Revista Colombiana de Matemáticas Vol. XXI (1987), págs. 5-12

ON THE CONVEX SUM OF CERTAIN UNIVALENT FUNCTIONS AND THE IDENTITY FUNCTION

by

E. P. MERKES

Abstract. If g(z) is analytic, univalent, and convex in the unit disk $E = \{|z| < 1\}, g(0) = 0, g'(0) = 1$, we extend some knownresults about the classification of $H_{\lambda}(z) = \lambda z + (1-\lambda)g(z)$ when $\lambda \ge 0$. In particular, it is proved H_{λ} is starlike in E for each $\lambda \in [0,1]$ when g''(0) = 0.

§1. Introduction. Let S be the class of analytic univalent functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ in the unit disk $E = \{z: |z| < 1\}$. Let K, S^{*}, and C denote the subclasses of S whose members are respectively convex, starlike, and close-to-convex in E. The conjecture [4] that $\frac{1}{2}(f+g) \in S^*$ whenever f, g are in K was proved false by MacGregor [5] and by Trimble [9]. If, however, f and g are in K and f''(0) = g''(0) = 0, then Hallenbeck and Ruscheweyh [3] used a result of Styer and Wright [8] to prove $\frac{1}{2}(f+g) \in S^*$.

Trimble [9] considered convex combinations $H_{\lambda}(z) = (1-\lambda)z + \lambda g(z)$, where $0 < \lambda < 1$ and $g \in K$, and showed H_{λ} is always in S^{*} provided $\lambda \ge 2/3$ but H_{λ} need not be starlike for $0 < \lambda < 2/3$. Later, Chichra and Singh [1] found subclasses of S such that $H_{\lambda} \in S^*$ for all $0 < \lambda < 1$ whenever g is in

5

the subclass. In this paper, we extend a number of these results.

THEOREM 1. If $g \in K$, then $H_{\lambda}(z) = (1-\lambda)z + \lambda g(z)$ is in C for $0 \leq \lambda \leq 4/3$ and for each $\lambda \notin [0,4/3]$ there is a $g \in K$ such that $H_{\lambda} \notin S$. Furthermore, H_{λ} is starlike of order $\sigma = (1-3|1-\lambda|)/(2-2|1-\lambda|)$ provided $\lambda \in [2/3,4/3]$, and for each $\lambda \notin [2/3,4/3]$ there is a $g \in K$ such that $H_{\lambda} \notin S^*$.

This theorem extends the result in [9] to the inverval $-\infty < \lambda < \infty$ and it improves the known starlike order of the family $\{H_{\lambda} = (1-\lambda)z + \lambda g : 0 < \lambda < 1, g \in K\}$ to σ , which we prove is best possible.

THEOREM 2. If $g \in K$ and $0 < a \leq \sqrt{13} \sqrt{13} - 46$, then $H_{\lambda}(z) = (1-\lambda)z + \lambda g(az)/a$ is in S^{*} for all $\lambda \in [0,1]$. The upper bound on a is best possible.

If f and g in K, then MacGregor [5] has proved that $(1-\lambda)f(bz)/b + \lambda g(bz)/b$ is in S^{*} for $0 < b \leq 1/\sqrt{2}$. This upper bound is best possible.

For $\alpha > -1$, set $g_{\alpha}(z) = z + (\alpha+1)\sum_{n=2}^{\infty} z^n/(\alpha+n)$. In [1] it is proved that for $g \in K$ the function $H_{\lambda}(z) = (1-\lambda)z + \lambda(g_1^*g)(z)$, where g_1^*g is the Hadamard product, is in S^* when $0 < \lambda < 1$. More generally, we prove

THEOREM 3. If $g \in K$, then $H_{\lambda}(z) = (1-\lambda)z + \lambda(g_{\alpha}*g)(z)$ is in S* when $0 < \lambda < 1$ and $-1 < \alpha \leq 1$.

We suspect not all H_{λ} are in S^{*} for $\alpha > 1$ although we have been unable to prove this result. We do prove that $H_{\lambda} \notin S^*$ for α sufficiently large when $0 < \lambda < 2/3$.

