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ON INTUITIONISTIC SENTENTIAL CONNECTIVES I

E.G.K. Lopez-Escobar

INTRODUCTION.

Recently there have appeared a series of articles on a non-classical logic,

called the Heutinq-Broiaaer- Logic (H-B L), see [2], [3J, [5J and [6]. The H-B
Logics are obtained by the addition of new sentential connectives to intuition-

istic logic so that the resulting Lindenbaum algebras enjoy some duality prop-
erties.

In a pseudo-Boolean algebra A = <A, n, U, =>, 0 >, the elerrerrt a=> b is the
pseudo-complement of a relative to b and has the property that for every x EO A:.

x"a~>b iff a n x x b .

The dual notion to the pseudo-comp lenent is the pseudo-difference. The pseudo-
difference of b and a is denoted, when it exists, by "b z: a" and it has the
property that for every x EO A:

x~b~a iff a u x x b.

As is well known, a Boolean algebra always has both pseudo-complements and

pseudo-differences. en the other hand, pseudo-Boolean algebras (also called Hey-

ting algebras) have pseudo-con~len~nts but may fail to have pseudo-differences.

The dual of Heyting algebras, the Brouwerian algebras, have pseudo-differences

but may fail to have pseudo-conp lenents .
The fusion of Heyting algebras and Brouwerian algebras are called semi-Boo-

lean algebras; that is, A = <A, n , U, =>, .=..., 0, 1> is a semi-Boolean algebra iff
<A, n, u, =>, 0> is a Heyting algebra and <A, n , U,~, 1> is a Brouwerian algebra.

The Heyting-BroUlJel> Sentential Calcul.ue , H-B SC, is the extension of the

Intuitionistic Sentential Calculus, ISC, obtained by adding a new sentential
connective z: to the language. The axioms and rules of inference were chosen so

that the resulting Lindenbaum algebras are semi-Boolean algebras.

An interesting development of the H-B SC, obtain by C. Rauszer in [6J, is

that there is a complete and sound semantics for H-B SC in terms' of Kripke
models. The condition for a fonnula (A ~ B) to be forced (or satisfied) at a

node N of Kripke model K = <K,", ... > is given by:
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K,CJ II- (A -'- B) iff 3 N' N' '" N[K,N' II- A s K,N' If+- B] .

From the Kripke semantics for H-B 5C it irrunediately follows that H-B SC is a

consc rvat ive extension of the 15C. Thus it would appear tha.t -'- might be consid-

ered ;:IS a new intuitionistic connective.
lhlfortunately in a (complete) semi-Boolean algebra we have the following

distrihutive law:

n i (b u a) = bUn iai
so that it is not surprising that in the H-B Predicate Calculus the schema:

I/x(B v Ax). =>.B v I/xAx,

is provab le , ;]TIdthus H-B PC is not a conservative extension of the Intuition-

is tic Predicate Ca Icul.us , IPC. Thus we have second thoughts on whether -'- should

he considered as an intuitionistic sentential connective.

'111.lS leads to the following problem:

PROll LDI. Suppose that 5 is a schema, essentially involving quantifiers,
UIWIt that S is pvo uabl.e in the Classical Predicate Calculus, CPC, but not in the
IPC. Them, i IJ t.heve a eent ent.i al. connective (!) (with associated rules) so that
ISC + Ell 'i,; a c:onscrvative extension of 1SC and 1PC + (!) I- S?

Possib lc c xampl es for S are: [p =>3xQx.=>.3x(P =>Qx)] and [I/x l-iPx.=>.
- l I/xl'x]. 1\ reason why we believe it may be possible, at least for some schemas
is the fo l lowirig observation (suggested to us by the corresponding property for

scmi -Boo lean .i.l gebras) .

TI[L()[~H1. If 1/ is an extension of the 1PC such that there is a binary oper-
ation I: 011 Llte formulas of H such that for al.l. formulas A,B,C of the first-or-

II I- F(A,B) => C iff H I- A =>(B v C);

then the schema i reet ri ct ed to first-order formulas):
I/x(P v Qx). =>.P v I/xQx

is pro oable in H.

