adding the clause:

BN - rA[s] iff aN'y, \(N(B,N' K Als]).
Then we define:
VAL = {A| for all Beth structures B and all assignments s in B: B -A[s]}.

An induction on the complexity of the formula A of SC+r~ give us the fol-

lowing:

2.1.1. LEMMA. For all Beth structures B,

(1) I1fB,NI-A and N ¢ N' then B,N' I-A
(2) B,NI-A Zff VBN€83t(B,ét I-A),
vhere B ranges over paths through B, "N € B'" expresses that the node N belongs

to the path B and Bt is the node <B0,B1,...,B(t-1)>.
2.1.2. DEFINITIONS. OA = —IrA, <A = 1 7A.

2.1.3. COROLLARIES.
(1) BN WA iff BIHAiff Bl A
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(2) B,N OA iff WN'(B,N' A) iff B I-A iff B I-OA.
(3) BN <A ff IN'(B,N' I-A) iff B I-OA iff B - OOA,

2.1.4. LEMMA. The following schema belong to VAL:

(1) OA>A. (6) A = T1DA.
(2) A>OA. (7) Av A,

(3) O(A>B).>.0A>DOB. (8) 1A = QA
(4) UA> OOA. (9) <©0OA> OA.
(5) CA> OOA. (100 QA v T10A.

2.1.5. LEMMA. There are instances of the following schemas which do not

belong to VAL:

(1) A>0OA. (5) (OA>0OB) oO(A>B).
(2) <&ADA. (6) MOA> OTA.
(3) O(AvB).>.OAv OB. (7) 1O 1A > OA.

(4) C IxAx = 3xUTAx.

2.1.6. DEFINITION. 4 formuia A of SC+I~ Zs essentially modal (e.m.) <ff
etther:
(i) Jfor some B, A =0B, or
(ii) for some B, A =< B, or
(iii) for some em B and C, A= (Bv C) or A= (BACQ), or
(iv) jor some c.m. B, A = 3xB or A = ¥xB, or
(v) Ais L, or
(vi) for some €e.m, B, A= "B (=B =>1).

2.1.7. LEMMA. If A is an e.m. formula then (A2 OA), Av T1A and A = OA,
all belong to VAL.

From the above results we see that the sentential combinations ™1 and
I~ 71 behave as modal operators. Since modal operators are better understood
than weak (paraconsistent) negations and since according to lemma 2.1.4 T A
is (semantically) equivalent to ~T10OA, we shall now change to the language
PC(O) in which O is a sentential comnective and I, < are abtbreviations for
10, 077, respectively. The definition for the satisfaction of OA in Beth

models is given by 2.1.

2.2. Rules of inference for [J .
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Restriction on the OT rule: Every undischarged assumption formula on which A
depends must be an essentially modal formula.

Restriction on the OF rule: B and every undischarged assumption formula on
which B depends (except possibly A) must be an essentially modal formula.

2.3. Some theorems of NMPC.

By NMPC we understand the system of natural deduction obtained by adjoining
the rules 2.2. to the intuitionistic system.

2.3.1. THEOREM. The following schemas are provable in NMPC:
(M Av ra.
(2) 1710A> A
(3) GAAO(A>B).>.B provided B is an e.m.f.
4 ©OA> 1O7A.
(5) Oo~1B> T10OB.
(6) <A = T107A.
(7) <0OA > OA.
(8) (A= 1gA=7T103 A
9) 1A= 0A
(100 OAv T10A
(1) Av 1A, if A is an e.m. f.
(12) A=DA, if Ais an e.m. f.

2.4. Soundness theorem for NMPC.

For every formula A of PC(O), every Beth structure & and every assignment
Sind :
if NMPC A then L~ A [S].

Proof. By induction on the length of the derivation in NMPC.

2.5. Completeness theorem for NMPC.

We prove the (weak) completeness theorem in the form that if a sentence S
of PC() is not provable in NMPC then there is a Beth structure irs such that

iSHS.

’
2.5.1. DRAMATIS PERSONAE.
(1) S, an wunprovable sentence of NMPC.



