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CATEGORIES OF SPACES MAY NOT BE GENERALIZED SPACES
AS EXEMPLIFIED BY DIRECTED GRAPHS

by

F. William LAI~VERE

It has long been recognized [Gl J, [L] that even wi th-
in geometry (that is, even apart from their algebraic/logi-
cal role) toposes come in (at least) two varieties: as spaces
(possibly generalized, treated via the category of sheaves
of discrete sets), or as categories of spaces (analytic [G2],
topological [J], combinatorial, etc.). The success of theo-
rems [J'J which approximate toposes by generalized spaces
has perhaps obscured the role of the second class of toposes,
though some explicit knowledge of it is surely necessary for
a reasonable axiomatic understanding of toposes of COO spaces
or of the topos of simplicial sets. Perhaps some of the con-
fusion is due to the lack of a stabilized definition of mor-
phism appropriate to categories of spaces in the way that
"geometric morphisms" are appropriate to generalized spaces.

There are certain properties which a topos of spaces
often has; a wise selection of these should serve as an ax-
iomatic defini t ion of the subject. While we have not achieved
that g~al yet, we list some important properties and show
that these properties cannot be true for a "generalized
space" of the localic or groupoid kind.

We consider a tapas f defined over another topos S.
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The latter need not be the category of abstract sets, though
it will often be Boolean. In many cases it is instructive to
think of S as derived from f (rather than the other way a-
round), as Cantor derived "cardinal numbers" (= abstract
sets) from "Mengen" (= sets with topological or similar
structure, as they arise in geometry and analysis). Indeed
S can be viewed as a sheaf topos in f, for an essential to-
pology:

* I
AXIOM O. f -+ S i.6 loca.l; r --I r * --I I'" •

*The r may be considered as the inclusion of discpete

spaces S into "all" spaces f, whereas the sheaf inclusion
Ir' may be considered as the inclusion of codiscrete or cha-

otic spaces into f; that these inclusions have the same do-
main category S may be summed up in Hegelian fashion by
"pure becoming is identical with non-becoming". (*)

Of course, there are some spatial toposes which sat-
isfy axiom 0, although they are extremely special since r*
is the fiber~functor for a canonically-defined extremal
point of f; for example, the Zariski spectrum of a local

Iring does admit such a point r·. On the other hand, the top-.
os of G-sets for a groupoid G cannot satisfy axiom O.

Our further axioms will be stated in terms of a fur-
ther left adjoint IT = r, assigning to each space a discrete
s~ace of components.

*AXIOM 1. E- S is e.6.6entia.l, that is r, --I r exists,
but moreover we require that it preserve finite products

r . (Xxy) ---==--+- r I (X) xr , (Y). .
r,(l) ~

for all X, Y in E.
(*) That is, completely random motion, as a category in itself, is in-
distinguishable from immobility, as a category in itself, even though
they are of course completely different (except for 0, 1) as subcate-
gories of the category of spaces (= frames for continuous motion).
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The axiom is necessary .for the naive construction of
the homotopic passage from quantity to quality; namely, it
insures that (not only f* but also) f, is closed functor,
thus inducing a second way of associating an S-enriched cat-
egory to each E-enriched category

[-cat S-cat.
---+

[ ]

For example, E itself as an E-enriched category gives rise
to a homotopy category in which

[E] (X, Y) = r , (yX)

This product-preserving property of f, is well-known
to be false in the group case, where f, (GxG) = n, where
n = #G, whereas f, (G) = 1. Again, it can hold for ~ome (ex-
tremely special) spaces: For a topos E localic over S, f,
is left exact if only it preserves products, and hence there
is again a canonically defined point, at the opposite extreme;
for example, the Zariski spectrum of an integral domain ad-
mits a product preserving f,. If S is an "exponential vari-
ety" in E, then f! (f*(A)xY)~ AXf!(Y) which is, however,
only a fragment of our axiom 1. It is at this point that the
constructions of generalized spaces which "cover" a given
topos insofar as the "internal logic" is concerned, fail to
preserve the structure of a "topos of spaces". (For covering
as an "exponential variety" would preserve our axiom 2).

AXIOM 2. f,(n) = 1 , where n is the truth-value object
in the topos E of spaces.

Since n has ~he structure of a monoid with zero, in
the presence of axiom 1 its being connected (axiom 2) im-
plies its being contractible in that

[E] (X ,n) =

for all X in E, and hence that X + nX is a natural embedding
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of every space into a contractible space; moreover, any re~
tract, such as ~. for a topology j, (for example the Boolean

J
algebra ~ll) is also contractible. Of course axiom 2 cannot
be true of a Boolean topos since f, preserves any sum such
as 1+1.

