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ON THE CONVEX SUM OF CERTAIN UNIVALENT
FUNCTIONS AND THE IDENTITY FUNCTION

by

E. P. MERKES

Abstract. If g(z) is analytic, univalent, and convex in
the unit disk E = {]z| <1}, g(0) = 0, g'(0) = 1, we extend
some knownresults about the classification of Hy(z) = Az +
(1-A)g(z) when X > 0. In particular, it is proved Hy is star—
like in E for each A € [0,1] when g'"'(0) = 0.

§1. Introduction. Leth be the class of analytic univalent
functioni f(z) = z +2n=2anzn in the unit disk E = {z:|z]| < 1}.
Let K, S, and C denote the subclasses of S whose members
are respectively convex, starlike, and close-to-convex in E.
The conjecture [4] that 4(fig)e S* whenever f, g are in K was
proved false by MacGregor [5] and by Trimble [9]. If, how-
ever, f and g are in K and f"(0) = g"(0) = 0, then Hallen-
beck and Ruscheweyh [3] used a result of Styer and Wright
[8] to prove(frg) =s™.

Trimble [9] considered convex combinations Hy (z) =
(1-\)z + xg(z), where 0 < A < 1 and g = K, and showed Hy is
always in S* provided A > 2/3 but Hy need not be starlike
for 0 < A < 2/3. Later, Chichra and Singh [1] found subclass-

es of S such that Hy = s* for all 0 < A < 1 whenever g is in



the subclass. In this paper, we extend a number of these

results.

THEOREM 1. 1§ g = K, then Hy(z) = (1-2)z +Ag(z) 48 4n
C fon 0 € A < 4/3 and fon each X & [0,4/3] there (s a g =K
such that Hy ¢ S. Furthermonre, Hy 48 starfike of ornden
o = (1-3]1-1])/(2-2]|1-x|) provided A = [2/3,4/3], and fox
cach A ¢ [2/3,4/3] there is a g = K such that Hy, # S".

This theorem extends the result in [9] to the inver-
val -o» < A < » and it improves the known starlike order of
the family {H, = (1-\)z+Ag : 0 < A <1, ge K} to o, which

we prove is best possible.

THEOREM 2. 1§ g = K and 0 < a < /13 /13 - 46, then
Hy(z) = (1-A)z +ig(az)/a 4& in 8" fon all X\ < [0,1]. The
uppen bound on a (s best possible.

If f and g in K, then MacGregor [5] has proved that
(1-1) £(bz)/b + Ag(bz)/b is in S* for 0 < b < 1//Z. This up-
per bound is best possible.

For a > -1, set g (z) = z +(a+1)2:=22n/(a+n). In [1]
it is proved that for g € K the function Hx(z) = (1-A)z +
A(g1*g)(z), where g1*g is the Hadamard product, is in s*

when 0 < X < 1. More generally, we prove

THEOREM 3. I4 g = K, then HA(Z) = (1-1)z +A(ga*g)(z)
is in S* when 0 < A <1 and -1 < a < 1.

We suspect not all Hy are in s* for o > 1 although we
have been unable to prove this result. We do prove that
Hy, & s* for a sufficiently large when 0 < X < 2/3.

Styer and Wright [8] proved, for f and g odd functions
in K, (1-A)f + g need not be in S” when 0 < A < 1, A # 1/2.

In our case, however, we have

THEOREM 4. 1§ g = K and g"(0) = 0, then H,(z) = (1-))z



*
+ Ag(z) 48 <n S f§orn each » e [0,1].

The authors interest in these problems was stimulated
by Chapter 5 in A.W. Goodman's recent volumes [2] on univa-
lent functions. The first volume serves as a references for

the definitions of the classes discussed in this paper.

§2. Proof of Theorem 1. Consider the function hk(z) =(1-)z
+Az/(1-2) = z[1+(x-1)z]/(1-z). Since hx(O) = h, (1/(1-))) =0,
we have hx ¢ S whenever |1-\| > 1. Furthermore, hi(z) =0
when z = 1 - /22" so h,# S if A > 4/3. Since for z « E

X-1
1
z ly(z2) ., -z ()
hy(z) ~ 7.z 1+(-Dz
we have
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provided'|k«1] < 1/3. Thus, hx = S* for all (complex) X in
Ix-1] € 1/3.

This order of starlikeness o cannot be improved. In-
deed if -1 < arg(i-1) < m, set a = -arg(Ar-1) and z = _el® o
obtain

z hi(2) _ qee’1® a-1)

hy (2) 2+2 cos a 1-]x-1]

The real part of this expression is o¢. For 2/3 < A < 1, set
z = ele, 9 # 0. Then Re{elehi(ele)/hx(ele)} tends to o as

For 0 < X <1, we have
Re{(1-z)h; (z)} > MRe{yiz} + (1-1) Re(1-2) > \/2,

and hence hA e C. Since S* < C, we also have hx = C when
[A-1] < 1/3.



Since the Hadamard product of g « K and a function in
C or in 8" is respectively in C or in s* [7], the general
result of Theorem 1 is a consequence of our special case.
In fact, we have slightly more than is stated, namely,
(1-2)z +2ag(z) is in S* for all g = K if and only if X» is a

complex number in [\-1] < 1/3.