(2)
(3)
(4)

(5)
(6)
(7
(8)
(9)
(10)
(amn
(12)

(13
(14)

(15)

s* = rs (= 10s),

%
QS = the (finite) set of quasi-subformulae of S ,
F=QU{1G: Geq}U{OG: 6G=QS}U{1OG: G= QS}*
U{D1G: GeQSHU{1BG6: G=QSt U {1}
L = {A: A is a formula and A is a substitution instance of some G  F},
Par (6) = the set of individual parameters ocurring in 6,
Ly = {A: Ae L and Par(A) < {ao""ak—l}}’
EM = {A: Ae L and A is an e.m. formula} ,
IiMk = liMﬂLk,

NM = L — EM,
N = L = EM,
z\o,z\1, ... is an enumeration with infinite repetition of NM, such that for

each k, Ak < NMk’

*
I = {A: A€EMand S A},
F] o I' is such that F1 < EM is consistent and for each formula 3xBx ¢=:l“1
there correspondsan individual parameter a,; such that B(a,;) « T,. Fur-
thermore if A € EM and 1“1 A then Ae I‘1,
r, =T, U{1G: G €EM and G s‘-‘F1}.

2.5.2. CONSTRUCTION OF THE TREE J.

" Basis: J(0) = J(<>) =T,. )

Recursion step: Suppose Z(ﬁ) = §(<u0,...,uk_1>) has already been defined.
Consider then the formula Ak (ch).

Case 1: A is neither a disjunction nor an existential formula then we have

3 subcases to consider.

Subcase 1: J(wn L FA-

Then we define §(u™<1>)

T uiad.

Subcase 2: }:(ﬁ)n l’k I—'lAk.

Then we define )(u™0>) = J(u).

Subcase 3: Neither subcase 1 nor subcase 2.

Then we define Z(G"<0>) = Z(ﬁ), Y(ux1>) = Z(G) U{Ak}.

Case 2: A =B, v B,. Then the definition of § is changed as follows:
Subcase 1: J(U1>) = J(W) U{A,B,}, if consistent,

J(0%2>) = J(u) U{A ’BZ}’ if consistent.

Subcase 2: No change.

Subcase 3: T (07<0>)

LW,
Tax1>) = J() U{A B}, if consistent,
J(4%2>) = (1) U{A,B,}, if consistent.
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Case 3: Ak = 3xB(x). The definitions are then:

Subcase 1: J(u™<0>) = J(u) U{A,Blay, )3,
Subcase 2: No change.
Subcase 3: J(u<0>) = (1),

J@%1>) = [(0) U{AB(ay, )}

2.5.3. PROPERTIES OF THE TREE .

(1) If AelLy, 2th (0) = k then

T L FA LEF VB3 g oy TGO AL, A
(2) If Ae Les £th (u) = k, then

L@ 0L, - A iff VBiep <]Vt > K[J(B) nL, b= A]
(3) If (A>B)el, £th (w) =k, then

L@nly (A= B) iff vB3 g vt > k[if J(Bt)nL, A then J(Bt) NL B]
(4) If AvBelL. £th (1) =k then

Z(I_Y) ML (A v B) iff vB;_o 73t > k[Either J(Bt)n L, A or

1BYNL, +B].

2.5.4. DEFINITION OF THE BETH MODEL Ig. iS is the Beth model <J,<,V>,
where ) is the tree just defined and V is the function defined on the nodes of
J such that V(<ug,...,u ) =

{A: A is an atomic formula, A« Iy and j(<uj,...,u_1>) N1 A}

2.5.5. RELATION BETWEEN THE TREE 2 AND ﬂs. If k = ﬂth(lj), then for
all formulae A € L, Y(wn L FAiff "'.‘S’ i I-A|S||, where S is the identity as-
signment.

2.5.6. COROLLARY . 1.5 I T10S and thus i’S I~ S.

2.5.7. THEOREM. NMPC is a conservative extension of NPC (Z.e. of the

intuitionistic predicate calculus).