P!lOOn. Let P,Qx be fonnulas of 1PC and let a be an individual parameter

which docs not occur in I/x(P v Qx), nor in F(l/x(P v Qx) ,P). Then:

IPC I- I/x(P v Qx).=>.P v QCI

H I- I/x(P V Qx).=>.P v Qa

1/ I- r(l/xlp v Qx),P) :;) Qa

H I- I/x[rll/x(p v Qx) ,P) =>QX]
1-( I- F(l/x(P v Qx),P) :;) I/xQx



H f- IJx(P v QX). :::>.P V IJxQx.

1. SENTENTIAL CONNECTIVES IN INTUITIONISTIC LOGIC.
Before we can decide what it is meant by an intuitionistic sentential con-

necti ve, we must have some agreement on what is underst ood by intui tionistic

logic. And to define "intui tionistic logic" one must first define intituitionisll
and intuitionistic mathematics. Troelstra [8] suggests the following:

"Intuitionistic mathematics" is mathematics consistent with L. E. J. Brouwer's
reconstruction of mathematics.

"Intuitionism" refers to the body of concepts used in the development of intui-
tionistic mathematics.

"Intiui.tiorciet-iclogic" is a formalization of (a part of) intuitionism.
It would thus appear that the place to look for intuitionistic connect ives

is in "Intuitionism" rather than in Intuitionistic Mathematics or lntuitionis-
tic; Logic. Since the principal activity in Intuitionistic Mathematics is obtain-
ing constructions (that prove, or justify, mathematical assertions), we find
that the concept "the construction c proves A" is one of the fundamental con-

cepts of Intuitionism. Or in other words, Intuitionism encompasses some, per-
haps informal, theory of constructions T. Weshall further assume that in T

there are (possibly partial) predicates of the form:

1T(C, re,) read: the construction c proves e
1TA(C) read: the construction c proves A,

and (possibly partial) operations of the form:

c'd = the result of applying the construction c to d
c:d = the ordered pair of the constructions c and d (also a construction).

1.1. Intuitionistic sentential connectives.

The conditional is usually the most problematic of the, connectives. However

in classical logic, once one accepts the truth tables then the mysticism of the

conditional, as well as of the other connect ives , disappears.
Similarly for intuitionistic logic. TIle irrtui tionist ic conditional (A:::> B)

is explained by giving the conditions under which a construction proves (A:::> B);

i.e.
1T(A:::> B) (c:d) iff n(c, r1TA(X) ->- "B(d'x)').

And correspondingly for the other connectives v, 1\, ,L For "new" connectives we

can then proceed as follows:

Suppose that P is a sentential parameter and that Cp(a) is a formula of the
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theory T of constructions in which there is at least one occurence of 7fp' Then
Cp(a) can be used to define a unary sentential connective t;, by stipulating that

for all fonnulae A of the extended language:

TIC(c:d) iffrr(c, rCA(d)'),
-A

where CA(d) is the fonnula obtained from Cp(a) by replacing all occurrences of

p by A, and all occurrences of a by d.
Given a language L, then by L + (;; we understand the extension of L obtained

by adding the (unary) sentential coru1ective (;;; SC is the sentential language

with the connecti ves 1\, v, =>, and .L.

NI5C is the natural deduction axiomatizacion of I5C, in the language SC (see

Prawitz [1]).

1.1.1. DEFINITION. A sentential connective C; is axiomatizable w.r.t. T

iff there is (l finite set R of rules such that for every formula A of SC + l;;; ;
if NISC + R f-A then there is a construction c such that in T, TIA(c).

1.1.2. DEFINITION. Suppose that ~ is an axiomatizable connective,R its
associated rules and H an extension of intuitionistic logic not containing the
connective C . Then the connective C. is an intuitionistic sentential connective

w. r. t. H iff (H+R) is a conservative extension of H.

1.1. 3. DEFINITION. C; and its associated rules, is an intuitionistic sen-
tential connective iff t;, is an intuitionistic sentential connective w.r. t. every
Lntuitnoni ot i c logic H such that H does not contain C.

