Revista Colombiana de Matemáticas Vol. XX (1986), págs. 51-55

ANOTHER UPPER BOUND FOR THE DOMINATION NUMBER OF A GRAPH

by

Danut MARCU

ABSTRACT. If δ and Δ are the minimum and maximum degrees of a simple graph G of size n, then, for its domination number $\beta(G)$, we show that $\beta(G) \leq |(n-\Delta-1)(n-\delta-2)/(n-1)|+2$.

<u>Introduction</u>. Graphs, considered here, are finite and simple (without loops or multiple edges), and [1,2] are followed for terminology and notation. Let G = (V,E) be an undirected graph with V the set of vertices and E the set of edges. A graph is said to be complete, if every two vertices of the graph are joined by an edge. We shall denote by K_n the complete graph on n vertices. The complement G^C of G is the graph with vertex set V, two vertices being adjacent in G^C if and only if they are not adjacent in G. For any vertex v of G, the neighbour set of v is the set of all

vertices adjacent to v; this set is denoted by N(v). A vertex is said to be an *isolated* vertex, if its neighbourset is empty. A set of vertices in a graph is said to be a *dominating set*, if every vertex not in the set is adjacent to one or more vertices in the sets. A *minimal dominating set* is a dominating set such that no proper subset of it is also a dominating set. The *domination number* $\beta(G)$ of G is the size of the smallest minimal dominating set. A well known upper bound for $\beta(G)$ is due to V.G. Vizing [1,4] and it is as follows:

 $\beta(G) < n+1 - \sqrt{1+2m}$,

where n = |V| and m = |E|. But, if $\beta(G) > 2$, this bound can be attained only for graphs having at least an isolated vertex. In [3], we have suggested an upper bound for $\beta(G)$, which can be attained for graphs with no isolated vertices and having $\beta(G) > 2$. More exactly, we have proved that for a simple graph G = (V,E) without isolated vertices and for which $\beta(G) > 2$, we have $\beta(G) < [(n+1-\delta)/2]$, where $\delta = \min N(v)$, and $\lceil x \rceil$ denotes the smallest integer greater than or equal to the real number x. Our aim, in this note, is to suggest another upper bound for $\beta(G)$, when $\beta(G) > 2$.

<u>The main result</u>. In the sequel, we shall denote $\Delta = \max_{v \in V} |N(v)|$. For any real number x, we use [x] to denote the greatest integer less than or equal to x.

LEMMA. $\beta(G^{C}) \leq \lfloor \delta(\Delta-1)/(n-1) \rfloor + 2.$

Proof. Obviously, if G contains at least an isolated vertex, then $\delta = 0$, $\beta(G^{C}) = 1$ and the theorem is proved.

So, suppose that G does not contain isolated vertices.

Let $v \in V$, such that $|N(v)| = \delta$, and $W = V-(N(v) \cup \{v\})$.

If W is empty, then, by the choice of v, we must have $|N(u)| \ge \delta$ for each $u \in N(v)$, i.e., $G = K_n$. Thus, $\delta = \Delta = n-1$, and every vertex of G^C is isolated. Consequently, $\beta(G^C) = n$, and the theorem is proved.

Let then $|W| \ge 1$. Obviously, the following holds:

(1)
$$(v,w) \notin E$$
, for each $w \in W$.

Let $u \in N(v)$ and $D = N(v) \cap N(u)$. Therefore, we have

(2)
$$(u,t) \notin E$$
, for each $t \in N(v) - D$.

From (1) and (2), it follows that $D \cup \{v\} \cup \{u\}$ is a dominating set of G^{C} , i.e.,

(3)
$$\beta(G^{C}) \leq e + |D|$$
.

On the other hand, we have $W \cap N(u) = N(u) - (D \cup \{v\})$, i.e.,

(4)
$$|W \cap N(u)| \leq \Delta - |D| - 1.$$

Hence, from (3) and (4), we obtain

(5)
$$|W \cap N(u)| \leq \Delta + 1 - \beta(G^{C})$$
, for each $u \in N(v)$.

Let $w \in W$ and $\tilde{D} = N(v) \cap N(w)$. Obviously, we have

(6)
$$(u,w) \notin E$$
, for each $u \in N(v) - \tilde{D}$

and

(7)
$$(v,t) \notin E$$
, for each $t \in N(w) - D$.

From (1), (6) and (7), it follows that $D \cup \{v\} \cup \{w\}$ is a dom-

inating set of G^C, i.e.,

(8)
$$\beta(G^{C})-2 \leq |N(v) \cap N(w)|$$
, for each $w \in W$.

From (8), it follows that

(9)
$$|W| [\beta(G^{C})-2] \leq \sum_{W \in W} |N(v) \cap N(w)|.$$

But,

(10)
$$\sum_{w \in W} |N(v) \cap N(w)| = \sum_{u \in N(v)} |W \cap N(u)|.$$

Hence, from (9), (10) and (5), we obtain

$$|W|[\beta(G^{C})-2] \leq [\Delta+1-\beta(G^{C})]|N(v)|, \text{ or}$$

(11)
$$(n-\delta-1)[\beta(G^{C})-2] \leq \delta[\Delta+1-\beta(G^{C})].$$

From (11), by an elementary calculus, we obtain $\beta(G^{C}) \leq \delta(\Delta-1)/(n-1)+2$, i.e., $\beta(G^{C}) \leq \lfloor \delta(\Delta-1)/(n-1) \rfloor +2$. Q.E.D.

THEOREM. $\beta(G) \leq \lfloor (n-\Delta-1)(n-\delta-2)/(n-1) \rfloor + 2.$

Proof. If δ and Δ are the minimum and maximum degrees of vertices in G, then $\delta(G^{C}) = n-\Delta-1$ and $(G^{C}) = n-\delta-1$ are the corresponding degrees in G^{C} . Thus, the theorem follows by lemma, since $(G^{C})^{C} = G$. Q.E.D.

EXAMPLE. Let us consider the graph G = (V,E), where:

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$$

and

$$E = \{e_1, e_2, e_3, e_4\},\$$

54

such that: $e_1 = (v_2, v_3)$, $e_2 = (v_2, v_4)$, $e_3 = (v_2, v_5)$, $e_4 = (v_2, v_6)$. It is easy to see that $\beta(G) = 2$. For this graph, our upper bound gives the correct value, whereas Vizing's bound is larger.

<u>Acknowledgement</u>. The author is greteful to the referee for his careful reading of the paper and for useful suggestions which led to better and more complete formulations of the stated material.

REFERENCES

- Berge, C., Graphes et hypergraphes, Donod, Paris (1970).
 Bondy, J.A. and Murty, U.S.R., Graph Theory with Applications, MacMillan Press (1976).
- [3] Marcu, D., A new upper bound for the domination number of a graph, Quart. J. Math. Oxford, 36 (1985), 221-223.
- [4] Vizing, V.G., A bound on the external stability number of a graph, (in Russian), Doklady A.N., 164 (1965) 729-731.

Faculty of Mathematics University of Bucharest, Academiei 14, 70109-Bucharest ROMANIA.

(Recibido en julio de 1984, la versión revisada en noviembre de 1985).