Styer and Wright [8] proved, for f and g odd functions in K, $(1-\lambda)f + \lambda g$ need not be in S^{*} when 0 < λ < 1, $\lambda \neq 1/2$. In our case, however, we have

THEOREM 4. If $g \in K$ and g''(0) = 0, then $H_{\lambda}(z) = (1-\lambda)z$

+ $\lambda g(z)$ is in S^{*} for each $\lambda \in [0,1]$.

The authors interest in these problems was stimulated by Chapter 5 in A.W. Goodman's recent volumes [2] on univalent functions. The first volume serves as a references for the definitions of the classes discussed in this paper.

§2. Proof of Theorem 1. Consider the function $h_{\lambda}(z) = (1-\lambda)z + \lambda z/(1-z) = z[1+(\lambda-1)z]/(1-z)$. Since $h_{\lambda}(0) = h_{\lambda}(1/(1-\lambda)) = 0$, we have $h_{\lambda} \notin S$ whenever $|1-\lambda| > 1$. Furthermore, $h'_{\lambda}(z) = 0$ when $z = 1 - \sqrt{\frac{\lambda}{\lambda-1}}$ so $h_{\lambda} \notin S$ if $\lambda > 4/3$. Since for $z \notin E$

$$\frac{z h_{\lambda}(z)}{h_{\lambda}(z)} = \frac{1}{1-z} + \frac{(\lambda-1)z}{1+(\lambda-1)z}, \qquad (1)$$

we have

$$\operatorname{Re} \frac{2h_{\lambda}'(z)}{h_{\lambda}(z)} \geq \frac{1}{2} - \frac{|\lambda-1|}{1-|\lambda-1|} = \frac{1-3|\lambda-1|}{2(1-|\lambda-1|)} = \sigma \geq 0,$$

provided $|\lambda - 1| \leq 1/3$. Thus, $h_{\lambda} \in S^*$ for all (complex) λ in $|\lambda - 1| \leq 1/3$.

This order of starlikeness σ cannot be improved. Indeed if $-\pi < \arg(\lambda-1) < \pi$, set $\alpha = -\arg(\lambda-1)$ and $z = -e^{i\alpha}$ to obtain

$$\frac{z h_{\lambda}(z)}{h_{\lambda}(z)} = \frac{1 + e^{-i\alpha}}{2 + 2\cos\alpha} - \frac{|\lambda - 1|}{1 - |\lambda - 1|}$$

The real part of this expression is σ . For $2/3 \le \lambda \le 1$, set $z = e^{i\theta}$, $\theta \ne 0$. Then $\text{Re}\{e^{i\theta}h'_{\lambda}(e^{i\theta})/h_{\lambda}(e^{i\theta})\}$ tends to σ as $\theta \rightarrow 0$.

For $0 \leq \lambda \leq 1$, we have

$$\operatorname{Re}\left\{(1-z)h_{\lambda}'(z)\right\} \ge \lambda \operatorname{Re}\left\{\frac{1}{1-z}\right\} + (1-\lambda) \operatorname{Re}(1-z) \ge \lambda/2,$$

and hence $h_{\lambda} \in C$. Since $S^* \subset C$, we also have $h_{\lambda} \in C$ when $|\lambda - 1| \leq 1/3$.

Since the Hadamard product of $g \in K$ and a function in C or in S^{*} is respectively in C or in S^{*} [7], the general result of Theorem 1 is a consequence of our special case. In fact, we have slightly more than is stated, namely, $(1-\lambda)z + \lambda g(z)$ is in S^{*} for all $g \in K$ if and only if λ is a complex number in $|\lambda-1| \leq 1/3$.

§3. Proof of Theorem 2. We begin by finding the radius of starlikeness of the family $h_{\lambda}(z) = (1-\lambda)z + \lambda z/(1-z)$ where $0 < \lambda < 2/3$. This is equivalent to finding $r = \min r_{\lambda}$, $0 < \lambda < 2/3$, where r_{λ} is the modulus of the smallest zero of Re{z $h'_{\lambda}(z)/h_{\lambda}(z)$ }. For a fixed λ , this real part is zero at $z = re^{i\theta}$ if by (1)

$$V = V(r,\mu,t) = 1 + \mu^2 r^2 (2+r^2) - (1+3\mu)(1+\mu r^2)rt + 4\mu r^2 t^2 = 0 ,$$

where $\mu = 1 - \lambda(-1/3 < \mu < 1)$ and $t = \cos\theta$. By completing the square,

