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LANGUAGES EXTENDING L(Q)

Jerome Malitz

ABSTRACT. We present a survey of the model theory of the
quantifiers Q® and Q™", where M E QQ)'(@'( means that there
is a K-powered subset X of M such that M k¢ ¢a whenever a,,

ce.a € X, and M k. Q™™Xy$%y means that there is a kK powered
subset X of M such that M E$ab whenever ap,...sapy € X and

bl,...,bn ¢ X. Some recent results are announced and sever-
al open problems are given.

1. INTRODUCTION.

Over the past several years, there has been considerable work done in the
model theory of languages more expressive than the first order predicate calcu-
lus L. Our interests have centered about the languages L™ and L™" introduced
in [le]1 The first adds the quantifier Qn to L, where M k. Qnid) means that
there is k powered subset X of M such that M E ¢a whenever dqy...5a) € X. The
second adds Q™™ to L, with M k. Q™" Xy¢xy meaning that some « powered subset
X of M exists such that M k, ¢ab for all ay,...,a, =X and all by,...,b & X.
While considerable progress has been made in the study of these languages over
the past few years, many fundamental questionsremain open. Our intention here
is to present a survey of known results, some recent unpublished results, and
some of the open problems.

Section 2 is devoted to preliminaries, notation and definitions that will
be used throughout the paper.

Section 3 is concerned with compactness questions for the I languages.

Section 4 considers the relative expressive power of these languages.

Section 5 is concerned with decidability questions arising in the context
of the L" languages.

Some recent results for L™" are presented in section 6.

Some open problems are described in section 7.

This survey is in no way comprehensive, either in the results stated or the
problems, mentioned. Rather, the material represents the personal interests of

the author.

163



164

2. PRELIMINARIES.

We use i,j,k,£,m,n to denote natural numbers; a,B,Y, ¢ to denote ordinals; «,

; + . .
1, v to denote uncountable cardinals; k 1is the cardinal successor of k, cX

sHy

A
is the cardinality of X, and x = {(xqse000x) e x; X fori = 1,...,n}.

n termed sequences (x1,.. .,xn) will be denoted by x.

In [J], Jensen introduced the combinatorial principle OK: there is set of
subsets of k, {Su: a < K} such that for all X gk, {a ex: XNa = Sa} 18 sta-
tionary (i.e. meets every closed bounded subset of «). He proved that if V=1L
then OK holds for every regular «. OK will appear in the hypotheses of several
of the theorems we shall mention.

M and N will be used to denote structures. tM is the type of M. |M| is the
universe of M. If s is a type then M[s is the reduct of Mto s. If A=tM, A a
wnary relation symbol, then MJA is the relativization of M to A.

let 0 be a set of quantifiers, L the first order predicate calculus. L(Q)
is the language obtained by adjoiningthe quantifiers in Q to L, i.e, to the def-
inition of fim for L we add the clause:

if Q e Q and Q binds n variables and v is a sequence of n variables and
.(0) then QUe = L(Q).

for 0 = {Q} we write L(Q).

The language 1" is LQY where Qn binds n variables. For each «, MPQn\-I(b
is given a k interpretation: there is a  powered subset X of |M| such that
M k¢a for all a «"X.

L™ s L(Qm’n) where Qm,n binds m#n variables. The « interpretation of
Mo Q™M is that for some k powered proper subset X of |M| and all a € ™%,
H ™ we have M ko¢a,b. (The restriction that X be proper is necessary to
avoid vacuous satisfaction of Qm’nfn-nb).

L% = L(Q) where Q = {Q],QZ,...}.

We may write LE, QE, k., etc. when the « interpretarion is intended.

If £ is a sct of sentences then Mod I is the set of models of Z. Tth =
{cez: M EG}, 'l'hZK = {oel:MFo forall MeK}. M= N means that ThZM=
['hz.\'.

Given two languages L, and L, we write Ly < L, if for all Ie L] there is
some I, L, such that Mod I = ((Modzz)rA) ftZ;. L; <L, means L; < L, but
Ly € Ly, If the I, can always be chosen to be of type tZ; we write L; <<L,.