2.7. The connectives I, and theories of constructions.

Now that we have a set of rules of inference for the new connectives we
must consider if they are an axiomatization, in the sense of 1.1.1, w.r.t. a

theory of constructions.
The,most problematic rule is (I E), which in presence of the rules for v

is equivalent to the axiom schema A v I~ A. Now the schema A v ™ A is forced up-
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on us because we are considering satisfaction in Beth structures and, at least
from a classical viewpoint, A is valid in the Beth structure B or it is not,
from which it follows that B A v A,

One way to avoid such possible unfaithful results would be to use an intu-
itionistic metatheory on the Beth structures, however we feel that would be
counterproductive since one of the pleasant aspects of Beth (and Kripke) seman-
tics is that one can operate on them using classical techniques to obtain re-
sults about intuitionistic theories.

So, for the time being, we are stuck with the axiom schema A v mA. Is there
then any reasonable interpretation of ™ in terms of constructions?

when the predicates Tys T Were first introduced by Kreisel it was stipulated
that they be decidable (the argument being that one always knew if one had a
proof or not). Unfortunately too liberal use of that principle quickly leads to
a contradiction; nevertheless it is a useful heuristic principle, so we shall
temporarily adopt it.

Originally we had stated that a construction e proved A just in case that
¢ =c:d and n(c, " —111A(d)’). Now if m, is decidable then we need not give ex-
plicitly the construction that proves "HrA(d) . In other words, it suffices that

m.

ra satisfy the conditions:

n,..A(d) iff "I'rrA(d).
Now the decidability of my also gives us:
‘H'A(d) v ’HTA(d).
llence for all proof constructions d we have that:
nA(d) v TI'I_..A(d).
From which it follows that for all proof constructions d there corresponds a

proof construction d* such that:

A v ~ald®.

OA was originally introduced as —1ITA, so WDA(c:d) iff 'n(c,'-—lnr.A(d'x)-')
iff ﬂ(c,r'lﬂﬂ/\(d'x)—’) iff m(c', rnA(d'x)“).

It now is routine to verify that relative to the informal theory of con-
structions considered above, the rules of inference given in 2.2 form an axio-
matization for O in the sense of definition 1.1.1.

Section 2.5 then give us that the connective O (with the associated rules

2.2) is a intuitionistic connective w.r.t. the Intuitionistic Predicate Calcu-

lus.

CONJECTURE. There is an extension H of the IPC such that the connective

O (with the rules 2.2) is not a intuitionistic connective w.r.t.H (see §1).
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3. CONCRETE MODELS.

A concrete model for a theory of (proof) constructions is an arithmetically
definable model, with the natural numbers.as the domain of constructions and
decidable predicates P, PA as interpretations of m, A respectively.

In Troelstra [8] a concrete model is given for IIL, the intuitionistic im-
plicational logic (with the rules (=I) and (oE)). In this section we show how
to extend the model to the extension IILm of IIL obtained by the addition of
the unary connective O and the rules (OI) and (QE) of 2.2.

3.1. The simple model for IILp.

3.1.1. SOME PRELIMINARY DEFINITIONS.
(1) PR a formal (intuitionistic) number theory including at least primite re-
cursive arithmetic. Prf(x,y) is the canonical, primitive recursive, proof pred-
icate for PR.
(2) On, the n-th numeral (in the language of PR).
(3) "A", the numeral corresponding to the Godel number of A.
(4) <A>(x) the primitive recursive term such that:

PR - <AS(O™) = oK,

where k is the Godel number of AB(.
(5) Der(x,y) is the canonical, primitive recursive, proof predicate for IILg
such that PR i—Der(On,"A") iff n is the Godel number of a derivation in IILg
of A.

(6) u is the canonical, primitive recursive term such that if n is the Godel
number of the derivation II1 of (A ®B), m is the G6del number of the derivation
1, of A, and k is the Godel number of the derivation of B obtained by (=E)
from I, and I,, then

PR — u(0",0™ = o,

+(7) 8 is the canonical, primitive recursive term such that if n is the Godel

number of the derivation I of OA and k is the Godel number of the derivation

k
of A obtained from Il by (OE), then PR  §(0") = 0°.
(8) (j,j1,j2) are primitive recursive tems forming an onto pairing system.

3.1.2. DEFINITION OF Cp' To each sentential parameter p of IIL[ we
assign a primitive recursive predicate Cp such that PR }—Cp(x) > Der(x,"p").