2. THE SENTENTIAL CONNECTIVES r, D, 0 AND MODELLINGS.
In the H-B PC the unary connective r can be defined by r A = (( .L=>.LJ-:A)

and the corresponding condition in the Kripke models is:

K,N If- r A[s] iff 3N'N' <: N(K,N' II,£-A[s]),

where s is an assignment of the individual parameters of A to the individuals
at the node N. It is almost rmredi ate from the above that for it to make sense

the Kripke model must be one of constant domains, otherwise K,N' U-·A[s] might

fail for the wrong reasons. And it is well known that the formulae valid in all
Kripke models with constant domains is not a conservative extension of the IPC.

Thus any attempt to discover, through the use of Kripke models, if there is

.UJ intituitionistic connective corresponding to r appears to be doorred from
the start. Nevcrthe less the Kripke modeIs give us a hint of what to look for.

The mtc rpre tut ion of Kripke models as stages of positive research (see [6J,
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page 36) give us: to assert r A at stage N we need to know that there exists
an earlier stage N' such that our informat{on about A is not sufficient to ver-
ify A at stage N'.

Since under most interpretations, c and d core before c :d, the above remarks
suggest that a possible formula Cp(a) for the connective r is 11lp(a) so that:

( *)

Unfortunately, if we wish to use (*) in order to discover an axi omati zat.i.or.
for r we must first develop part of the theory T of constructions and the cur-

rently available theories of constructions are quite complicated.
Thus we shall use a more ad hoc method for obtaining an axiomatization.

Namely, we take the Beth semantics, which is complete and sound for IPC and
which uses constant domains, and try to accomodate the connective r. The seman-
tics then suggest a set R of rules so that NISC+R is sound and complete. Once
we have a set R of rules we can return to the theory T of constructions and ver-

ify that R is indeed an axiomatization (in the sense of definition 1.1.1).

As a matter of fact, the Beth semantics leads us to another connective

(which is inter definable with r) and which, in certain respects, is much more

natural.

2.1. Beth models for SC+ r .

We extend the usual definition of satisfaction (forcing) in Beth structures

to formulae of SC+r by adding the clause:

B,N II- rA[s] iff 3N'N' ~N(B,N' IIf A[s]).

Then we define:

VAL = {A I for all Beth structures B and all assignments s in B: B II-A[s]}.

An induction on the complexity of the formula A of SC+r give us the fol-

lowing:

2.1.]. LEMMA.For all Beth structures B,

(1) If B,N II-A and N ~ N' then B,N' II-A

(2) B,N II-A iff \/8NE:83t(B,Bt II-A),
where 8 ranges ovei' paths through B, "N E: 8" expresses that the node N belongs

to the path 8 and Bt is the node <80,81, ... ,8(t-1».

2.1.2. DEFINITIONS. OA = IrA, <> A = riA.

2.1.3. COROLLARIES.,
(1) B,N II- r A iff B IIfA iff B II--r A.
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(2) B,N If-DA iff liN' (B,N' If-A) iff B If-A iff B II-DA.

(3) B,N If-VA iff 3N' (B,N' If-A) iff B If- OA iff B If- 0 <> A.

2.1.4. LEMMA. The following schema belong to VAL:

(1) LJ A=> A. (6) rA = IDA.

(2) A=>OA. (7) A v rA.

(3) O(A=>B).=>.OA=>DB. (8) 'OiAO'OA.

(4) OA=> ODA. (9) ODA=> OA.

(5) OA=> DOA. (10) DA v IDA.

2.1.5. LEMMA. There aloe instances of the following echemae iohich. do not
be long to VAL:

(1) A=> [lAo

(2) o A=> A.

(3) 0 (A v B).=> .C!A v [iB.

( 4) c:: 3XJ'\.x => sx 0 Ax .

(5) (0 A => DB) => 0 (A=> B).

(6) iDA=> DIA.

(7) iO ,A => 0 A.