§3, Proof of Theorem 2. We begin by finding the radius of
starlikeness of the family hx(z) = (1-\)z +2Az/(1-z) where

0 < A < 2/3. This is equivalent to finding r = min 1), 0 <)
< 2/3: where Ty is the modulus of the smallest zero of
Re{z hx(z)/hk(z)}. For a fixed A, this real part is zero at

z = rel® if by (1)
2
V= V(ru,t) = 1+u2rd(2erd) - (1+30) (eurd)rt + dure® = 0,

where p = 1-A(-1/3 < u < 1) and t = cos6. By completing the

square,
Vs 1eplrl2er?) - (1+3w) 2 (1+ur?) 2/ 16u (2)

and equality holds if t = t(r,u) = (1+3u)(1+ur2)/8ur. Since,
for fixed p, t is a decreasing function of r, we have t(r,n)
> t(1,u) = (1+3u)(1+u)/8u and the latter is less than unity
for 1/3 < u < 1. Thus, for each p in (1/3,1) there is a
range of r, r, <r«< 1, such that t = t(r,u) < 1. In this
range, equality holds in (2) and the right hand side of (2)
is

V(ra,t(r,w) = (1-w){(4+s-(4-s)ur?) (4-s-(4+s)ur)}/32,

where s = V2(1-p)/u = V2x/(1-1). Since p < 1 and r < 1, the
last expression is zero if and only if urz = (4-s)/(4+s),
that 1is,
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The minimum with respect to X of ri occurs when x = (5-/13)/9
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and ré = a% = 13/T3-46 for this value of .

We have proved that hx(az)/a is starlike for 0< A< 1.
The Hadamard product of this function with a g « K is there-
fore in S* [7]. This product is H,(z) = (1-)\)z +2g(az)/a and
the first part of Theorem 2 is proved. The function hj with
A = (5-/T3)/9 is used to prove the sharpness part of the
theorem.

For a fixed » « (0,2/3) we also have that the Hada-
mard product of g =K and h,(r,z)/r), where r, is detemmined
from (3), is starlike in E. Thus, (1-))z +Ag(rkz)/rx is in
s* for ail g « K.

§4. Proof of Theorem 3. There is an elementary sufficient
condition for H, = (1-A)z +)f(z) to be in s* for 0 < » < 1

*
when f S .

LEMMA. 14 f = s* and Re{f'+£f/z} > 0 fon z « E, then
Hoe s™.

For, if y = X/(1-1), 0 € X < 1, we have

|

Re AR - pe IHE'_ _ (1+uRe(f'+f/2) +u?| /2

2
. I
H)\ 1+Uf/Z “*Uf/2|2

‘Re(zf'/f) 0

for all z « E and pu, 0 ¢ u < », when f = s* and Re{f'+f/z} > 0
in E._
It is known [6] that for a > -1 the function

1
a+l _n _ z o
a+n rA = ((!+1)£ 1"—Zt todt

g (z) = z+
n

ne-18

2

is starlike of order 1/2 (and in fact convex when o > 0) in

E. Furthermore, in E

5 1
Re falz) | (a+1) [ Re{1_Lt
0

} t%de >
Z

0| —
.

Since z g& tag, = (a+1)z/(1-2z), we have



1 g 1
7 + (1-a)Re > %7

Re{g"*%%} = (a+1)Re

when a ¢ 1. By the lemma, we conclude h, = (1-2)z +Ag, is
in S* for A e [0,1] whenever a « [-1,1]. Theorem 3 now fol-
lows since, for such X and a, H, = hx*g is in S* for all

g =k [7].

Since g, (z) » z/(1-z) as o« » = (uniformly on compact
subsets of E), we have for fixed A that h,(z, a) = (1-)\)z +
rg, (z) ~ (1-A\)z +Az/(1-z) as a » =. Since in §2 we prove
the limit function is starlike if and only if |X-1] < 1/3,
the functions hx(z,a) are not starlike for all o > -1 when
[A-1] > 1/3.

§5. Proof of Theorem 4. Let K = {g =« K : g"(0) =0}. It is
known [3] that {w: |w| < n/4} = g(E) and |Im(g/z)| < ©/4
for z « E when g « K|

Suppose g = K and g is analytic in lz] < 1. A tan-
19), -7 < O

gent vector to the con»ex&nalytlc curve w = g(e
< mat 8 =0 is g(1) +ig'(1). Thus, g(1) +g'(1) is an out-
ward normal to this curve. Since Re(g/z) > % in E [2,Vol.1,
p.135] we have Re g(1) > 17 |Tm g(1)| < /4. Let T, and T,
be the points of |w| = n/4 such that T, - g(1) and T, - g(1)
are tangent to this circle. It follows that TI’ T, are in
the right half plane Re w > 0 and arg g'(1) is between

arg T, and arg T,. This implies Re g'(1) > 0. Since, for
0 < |zo| < 1, we have g(zoz)/z0 = Ko whenever g = Ko’ we
have shown that Re g'(z) > 0 for z = E whenever g = KO. By
the lemma, it follows that HA(Z) = (1-2)z +xg(z) is in s*
for all 0 < X < 1.
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