\,';11(1‘]) is the set of valid L] sentences. L1 is axiomatizable if Val(L1)
is recursively enumerable.

A language L, is k-compact if wheriever Z = Ly, ¢ <k, and Mod L = ¢ then
there is some finite subset A = I such that ModA = @#. We say L] is countably

compact if it is wy-compact.
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3. COMPACTNESS, AXIOMATIZABILITY, AND LOWENHEIM-SKOLEM RESULTS
<w
FOR L .

Clearly, Ll is not fully compact. Indeed if ¥ = {(7Quvlv=v} U {Cu # Cgt
a < B < k} then every subset of I of power < « has a model but 5 does not.

In [K], Keisler proves that L,l is k compact for all uncountable k and axio-
matizable for regular uncountable k. His proof for « = wy provided a starting
point for our proof of compactness of l;w. Recently, considerable progress has
been made in the study of compactness for the L' languages but many fundamental

questions are still open.

THEOREM 3.1.1. (0 w1) L:f? s countable compact and axiomatizable.

T 4+ o .
3.1.2. (O 5 OK-H—) L:‘L_ is K compact and axiomatizable.
K

The first result was proved in [I\M]] . The " compactness of L<‘f+ is assert-
K

ed in [S]. The axiomatizability of LKf is not found in the literature but can

-
be obtained as in Theorem 9.5 of [Mlvl]1

The assumption @, in 3.1 is not necessary as was shown in (] p.257,
and similar arguments show that it is not necessary for 3.1.2 either.

THEOREM 3.2.1. (0w1) If o eVal(L:ﬁ) then o Val(L:w) for every regular

<w <w
3.2.2. (<>K+, 0K++) If o Val(L,") then o € Val(L_,,) for all regular A.

This first clause is found in [IVM]1 the second is a consequence of [S] but

is not found there.

THEOREM 3.3. If k is weakly compact then L:w 18 x compact and axiomati-
zable.

In fact if A <k for all a « A and each «_ is weakly compact then
L({Qza: new, a €}) is » compact. This is a straightforward generalization

of 3.3 which appears in [MM] ;.
THEOREM 3.4. If « is weakly compact then Val(L:w) 2 Val(L;w) for all X.

This is found in [MM];. Notice that the sentence
yuv[Ruv ~ Rvu] - [QzuvRuv v Qzuv‘lRuv]

is in Val(LZZ) just in case k is weakly compact.

When « is a limit cardinal there is a natural alternative interpretation

for Q1 M k¢ Qn\-/(p means that for all A < k there is a A powered subset X < |M|
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such that M k_¢a for all a e "X. In [I\M]1 we prove

THEOREM 3.5. If k is a strong limit cardinal and if X < K then LE in the

limit interpretation is A\ compact.

The problem of compactness for languages of the form L(QE,Q‘)i) has for the

most part been intractable to date. However, the following result appears in
[Mo] ;.

THEOREM 3.6. Let X < x with & weakly compact and Ly A-compact. Let Q =
{Ql:: n=12,...} U{Qr;: n=1,2,..}. Then L(Q) is A-compact and axiomatizable.
In [MR] the Qn quantifiers are generalized to higher order suggested by

writing 3XVV],.. SV, € X instead of QnV]""’Vn' We let:

pl(R) = R
PE(R) = {S:Sc R and cS > «}
P2y = 2P ®) n = 1,2,...
let X?, i=20,1,2,... be variables ranging over P2(|M|) in the k interpretation

for n > 1. An n-order properly descending quantifier is one of the form
properiy g

BB 1.vsByBy

where
B, is BXI).1 for some j
and for m < n
Bm is a sequence Bm,1"' "Bm,km

where
+
m XM 1

0 Lo 7

B Jizy? ’ i
2 n(i) i

m, i 15 3X11

for some X]FI occurring in B . We identify Xl with the first order variable
i

vi. As an cxample,

2

1

asserts the existence of a subset of the universe partitioned into k many «

3 3 2
e XS ¥V v, = X)Wy, € X{[Rvovya T Rv v, ]

IR WXEX
(6} [6)
powered cquivalence classes by R.
let Q* be the collection of all n-th order properly descending quantifiers
for all n. Let 1. = L(@®). In [MR] it is shown that

ITIEOREM  3.7. (Ow]) L* is countably compact and axiomatizable in the w,

interpretation.
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The results in [S] can be used to generalize this to interpretations i
. * .
when 0K+ and 0;<++ both hold, to give: L is Kt compact and axiomatizable in
the k** interpretation. Moreover, the analogs of 3.2.1, 3.2.2, 3.3, 3.4. all
*
hold for L .