PROPOSITION. Axiom& 1 and 2 cannot both be t~ue 6o~ a
localic toPO& E ove~ &et& s.

Proof. Axiom 1 implies that f, preserves pullbacks in
the localic case. In any case there is pullback diagram

2 ---~) 1

1 1
in E where 2 = 1+1. Thus applying [, we get an impossible
pullback diagram

2 ------+-> 1

1
1

1
----. 1

in S. QED.

The above axioms (incomplete though they may be) enable
us to make some rather sharp distinctions. For example, there
are (at least) two distinct toposes commonly referred to as
"the category of directed graphs" and even commonly consider-
ed to be more or less of the same value since, for example,
the notion of "free category" generated by either kind of
graph makes sense. The two are

op
S~l

where A1 is the three-element monoid of all orderpreserving
endomaps of the two-element linearly ordered set [1]; split-
ting the idempotents shows that f* is essentially represent-,
able and hence f', the notion o£ codiscrete graph, exists~9P .~.for S , though not for S ~ . However, the one-dimen-
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sional simplicial sets-S'-+' differ already in regard to axiom 1: the functor r,
is in either case just the coequalizer of the structural
maps, but, as is well-konown, reflexive coequalizers pre-
serve products, whereas irreflexive coequalizers do not.
The subobject classifier for s~~p has five elements

op
~1

S and the "irreflexive" graphs

and is obviously connected. A similar statement is true for
S·=:· but the foregoing remarks are sufficient to show the
following.

AOP
PROPOSITION. The topo~ S 1 ~ati~6ie~ the axiom~ 0,

--------'--+'1,2 60tr.. Q. "topo~ 06 ~pac.e¢", whetr..ea¢ the t.o po s S 06

diagtr..am~c.heme~ doe~ not ¢ati~6Y 0 olr.. 1.

In fact, at least two arguments can be given to show-that S·-+· definitely belongs to the other variety of topos-
es, namely that it is in fact a simple example of a general--ized space. For one thing, the category S·~· of irreflex-
ive graphs is an etendue; in fact, it is locally localic in
an illuminating manner: Consider the space

G
•

which has three points and five open sets. A sheaf on this
space consists of a set E of global sections, two sets Vo'
V1 ~f sections over the two open points, and two restric-
tion maps E _Va' E _V1,

If we consider the two-element group ~cting on the
space by interchanging the two open points, we can take the
"quotient" (descent) in the 2-category of toposes by the
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equivalence relation associated to this action; this has
the effect of forcing Va = V" but allowing the two restric-
tions E ~ V to re~ain different. Conversely, there is an ob-

--+- -+ject A in S'--+-' such that S'-+'/A is (the topos of sheaves
on) the three point space, showing explicitly the local ho-
meomorphism of the two toposes.

.==:.Another aspect of the status of S as a generalized
space is revealed by its relationship to the category of

AOPspaces S' If E over S is a tapas of "spaces", then each
object B of E should be capable of serving as a domain of
variation in its own right; in particular it should have
sense to speak of abstract sets varying over B, giving rise
to a topos S (B). (usually a subcategory of E IB), which should
be an example of a generalized space ("shoUld be" since we
don't yet have axioms strong enough to capture the special
nature of generalized spaces, yet general enough to include~opthe classical petit etale example:). In case BEE = s-'
is a graph, one reasonable definition of

ElB = S(B)

is simply to take all E --+-B which have discrete fibers In

the sense that
*r f* E • E

* 1 1
r f* B ) B

is a pullback. These might be called "B-partite graphs" g en
eralizing the bipartite graphs which arise as the special
case where

B .----
The toposes S(B) are aZZ etendues, and behave with excellent
functorial comportment under morphisms B ~ B' in the topos~opof spaces E = S , ; thus they seem to embody well one idea of
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the generalized spaces associated to objects of E.

~ A1P
PROPOSITION. 16 L = ~ -fA the. obje.ct 06 S ob-

ta~ne.d by ~de.nt~6y~ng the. two po~nt~ 06 the. ~e.p~e.~e.ntabfe.
object _ 11[1], the.n D1Ae.6fe.x.~ve. g~aph~ may be. ~de.nt~6~e.d wah
L-pa~t~te g~aph~:

s·-.· '" S(L).
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