2. i,6. DEf'INITION. A formula A of SC+r is essentially modal (e .m) iff
eit.her :
(i) for some B, A = DB, 01'

(ii) for some B, A = 0 B, 01'

(iii) for some e. m. B and C A = (B v C) 01' A = (B A C) , 01'

(i v) for some c. I.e B, A = 3xB 01' A = vxls , 01'

(v) A is 1 , 01'

(vi) foY' some e.m, B, A = IB (= B =>.1.).

2.1.7. LEMMA. If A is an e.m. formula then (A=> D A), A v IA and A = DA,

all belong to VAL.

From the above results we see that the sentential combinations I r and
r , behave as modal operators. Since modal operators are better understood

than weak (paraconsistent) negations and since aeeo ding to lemma 2.1.4 r»:
is (semantical Iy) equivalent to I DA, we shall now change to the language
PC(D) in which 0 is a sentential connective and r, 0 are al:hreviations for

10, -'0'" , respectively. The definition for the satisfaction of 0 A in Beth
models is given by 2.1.

2.2. Rules o£ inference for 0 .

(r E) B B
B
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(DE) ¥ A
(0 I) lJA

)(

(OE) OA B
B

Restriction on the 0 I rule: Every und.ischarged assumption fonnula on which A
depends must be an essentially modal fannula.

Restriction on the 0 E rule: B and every undi.scharged assumption formula on
which B depends (except possibly A) must be an essentially modal fonnula.

2.3. Some theorems of NMPC.

By NMPC we mderstand the system of natural deduction obtained by adjoining
the rules 2.2. to the intuitionistic system.

2.3.1. THEOREM. The following echemae are provabl-e in NMPC:
(1) A v rA.

(2) "lJA::::> A.
(3) 0A A 0 (A ::::>B) . ::::>.B provided B is an e. m. f.

(4) OA::::> 'O'A.
(5) O'B::::>'lJB.
(6) OA == ,O,A.
(?) OOA::::> OA.
(8) (A::::>-, 0 A)::::>, 0 A.

(9) "A::::>OA
(10) OA v ,OA

(11) A v ,A, if A is an e im.]'.

(12) A == DA, if A is an e.m.];

2.4. Soundness theorem for NMPC.

For every formula A of PC(D) > every Beth structure f.- and every assignment

S in t. :
if NMPC I-A then ;t II- A [S] •

P~oo6. By induction on the length of the derivation in NMPC.

2.5. Completeness theorem for NMPC.

We prove the (weak) completeness theorem in the fonn that if a sentence S

of PC(O) is not provable in NMPCthen there is a Beth structure t.-S such that

i.s lit S.

2.5.1. DRAMATIS PERSONAE.
(1) S, an unprovab le sentence of NMPC.



*(2) S = r S (= ,0 S) ,
*(3) QS = the (finite) set of quasi-subformulae of S ,

(4) 'I'=QSU{,G: Ge:QS}U{DG: Ge:QS}U{,DG: Ge:QS}'
U{D,G: Ge:QS}U{,OiG: G£QS} U {1}

(5) L = {A: A is a formula and A is a substitution instance of some G e: 1},
(6) Par (8) = the set of individual parameters ocurring in 8,

(7) Lk = {A: A e: Land Par(A) ~ {ao, .. ,ak_1}},

(8) EM = {A: A £ L and A is an e.m. formula} ,

(9) H\. = EMn Lk,

(10) M>! = L - EM,

(11) Ntv\: = ~ - E~\.,

(12) Ao' 1\1' . .. is an enuneration with infinite repetition of NM, such that for

each k , Ak e: N1-\.,
(13) r = {A: A <:: EM and S* I-A},

(14) r 1 =' r is such that r 1 ~ EM is consistent and for each formula 3xBx e: r 1
there corresponds an individual parane te r a2i such that B(a2i) e: I' 'l ' Fur-

thermore if A £ EM and r 1 I-A then A e:: r l'

(15) r 2 = r 1 U{ ,G: G E: EM and G ¢: r 1}.