3.1.3. DEFINITION OF T,. To each formula A of IILQ we assign a (primi-
tive recursive) predicate T as follows:
(i) if A is a sentential parameter p, then TA(x) = Cp ),
(ii) if A is not a sentential parameter then, then TA(x) = Der(x,"A").
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3.1.4. DEFINITION OF PrA AND fA. To each formula A of IIL[Q we assign

a primitive recursive predicate PrA and primitive recursive function fA such

that:
PR lr—TA(x) :PrA(fo)
and
PR +Pr (y) > Der(Jzy VA

(i) If A is the sentential parameter p, then

Pr () =T (35,0 A (yx = j59

n

fp(XJ i(x,x).
(ii) If A= (B> C) and Prg, Pre, fp and fC have already been defined, then we

proceed as follows:

Assume that T(BDC (0 ) and PrB(y) Then Der(O B2 6)"); Der(Jzy SR
lHence Der(u(0™ »3,¥),"C") and thus Tc(u(O »3o¥)) . Therefore Prc(fc(u(O 237D
In other words, we have shown that:

n n
PR - Tpc)(00) 2 [Prg(y) = Pre(t(07,y)],

where t(x,y) = fc(u(x,jzy)). From the latter we obtain

PR - Ty ) (07 = wPry(y) = Pre(t 0", y)]. *
Furthermore, the Gddel number of the proof of (*) is primitive recursive in n
so that there is a term g such that

PR —Prf(g(x), 6T(BDC) x) = Vy[PrB(y) > PrC(t(x,y))]>(x)).

Also, using the fact that T(BDC) (x) is primitive recursive, we obtain that
there is a term h such that

PR ‘_T(BDC) (x) @ Prf(h(x) "ST(BDC) x)>(x)).

Combining the last two observations and using the u function, we obtain a prim-

itive recursive 8 such that:

PR T (5 0y (00 2 PrE(0(0),<¥y[Pry(y) > Pr(t(,y)]>().

Thus we define:
Prpsq) (x) = To0) (3,x) A Prf(j1x,<Vy[PrB(y) o PrC(t(x,y))]>(x))
f(BDC) (x) = j(6(x),x).

(iii) If A = OB and we have at hand PrB and f then we proceed as follows:
Assume that TDB(O ™). Then T (6(0 )) and hence PrB(f (s(0 ))) Let s be the
primitive recursive term such that s(x,y) = f (6(x))), then what we have shown

is that
PR T p(0™") = vy Pry(s(0",y).

Procceding as in case (ii) we then obtain a primitive recursive ¥ such that
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PR TDB(X) > Pri(?(x), <Vy PTB(S(X’Y)) > (x) .
Thus we define:
Prop(x) = Top(ix) = Pre(j 1 x,<¥y pry (s(x,))> (%)) .
fop(0) = §(9(),%).

3.1.5. DEFINITION OF P AND Py

P(X’Y) = Der(jzx’}’) A Prf(j1x’Y)
PA(x) = PrA(x).

3.1.6. THEOREM. For each B, C of IILy and natural number n:
(1) PR i—P(B:,C)(On) = P(j;0", "wy[Py(y) = Pt (y))]".
(@) PR FPp(0™) = P(3;0", "wyPy(s (y))™.
(3) If IILQ B then for some m, PR —Py(0™).

3.2. Extension to IILgF

Since Pr, is a decidable predicate , so is T1Pry and thus we may trivially
extend the concrete model to the extension IILprof IILg obtained by adding the
unary connective I~ and the following rules of inference (suggested by 2.2):

& Pr X
B B r A
S e A
A
A

The extension in the concrete model is as follows:
TFA(X) = Der(x,"I" A",
PrrA(x) = T[_A(j 2x) A ‘lPrA(x) "

We still obtain that there is a primitive recursive fr‘A such that:
PR I—Tl._A(x) = Prr.A(:q_Ax);

in fact, fl_A(x) = j(x,x). For suppose that TI'A(X)‘ Then clearly TrA(jZfl’Ax)'
Now suppose, for reductio ad absurdum, that PrA(fI_Ax). That is, suppose that
PrA(j (x,x)). Then Der(x,"A"), but Der(x,'"TA"). Thus "IPrA(f,_Ax). In other words,
we have shown that Pr'_A(fl_Ax) .
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