
Rev~ta Cotomb,wM de McLte.l1'l£itiC.M

VoL XX (1986), pag;.,. 51- 5 5

.ANOTHER UPPER BOUND FOR THE DOMINATION
NUMBER OF A GRAPH

by

Danut MARCU

ABSTRACT. If 6 and ~ are the mlnlmum and maxi-
mum degrees of a simple graph G of size n, then, for
its domination number B(G), we show that B(G) ~
l(n-~-1)(n-6-2)/(n-l)J+2.

I n trod uc t ion. Graphs, considered here, are 6.-lYl.{;te and ;.,.{m-

pte (without loops or multiple edges), and [1,2] are follow-
ed for terminology and notation. Let G = (V,E) be an UYld.{-
~ee.ted g~aph with V the set of v~c.eJ.> and E the set of
edg~. A graph is said to be c.omptete, if every two verti-
ces of the graph are joined by an edge. We-shall denote by
K the complete graph on n vertices. The c.omptement GC of

n
G is the graph with vertex set V, two vertices being adja-
cent in GC if and only if they are not adjacent in G. For
any vertex v of G, the YlughboM ;"U of v is the set of all
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vertices adjacent to v; this set is denoted by N(v). A
vertex is said to be an ~olat~d vertex, if its neighbour set
is empty. A set of vertices in a graph is said to be a
domin~ng ~~, if every vertex not in the set is adjacent
to one or more vertices in the sets. A mi~i dominating
~~ is a dominating set such that no proper subset of it
is also a dominating set. The domin~on numbeh B(G) of G
is the size of the smallest minimal dominating set. A well
known upper bound for B(G) is due to V.G. Vizing [1,4J and
it is as follows:

B(G) < n+1-11+2m' ,

where n = IVI and m = lEI. But, if B(G) > 2, this bound can
be attained only for graphs having at least an isolated
vertex. In [3J, we have suggested an upper bound for B(G),
which can be attained for graphs with no isolated vertices
and having B(G) > 2. More exactly, we have proved that for
a simple graph G = (V,E) without isolated vertices and for
which B(G) > 2, we have B(G) < r(n+l-o)/21, where
o = min N(v), and rxl denotes the smallest integer greater

.than or equal to the real number x , Our aim, in this note,
is to suggest another upper bound for B(G), when B(G) > 2.

The rnain re 5 u It. In the sequel, we shall denote
~= max IN(v) I. For any real number x, we use lxJ to denote

v€.Vthe greatest integer less than or equal to x.

LEMMA. S(Gc) ~ lo(~-1)/(n-1)J+2.
P~oo6. Obviously, if G contains at least an isolated

vertex, then 0 = 0, S(Gc) = 1 and the theorem is proved.
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So, suppose that G does not contain isolated vertices.

Let v €V, such that IN(v)! = 0, and W = V-(N(v) U{v}).

If W is empty, then, by the choice of v, we must have

IN(u) I ~ 0 for each u E: N(v), i.e., G = K . Thus, 0 =6 = n-1,
n

and every vertex of GC is isolated. Consequently, I3(G
c
) =n,

and the theorem is proved.

Let then I WI ~ 1. Obviously, the following holds:

(v,w) ~ E, for each w E: W.

Let u E: Nt v ) and D = Nt v ) n N(u). Therefore, we have

( 2) (u,t) ~ E, for each t E: N(v) - D.

From (1) and (2), it follows that DU {v} U {u} is a domi-

nating set of GC, i.e.,

( 3)

On the other hand, we have WnN(u) = N(u)-(DU {v}), i.e.,

(4)

Hence, from (3) and (4), we obtain

(5) !WnN(u)! ~ 6+1-I3(Gc), for each UE: N(v).

Let we: Wand D = N(v)nN(w). Obviously, we have

( 6) ( u ,w) ¢. E, for each u e: N( v) - D

and

(7) (v,t) ¢. E, f or- each t E: N(w) - D.

From (1), (6) and (7), it follows that DU {v} U {w} is a dam-
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inating set of GC
, i.e.,

(8) S(Gc)-2 ~ IN(v) n N(w) I, for each w e: W.

From (8), it follows that

(9) Iwl[S(Gc)-2] ~ IIN(v)nN(w)j.
WE.W

But ,

(10 )

Hence, from (9), (10) and (5), we obtain

From (11), by an e.lementary calculus, we obtain S(Gc) ~
<5(l'.-1)/(n-l)+2, i.e., S(Gc) ~ L8(l'.-1)/(n-l)J+2. Q.E.D.

THEOREM. S(G)..:S L(n-l'.-1)(n-<5-2)/(n-l)J+2.
P~oo6. If <5 and l'.are the minimum and maximum degrees

of vertices in G, then <5(Gc) = n-l'.-land (Gc) = n-<5-1 are
the corresponding degrees in GC. Thus, the theorem follows
by lemma, s~nce (Gc)c = G. Q.E.D.

EXAMPLE. Let us consider the graph G = (V,E), where:

and
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such that: e1 = (v2,v3), e2 = (v2,vL,)' e3 :: (v:.2,v5), e4 =

(v2,v6). It is easy to see that 6(G) = 2. For this graph,
our upper bound gives the correct value, whereas Vizing's
bound is larger.
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