2.5.2. CONSTRUCTION OF THE TREE L.
Basis: LCO)=L«»=r2, ,
Recursion step; Suppose L(u) = Le<uo'" .,uk-1» has already been defined.
Consider then the formula ~ (e::~),

Case 1: ~ is neither a disjunction nor an existential formula then we have

3 subcases to consider.
Subcase 1; I(~) n Lk I-Ak,

Then we define L(U~<l» = L(ti) U {Ak}.

Subcase 2: Leu) n ~ 1-, Ak,
Then we define L (u ~<O» = L (u) .

Subcase 3: Neither subcase 1 nor subcase 2.
Then we define L(~<O» = L(u), L(u<l» = L(u) U {Ak}.

Case 2: .'\ = B1 v B2, Then the definition of L is changed as follows:
SUbC;lSC 1: L(U~<l» = L(;:;) U{Ak,B1}, if consistent,

L(~~<2» = L(u) U{Ak,B2}, if consistent.

Suocase 2: No change.
Suhcusc 3: L(u<O»

L (u ~<1»

L(l7~<2>}

L (u) ,

L (u) U {Ak, B 1} ,

Leu) U {Ak,B2},

if consistent,

if consistent.
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Case 3: Ak = 3xB(x). The definitions are then:

Subcase 1: L(~"<O» = Hu) U{\:,B(a2k+1)},
Subcase 2: No change.
Subcase 3: Leli"<o» = leU),

Hli"<1» = Hli) U{\:,B(a2k+1)}.

2.5.3. PROPERTIES OF THE TREE L.
(1) If A <::Lk, R-th (li) = k then

Uli) n Lk I-A iff IISu<::S<::L 3t[Wit) nLt I-A]
(2) If A <::~, Hh eli) = k, then

L(u) n Lk I- IA iff IISUES e:Lllt ~ k[Wit) n Lt ff- A]

(3) If (A:::> B) e: ~, R-th (u) = k, then

Leli) n ~ I-(A:::> B) iff IISlie:s ELlit ~ k[if leSt) n Lt I-A then leSt) n Ltl-B]

(4 ) If A v B E ~. .tth (u) = k then

LeU) n ~ I-(A v B) iff IISliESE L3t ~ k [Either Wit) n Lt I- A or
L (St) n Lt I-B] .

2.5.4. DEFINITION OF THE BETH MODELts. is is the Beth model <L<,v>,
where L is the tree just defined and V is the function defined on the nodes of

L such that V«uo""'~_1» =

{A: A is an atomic fonnula, AE ~ and H<uo, ... ,uk_1»n~ I-A}.

2.5.5. RELATION BETWEENTHE TREE LAND 1S' If k = R-th(i7), then for

all fonnulae A E~, L(u) n ~ I-A iff~, U II-AIISII,where S is the identity as-
signment.

2.5.6. COROLLARY. ts II- IDS and thus t.S Iff- S.

2.5.7. THEOREM. ~ is a conservative extension of NPC (i.e. of the
intuitionistic predicate calculus).

2.7. The connectives r,o and theories of constructions.

Now that we have a set of rules of inference for the new connectives we

must consider if they are an axiomatization, in the sense of 1.1.1, w.r.t. a

theory of constructions.
The, most problematic rule is (T" E), which in presence of the rules for v

is equivalent to the axiom schema A v r A. Now the schema A v r A is forced up-
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on us because we are considering satisfaction in Beth structures and, at least

from J classical viewpoint, A is valid in the Beth structure B or it is not,

Irom whi ch it follows that B I~ A v r A.
One way to avoid such possible unfaith ful results would be to use an intu-

i r ioni s t ic metatheory on the Beth structures, however we feel that would be

counterproductive since one of the pleasant aspects of Beth (and Kripke) seman-

tic~ is that one can operate on them using classical techniques to obtain re-

sults about intui t ioni st i c theories.
So, for the time being, we are stuck with the axiom schema A v rA. Is there

then any reasonable interpretation of r in terms of constructions?
when the predicates TIA,TIwere first introduced by Kreisel it was stipulated

that they be decidable (the argtanerrt being that one always knew if one had a
proof or not). Unfo r tunate Iy too liberal use of that principle quickly leads to

i.l cont radi ct ion; nevertheless it is a useful heuristic principle, so we shall
tempori.lrily i.ldopt it.