Fix a similarity type t with a unary relation symbol B. Vaught defined the
two cardinal type of a structure M to be (c|M| ,BY . m [Mor] and [V] it is
proved that if for all n > 0 there is a « such that I has a model M of two car-
dinal type (2 ,k), then I has a model of any two cardinal type (A,u) where
A>u>ck +w (Here 2] =K, 2n+1 = 2 where X = n) The following theorem
from [IVM]1 generalized this.

THEOREM 3.8. Let £ € L and let R be an n-ary relation symbol in TL. Sup-
pose for each n there is a k and a model M of I such that c|M| = Z'T(1 and
ME ‘lQr;\-/R\-/. Then for every k > X\ > CL + w there is a model M of I such that
c|M =k ad M F IQVRV.

4. RELATIVE EXPRESSIVE POWER OF THE L" LANGUAGES .

In [MVI]] we showed that Lls Lﬁ for all regular «. In an unpublished paper,
S. Garavaglia proved that LE <e L:+1

shown in [RS] that

. Recently, using a forcing argument, it is

THEOREM 4.1.1. dssuming O y;, Ly, < Lm“;] for all n.

Combining this result with the techniques in [S] one easily obtains

THEOREM 4.1.2. Assuring O , and O ,,, Li,, < 3

K+ ct++’
P. Rothmaler and P. Tuschik [RT] give sufficient conditions for the elim-
ination of the L quantifiers for a countable first order theory. So elementa-
ry classes whose theories satisfy the conditions can not be split by means of

n
L" sentences.

5. DECIDABLE QUESTIONS.

Here we mention a few results about the decidability of models, decidabil-
ity of theories, and the decidability of sentences with respect to theories.
In several of these instances one can view the results as showing the expres-

sive strength of L over Ll
It is easy to find structures whose L theories are decidable but whose L
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theories are not, for example, take M = <A,B > where for some nonrecursive
set X, Bn is countably infinite iff n e X. On the other hand, for n > 1 we do
not know of such structures whose LE theory is decidable but whose LE” theory
is not.

In [R] one finds an example of a "natural" class of structures whose LJ,1

theory is decidable but whose Li1 theory is not.

THEOREM 5.1. (Rubin). The L1 theory of bnolean algebras tis decidable but

)
the L~ theory is not.

The decidability of the L1 theory of boolean algebras was discovered inde-
pendently by M. Weese [W].

A number of other decidability results of this nature are mentioned and an
extensive bibliography is given in D. Seese [Se]. Many of the decidability re-
sults can be found in [BSTW]. In particular, the reader should see H. Tuschik
[T] for results on the decidability of " theories of linear orderings.

In another direction Macintyre [Ma], Morgenstern [Mo],, and Schmerl and Sim-
son [$S] turn their attention to L? extensions of Peano's arithmetic. The axio-
matization given in [MM]] (correct and, with O‘M’ complete for validities in the

w, interpretation) is correct for the w interpretation. When the usual first

ol‘dcr version of the Peano arithmetic is enriched by adding all instances of the
induction schema involving L2 formulas we get the theory P2 (Morgenstern ob-
serves that the QI quantifier can be defined in arithmetic using L and that the
quantifiers (" for n > 2 can be defined in arithmetic using 1%. In [Mo], and
[Ma] it is shown that truth for first order formulas in arithmetic can be de-
fined in PZ, which leads to

THEOREM 5.2. The Harrington Paris combinatorial principle is provable
in PZ.

