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WHAT IS A MATHEMATICAL THEORY?

Jan Mycielski

Since Hilbert' 5 and Skolem's work in foundations of mathematics we got used

to mathematizing the concept of a theory as a theory formalized in first order
logic. This view was very fruitful since it generated model theory and proof

theory, but it may have obscured the fact that there are possibilities of other
more abstract mathematizations of the concept of a theory which raise other
deep and interesting problems. It is the purpose of this lecture to point out

two such mathemat i zat ions, and the way in whi.ch one of them leads to a mathema-
tical concept of finitistic theory.

1. TlI- THEORIES.

By a normal. theory we mean a theory Twhich is formalized in first order log-
ic ",ith equality and axiomatized by a finite set of axioms or axiom schemata
(see [10]) such that lJxy [x = yJ is not a theorem of T. By a proof in such a

theory we mean a Hilbert style proof from the axioms.

Let L be a finite alphabet and L* the set of all words, i.e. finite sequen-
ces of elements of L. For any ~ E L*, I~I denotes the length of ~.

* *A r~-theory is a set of pairs TEL XL such that there exists a polynomials
p(x,y) and a Turing machine M such that, for any (T, 11) E l:*Xl:*. M can decide rn

time ~ p(ITI, 1111) if (T,1I) E T.
If (T,1I) E T then T is called a theorem of T and 11 is called a proof of

in T.
Every normal theory defines a T1I-theory since the time necessary to check

the correctness of a Hilbert style proof in a normal theory can be estimated

from above by a polynomial of the length of that proof.

Now, a T1I-theory T will be called amenable (to automatization) iff there

exists another polynomial Po(x,y) and another Turing machine ~~ such that, giv-
en any word TEl:* and any positive integer n , Mo can decide in time

.( po(ITI,n) if there exists a 11 El:* with 1111 < n such that (T,1I) ET. (Notice

that if w,e replaced the condition .( po(ITI ,n) by the condition -< po(ITi .c")
where c = card E, then the concept would trivialize since every T1I-theory would

be amenable).
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It is cIca r that after GOdel's discovery that all sufficiently strong the-

ories are undecidable, the next question which should have presented itself is
the question if the Tn-theories (corresponding to normal theories) are amenable.
But \,Iehad to wait until 1971 (the paper of Cook [1]) for a clear statement of
that question. To end this part of my t~lk let me formulated the following prop-

osition (which is implicit in [1]).

PROPOSITION. The following t.hree etatemente are equivalent to each other:

i) P -f NP;
ii) The~e exists a Tn-theory which is not amenable;

in) Eve~y Tn-theory which is defined by a normal theory is not amenable.

think that this proposltlon constitutes the best way of explaining the

great importance of Cook's conjecture P -f NP for the foundations of mathematics.

(Its import.uice in computer science is also well known [3]).

2. IIHERPRETABILITY.

Nowwe want to introduce you to another abstraction which we call the local l:

i.nterin-e tobi.l.i.t.utype> or, chapter of a first order theory.
first a sentence 0 without functions symbols nor equality is interpretable

il1 :J theory T if one can substitute the variable of 0 by n-tuples of variables

(for SOJTleinteger n), and the relation symbols of 0 by formulas which may have
.iddi t ion.i l free var iabIes (called parameters of the interpretation) such tha;:
the cxistcnt i al closure of the resulting formula is a theorem of 1. of course,
if 0 and 0' are sentences of the san-e shape, i.e., if they differ only by the

nanc s a ( their relation symbols, then 0 is interpretable in Tiff 0' is inter-

pre tab le in T.

For any first order theory T the chapter of T,in symbols ITI, is the set of

all shapes of sentences interpretable in T. Let :r be the set of all chapters of

theories. 111US J is a family of sets.
r t is easy to check that the partial order <L, SO> constitutes a complete

lat ti cc , since the intersection of any set of chapters is again the chapter of

some theory.
From the point of view of ordinary informal mathematics the chapter ITI of a

theory T is no less interesting than T itself. E.g., ITI does not depend on the
choice of the primi ti ve syrmol s of T, in fact IT I is immuneto extensions of T

hy IfC:JnS of defined symbols, and, ITI reflects very well the mathematical

s t rcngt.h of T. 111US a study of the lattice <J, s> seems very important. In
[SJ we have published a preliminary study of this lattice. E.g, <J, SO> is Brou-
wc r ian , its zero has one succesor, etc. Nowwe want to point out some open

p rob icms :
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(Al Does <J, s> have any automorphisms? If it does, are the types of some
important theories like PA or ZF fixed points of all automorphisms? (Similar
problems for some lattices of equational theories were recently solved by Kezek
[4] ) .

(B) Wesay that a theory T is connected iff for all, a,b e: ] if a v b = ITI

then a = ITI or b = ITI. P. Pudlak has shown [9] that many interesting theories
are connected. Are the theories of real closed fields or of algebraic closed
fields connected?

3. FINITISM.

A first order theory T will be called finitistic iff every finite part of
T has finite models. Th following propos i t ion follows from Proposition 3(i) of
[5] .

PROPOSITION. A theory is finistic iff its typs is either zero or the uc-

cessor of zero in the lattice <3,s >.

It is surprising that there exists finitistic theories (whose type is the
successor of zero) with a considerable mathematical content. In fact we have
constructed a fini tistic recursively axiomatized theory FIN which appears to be

as powerful as analysis [6, 7,8J.
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