Originally we had stated that a construction e proved r A just in case that

e ~ c:d and TI(c, r iTIA(d)'). Nowif TIAis decidable then we need not give ex-

plicitly the construction that proves iTIA(d). In other words, it suffices that

TIrAsatisfy the conditions:

TIr A(d) iff ""lTA(d).

NOIvthe decidability of TIAalso gives us:

lIenee for all proof constructions d we have that:

TIA(d) v TIrA(d).

From which it follows that for all proof constructions d there corresponds a
proof construction d* such that:

TIAv rA(d*).

OA was originally introduced as IrA, so TIOA(c:d) iff n(c, r""TIrA(d'x)')

iff TI(c,', -, TIA(d'xf') iff TI(c', rTIA(d'xf').

It now is routine to veri fy that relative to the informal theory 0 f con-

struct ions considered above, the rules of inference given in 2.2 form an axio-

rna ti Z3 tion for 0 in the sense of definition 1.1. 1.
Section 2.5 then give us that the connective 0 (with the associated rules

2.2) is a intuitionistic connective w.r.t. the Intuitionistic Predicate Calcu-

lus.

CONJECTURE. There is an extension H of the IPC such that the connective

o (with the ruZes 2.2) is not a intuitionistic connective w.r.t.H (see §1).
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3. CO"CRETE MODELS.
A concrete rrodel for a theory of (proof) constructions is an ari thne t icaIl.y

definable model, with the natural mmbers. as the domain of constructions and

decidable predicates P, PA as interpretations of 11, 1IA respectively.
In Troelstra [8] a concrete model is given for IlL, the intuitionistic im-

plicational logic (with the rules (::> 1) and (::> E)}. In this section we showhCM

to extend the mcde l to the extension IlL 0 of IlL obtained by the addition of
the unary connective 0 and the rules (0 1) and (0 E) of 2.2.

3.1. The simple model for IILO .

3.1.1. SOMEPRELIMINARYDEFINITIONS.
(1) PR a formal (intuitionistic) number theory including at least primite re-
cursive arithmetic. Prf(x,y} is the canonical, primitive recursive, proof pr d-

icate for PR.
(2) On, the n-th numeral (in the language of PR).

(3) "A", the numeral corresponding to the Godel number of A.

(4) .:::~(x) the primitive recursive term such that:

PR f- ~A~(On) ok,
xwhere k is the G5del number of AO'

(5) Der(x,y) is the canonical, primitive recursive, proof predicate for IILO
such that PR f-Der(On,"A") iff n is the GOdel nunber of a derivation in IILO

of A.
(6) 11is the canonical, primitive recursive term such that if n is the Giidel
number of the derivation II, of (A ::> B), m is the G5del number of the derivation
II2 of A, and k is the G5del number of the derivation of B obtained by C::> E)

from II1 and II2, then

.(7) 0 is the canonical, pr imi.t ive recursive term such that if n is the GCidel
number of the derivation II of DA and k is the Godel nunber of the derivation

of A obtained from II by (0 E), then PR I- 0(On) = Ok.

(8) (j,j1,j2) are primitive recursive terms forming an onto pairing system.

3.1.2. DEFINITION OF Cpo To each sentential parane te r p of IILO we
assign a primitive recursive predicate C such that PR f-C (x) ::> Der(x,"p").p p

3.1.3. DEFINITION OF TA. To each formula A of lILO we assign a (primi-

tive recursive) predicate T as follows:
(i) if,A is a sentential parameter p, then TA(x) :::Cp(x) ,

(Li) if A is not a sentential parameter then, then TA(x) ::: Der(x, "A") .
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3.1.4. DEFINITION OF Pr A AND fA' To each formula A of lILO we assign
a pr imi ti ve recursive predicate PrA and primitive recursive funct ion fA such

that:

and
PR f-PrA(y) =>Der(jzy,"A").