$$V \ge 1 + \mu^2 r^2 (2 + r^2) - (1 + 3\mu)^2 (1 + \mu r^2)^2 / 16\mu$$
 (2)

and equality holds if $t = t(r,\mu) = (1+3\mu)(1+\mu r^2)/8\mu r$. Since, for fixed μ , t is a decreasing function of r, we have $t(r,\mu)$ > $t(1,\mu) = (1+3\mu)(1+\mu)/8\mu$ and the latter is less than unity for $1/3 < \mu < 1$. Thus, for each μ in (1/3,1) there is a range of r, $r_0 < r < 1$, such that $t = t(r,\mu) < 1$. In this range, equality holds in (2) and the right hand side of (2) is

$$V(r,\mu,t(r,\mu)) = (1-\mu)\{(4+s-(4-s)\mu r^2)(4-s-(4+s)\mu r^2)\}/32$$

where $s = \sqrt{2(1-\mu)/\mu} = \sqrt{2\lambda/(1-\lambda)}$. Since $\mu < 1$ and r < 1, the last expression is zero if and only if $\mu r^2 = (4-s)/(4+s)$, that is,

$$\mathbf{r}^{2} = \mathbf{r}_{\lambda}^{2} = \frac{1}{1-\lambda} \frac{4 - \sqrt{2\lambda}/(1-\lambda)}{4 + \sqrt{2\lambda}/(1-\lambda)}$$

The minimum with respect to λ of r_{λ}^2 occurs when $\lambda = (5 - \sqrt{13})/9$

and $r^2 = a^2 = 13\sqrt{13}-46$ for this value of λ .

We have proved that $h_{\lambda}(az)/a$ is starlike for $0 \le \lambda \le 1$. The Hadamard product of this function with a g = K is therefore in S^* [7]. This product is $H_{\lambda}(z) = (1-\lambda)z + \lambda g(az)/a$ and the first part of Theorem 2 is proved. The function h_{λ} with $\lambda = (5-\sqrt{T3})/9$ is used to prove the sharpness part of the theorem.

For a fixed $\lambda \in (0,2/3)$ we also have that the Hadamard product of $g \in K$ and $h_{\lambda}(r_{\lambda}z)/r_{\lambda}$, where r_{λ} is determined from (3), is starlike in E. Thus, $(1-\lambda)z + \lambda g(r_{\lambda}z)/r_{\lambda}$ is in S^{*} for all $g \in K$.

§4. Proof of Theorem 3. There is an elementary sufficient condition for $H_{\lambda} = (1-\lambda)z + \lambda f(z)$ to be in S^{*} for $0 \le \lambda \le 1$ when $f \in S^*$.

LEMMA. If $f \in S^*$ and $Re\{f'+f/z\} \ge 0$ for $z \in E$, then $H_{\lambda} \in S^*$.

For, if $\mu = \lambda/(1-\lambda)$, $0 \le \lambda \le 1$, we have

$$\operatorname{Re} \frac{zH_{\lambda}'}{H_{\lambda}} = \operatorname{Re} \frac{1+\mu f'}{1+\mu f/z} = \frac{(1+\mu \operatorname{Re}(f'+f/z)+\mu^2 |f/z|^2 \cdot \operatorname{Re}(zf'/f)}{|1+\mu f/z|^2} > 0$$

for all $z \in E$ and μ , $0 \leq \mu < \infty$, when $f \in S^*$ and $\operatorname{Re}\{f'+f/z\} \ge 0$ in E.

It is known [6] that for $\alpha > -1$ the function

$$g_{\alpha}(z) = z + \sum_{n=2}^{\infty} \frac{\alpha+1}{\alpha+n} z^n = (\alpha+1) \int_0^1 \frac{z}{1-zt} t^{\alpha} dt$$

is starlike of order 1/2 (and in fact convex when $\alpha \geqslant 0)$ in E. Furthermore, in E

$$\operatorname{Re} \frac{g_{\alpha}(z)}{z} = (\alpha+1) \int_{0}^{1} \operatorname{Re} \{\frac{1}{1-zt}\} t^{\alpha} dt \ge \frac{1}{2}.$$