Simson and Schmerl broaden this to show that even stronger combinatorial
principles considered by Friedman, McAloon and Gunison are also provable in PZ.
This leads naturally to the problem of finding a "meaningful' statement of P2
or Peano's arithmetic that is undecidable in PZ (of course by Godel's 2nd theo-
rem there are undecidable L statements in PZ). Morgenstern has noticed that

4
Kruskals thcorem [K] is statable in P” and this is a candidate.

6. THE L™ " LANGUAGES.

. ; g #
The languages L™" were introduced in [MM] 1» being called L~ there. It was

shown there that even L]’1 is not countably compact in any infinite power. The
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purpose of presenting this language there was to show that the L languages
could not be generalized in this direction without losing compactness proper
ties. However, in [Ma] we began to investigate the model theory of L™, Regand-

ing the relative expressive power of these languages we have

m
THEOREM 6.1. LK < Lg’n < Li’z for all m,n. When Lﬂl i8 countably compact
m m,n
then LK < LK’ .

All questions about relative expressive power not answered by 6.1 are open.

The only other bit of information on these languages is

THEOREM 6.2 et 0 e L1’1 and suppose there is a model of o in the x in-
terpretation where K is regular and x > w. Then there is a model of o in the w

interpretation.

The expressive strength of ™" nakes a generalization of this theorem de-
sirable. For example, the sentence ‘1Qm’1l_1v[fﬁ # v] asserts that f is not closed
on a k powered subset of the wniverse. It follows that in a finite functional
type one can express the property of a Jonsson algebra. A strengthening of the
theorem above would yield results such as: if there is a Jénsson algebra in
Mod Z then there is one in Mod, I.

7. OPEN PROBLEMS.

This list of problems is by no means comprehensive, instead it represents
the author's particular interests. In many of these problems only relative con-
sistency results can be hoped for.

Is LY <k-compact in the k interpretation when the cofinality of « > wy?

At the moment we do not know if 1% is countably compact in the 1, inter-
pretation or in the first strongly inaccessible interpretation.

In the cases where compactness is known, completeness is also, at least in
the sense that the validities are recursively enumerable. Positive answers to
any of the above should yield completeness results also.

Let Val_be the set of validities of L in the « interpretation. Let k and
k' be successor cardinals and let A and A' be of cofinality strictly between w
and «. Let p and p' be inaccessible but not weakly compact, v and v' weakly
compact. We suspect that Val = Val , Val, = Valy, Valu = Valu. < Val, =
Val, (It is easy to see that Val. 2 Valy # Val, % Val,).

A purely set theoretic combinatorial statement equivalent to the countable
compactness of L might be an interesting new axiom for set theory.

We have mentioned that Ln+1 is more expressive than L" (even up to rela-



tivised reducts). Can this be sharpened in the following way? Let M = <A,RM,...>
where RYis a symmetric n+l-ary relation and the cardinality of A is k > w. Is
there some N equivalent to M with respect to the language L" such that N k
PHxre v QM x RR?

Regarding the R languages, there are two obvious questions. In view of
Theorem 6.1 it is natural to investigate the relative expressive power of L1’],
Lh2, 127, ana 1292,

Theorem 6.2 raises the following questions. For what m,n e« w,k, A will sat-
isfiability in the k interpretation of ¢ 18 imply satisfiability of o in
the ) interpretation? In particular, we do not know if satisfiability of o e
1,1’1 in the « interpretation, k uncountable, regular and > X implies satisfia-
bility of 0 LI’1 in the wE interpretation. Nor do we know if satisfiability

of 0 L]’2 or LZ’1

, OT LZ’ in the k interpretation, k uncountable and regular
implies the satisfiability of O in the w; interpretation.

Theorem 5.2 presents an R.E. extention P2 of Peano's arithmetic in which
one can prove the combinatorial principles of Harrington and Paris which are in-
dependent of Peano's arithmetic. At the moment there is no 'natural' sentence in-
dependent of L that is known. In particular, it is not known if Kruskal's theo-
rem [K] is decidable in pe.

For each n > 1 is there a (natural) structure whose Bk theory is decidable
but whose (i theory is not?
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