(i) If A is the sentential parameter p, then

(ii) If A = (B =>C)

Prp(x)

f (x)p

and PrB' PrC' fB

= Tp(jzX) A (j,X = jzx)

= j(x,x).

and fC have already been defined, then we

proceed as follows:
Assume that T(B=>C)(On) and PrB(y). Then Der(On,"(B =>C)"), Der(jzy,"B").

Hence Der(\l(On,jzY) ,"C") and thus Tc(\l(On,jzY))' Therefore PrcCfc(\l(On,jzY)))'

In other words, we have shown that:

PR f- T(B=>C)(On) => [PrB(y) =>prC(t(On,y))],

where t(x,y) fC(\l(x,jzY))' From the latter we obtain

PR f- T(B=>C) (On) =>lIy[PrB(y) =>PrC(t(On,y))]. (*)

Furthermore, the GOdel nurmer of the proof of (*) is primitive recursive in n

so that there is a term g such that

PR f-Prf(g(x), (T (B=>C)(x) =>lIy[PrB(y) => PrC(t(x,y))] >(:x;)).

Also, using the fact that T(B=>C) (x) is primi ti ve recursive, we obtain that

there is a term h such that

PR f- T(B=>C)(x) =>Prf(h(x) ,,,T (B=>C) (x) ~(x)) .

Con~ining the last two observations and using the \l flD1ction, we obtain a prim-

itive recursive e such that:
PR f-T (B=>C)(x) =>Prf(8(x) ,t<lIy[PrB(y) :::> PrC(t(x,y))] ::>(x)).

Thus we de fine:

Pr(B=>C) (x) = T(B=>C)(jZX) A Prf(j ,x,«:lIy[PrB(y) =>PrC(t(x,y))] ':>(x))

feB =>C)(x) = j(e (x) ,x).

(iii) If A = 0 B and we have at hand PrB and fB then we proceed as fol Iows :
Assume that TOB(On). Then TB(o(On)) and hence PrB(fB(o(On))). Let s be the

primitive recursive term such that s(x;y) = fB(o(x))) , then what we have shown

is that
n nPR f-TO B(O ) => lIy PrB(s(O ,y)).

Procceding 3S in case (ii) we then obtain a primitive recursive f such that
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PR f- TOB(x) ::J Prf('f(x) , ~lJy PrB(s(x,y)) $> (x)) .

Thus we define:

PrOB(x) =' TOBUZx)::J PrfU,x,";lJyprB(s(x,y))$>(x))

fOB(x) = j('f(x) ,x).

3.1.5. DEFINITION OF P AND PA'

P(x,y) =' Der(jZx,y) A Prf(j ,x,y)
PA(x) =' PrA(x).

3.1.6. THEOREM. For each B, C of IILo and natural number: n:

r» PR I-P(B::JC)(On) =: PU,on, "lJy[PB(y) ::J PC(tn(y))]").

(Z) PR I-POB(On) =' PU,on, "lJyPB(sn(y))").

(3) If IILO I-B then for some ill, PR f-PB(Oill).

3.2. Extension to I1Lor .

Since PrA is a decidable predicate , so is .., Prl\ and thus we may trivially

extend the concrete model to the extension IILorof IILO obtained by adding the
unary connective r and the following rules of inference (suggested by 2. Z) :

--If ~ ~. .
B B rA

B rA

r rA
A

The extension in the concrete model is as follows:

TrA(x) =' De rf x, "I" A"),

PrrA (x) =' Tr AUZx) 1\ .., PrA(x) .

We still obtain that there is a primitive recursive frA such that:

PR f- TrA(x) ::J PrrA (frAx) ;

in fact, frA(x) = j(x,x). For suppose that TrA(x). Then clearly TrA(jzfrAx).
Nowsuppose, for reductio ad absurdum, that PrA(frAx). That is, suppose that

FrAU (x,x)). Then ~r(x,"A"), but ~r(x,''rA''). Thus -'PrA(frAx). In other words,

we have shown that PrrA (frAx) .
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