Since $z g'_{\alpha} + \alpha g_{\alpha} = (\alpha+1)z/(1-z)$, we have

9

$$\operatorname{Re}\left\{g' + \frac{g_{\alpha}}{z}\right\} = (\alpha+1)\operatorname{Re} \frac{1}{1-z} + (1-\alpha)\operatorname{Re} \frac{g_{\alpha}}{z} \ge \frac{1}{2}$$

when $\alpha \leq 1$. By the lemma, we conclude $h_{\lambda} = (1-\lambda)z + \lambda g_{\alpha}$ is in S^{*} for $\lambda \in [0,1]$ whenever $\alpha \in [-1,1]$. Theorem 3 now follows since, for such λ and α , $H_{\lambda} = h_{\lambda}^* g$ is in S^{*} for all $g \in K$ [7].

Since $g_{\alpha}(z) \rightarrow z/(1-z)$ as $\alpha \rightarrow \infty$ (uniformly on compact subsets of E), we have for fixed λ that $h_{\lambda}(z,\alpha) = (1-\lambda)z + \lambda g_{\alpha}(z) \rightarrow (1-\lambda)z + \lambda z/(1-z)$ as $\alpha \rightarrow \infty$. Since in §2 we prove the limit function is starlike if and only if $|\lambda-1| \leq 1/3$, the functions $h_{\lambda}(z,\alpha)$ are not starlike for all $\alpha > -1$ when $|\lambda-1| > 1/3$.

§5. Proof of Theorem 4. Let $K_0 = \{g \in K : g''(0) = 0\}$. It is known [3] that $\{w : |w| < \pi/4\} \in g(E)$ and $|Im(g/z)| \leq \pi/4$ for $z \in E$ when $g \in K_0$.

Suppose $g \in K_0$ and g is analytic in $|z| \leq 1$. A tangent vector to the convex analytic curve $w = g(e^{i\theta})$, $-\pi \leq \theta \leq \pi$ at $\theta = 0$ is g(1) + ig'(1). Thus, g(1) + g'(1) is an outward normal to this curve. Since $\operatorname{Re}(g/z) \geq \frac{1}{2}$ in E [2,Vol.I, p.135] we have $\operatorname{Re} g(1) \geq \frac{1}{2}$, $|\operatorname{Im} g(1)| \leq \pi/4$. Let T_1 and T_2 be the points of $|w| = \pi/4$ such that $T_1 - g(1)$ and $T_2 - g(1)$ are tangent to this circle. It follows that T_1 , T_2 are in the right half plane $\operatorname{Re} w \geq 0$ and arg g'(1) is between arg T_1 and arg T_2 . This implies $\operatorname{Re} g'(1) \geq 0$. Since, for $0 < |z_0| < 1$, we have $g(z_0 z)/z_0 \in K_0$ whenever $g \in K_0$, we have shown that $\operatorname{Re} g'(z) \geq 0$ for $z \in E$ whenever $g \in K_0$. By the lemma, it follows that $H_{\lambda}(z) = (1-\lambda)z + \lambda g(z)$ is in S^*

REFERENCES

 Chichra, P. and Singh, R., Convex sum of univalent functions, J. Austral. Math. Soc., 14 (1972), 503-507. MR 47 #7014.

10

[2] Goodman, A.W., Univalent Functions, I and II, Mariner Publishing Co., Inc., Tampa, Florida, 1983.

- [3] Hallenbeck, D.J. and Ruscheweyh, S., Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191-195. MR 51 #10603.
- [4] Hayman, W.K., Research problems in function theory, Anthlone Press [University of London], 1967. MR 36 #359.
- [5] MacGregor, T.H., The univalence of a linear combination of convex mappings, London Math. Soc., 44 (1969), 210-212. MR 38 # 4665.
- [6] Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115. MR 51 #3418.
- [7] Ruscheweyh, S. and Sheil-Small, T., Hadamard product of schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119-135. MR 48 #6393.
- [8] Styer, D. and Wright, D., On the valence of the sum of two convex functions, Proc. Amer. Math. Soc., 37 (1973), 511-516. MR 47 #2049.
- [9] Trimble, S., The convex sum of convex functions, Math. Z., 109 (1969), 112-114. MR 39 #7085.

Department of Mathematical Sciences University of Cincinnati Cincinnati, Ohio 45221, USA.

(Recibido en junio de 1986).