Re.v~ta Cotombiarta de. Matemtitic.iL6 Vol. XXI (1987), *págs.* 5-12

ON THE CONVEX SUM OF CERTAIN UNIVALENT FUNCTIONS AND THE IDENTITY FUNCTION

by

E. P. MERKES

Abstract. If $g(z)$ is analytic, univalent, and convex in the unit disk $E = \{|z| < 1\}$, $g(0) = 0$, $g'(0) = 1$, we extend some knownresults about the classification of H_{λ}(z) = λ z + $(1-\lambda)g(z)$ when $\lambda \ge 0$. In particular, it is proved H_{λ} is star-
like in E for each $\lambda \in [0,1]$ when $g''(0) = 0$.

§l. **Introduction.** Let S be the class of analytic univalent functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ in the unit disk $E = \{z : |z| < 1\}$. Let K , S^* , and C denote the subclasses of S whose members are respectively convex, starlike, and close-to-convex in E. The conjecture [4] that $\frac{1}{2}(f+g) \in S^*$ whenever f, g are in K was proved false by MacGregor [5] and by Trimble [9]. If, however, f and g are in K and $f''(0) = g''(0) = 0$, then Hallenbeck and Ruscheweyh [3] used a result of Styer and Wright [8] to prove $\frac{1}{2}(f+g) \in S^*$.

Trimble [9] considered convex combinations $H_{\lambda}(z)$ = $(1-\lambda)z + \lambda g(z)$, where $0 < \lambda < 1$ and $g \in K$, and showed H_{λ} is always in S * provided λ \geqslant 2/3 but H $_{\lambda}$ need not be starlike for $0 < \lambda < 2/3$. Later, Chichra and Singh [1] found subclasses of S such that $H_{\lambda} \subset S^*$ for all $0 < \lambda < 1$ whenever g is in

5

the subclass. In this paper, we extend a number of these results.

THEOREM 1. If $g \in K$, then $H_{\lambda}(z) = (1-\lambda)z + \lambda g(z)$ is in C for $0 \le \lambda \le 4/3$ and for each $\lambda \neq [0, 4/3]$ there is a $g \in K$ such that $H_{\lambda} \neq S$. Furthermore, H_{λ} is starlike of order $\sigma = (1-3|1-\lambda|)/(2-2|1-\lambda|)$ provided $\lambda = [2/3,4/3]$, and $\delta \circ \pi$ each $\lambda \neq [2/3, 4/3]$ there is a $g \in K$ such that $H_{\lambda} \neq S^*$.

This theorem extends the result in [9] to the inverval $-\infty < \lambda < \infty$ and it improves the known starlike order of the family $\{H_{\lambda} = (1-\lambda)z + \lambda g : 0 < \lambda < 1, g \in K\}$ to σ , which we prove is best possible.

THEOREM 2. If $g \in K$ and $0 < a \le \sqrt{13 \sqrt{13} - 46}$, then $H_{\lambda}(z) = (1-\lambda) z + \lambda g(az)/a$ is in S^* for all $\lambda \in [0,1]$. The upper bound on a is best possible.

If f and g in K, then MacGregor [5] has proved that $(1-\lambda) f(bz)/b + \lambda g(bz)/b$ is in S^{*} for $0 < b \le 1/\sqrt{2}$. This upper bound is best possible.

For α > -1, set $g_{\alpha}(z) = z + (\alpha + 1) \sum_{n=2}^{\infty} z^n / (\alpha + n)$. In [1] it is proved that for $g \in K$ the function $H_1(z) = (1-\lambda)z +$ $\lambda(g_1 * g)(z)$, where $g_1 * g$ is the Hadamard product, is in S^{*} when $0 < \lambda < 1$. More generally, we prove

THEOREM 3. If $g \in K$, then $H_{\lambda}(z) = (1-\lambda)z + \lambda(g_{\alpha} * g)(z)$ is in S^* when $0 < \lambda < 1$ and $-1 < \alpha \le 1$.

We suspect not all H_{λ} are in S^{*} for $\alpha > 1$ although we have been unable to prove this result. We do prove that $H_1 \neq S^*$ for a sufficiently large when $0 < \lambda < 2/3$.

Styer and Wright [8] proved, for f and g odd functions in K, $(1-\lambda) f + \lambda g$ need not be in S^{*} when $0 < \lambda < 1$, $\lambda \neq 1/2$. In our case, however, we have

THEOREM 4. If $g \in K$ and $g''(0) = 0$, then $H_1(z) = (1 - \lambda) z$

 $+ \lambda g(z)$ is in S^{*} for each $\lambda \in [0,1]$.

The authors interest in these problems was stimulated by Chapter 5 in A.W. Goodman's recent volumes [2] on univalent functions. The first volume serves as a references for the definitions of the classes discussed in this paper.

§2. **Proof of Theorem 1.** Consider the function $h_{\lambda}(z) = (1-\lambda)z$ + $\lambda z/(1-z) = z[1+(\lambda-1)z]/(1-z)$. Since $h_{\lambda}(0) = h_{\lambda}(1/(1-\lambda)) = 0$, we have $h_{\lambda} \neq S$ whenever $|1-\lambda| > 1$. Furthermore, $h_{\lambda}^1(z) = 0$ when $z = 1 - \sqrt{\frac{\lambda}{1-1}}$ so $h_{\lambda} \neq S$ if $\lambda > 4/3$. Since for $z \in E$

$$
\frac{z \, h_{\lambda}(z)}{h_{\lambda}(z)} = \frac{1}{1-z} + \frac{(\lambda - 1) z}{1 + (\lambda - 1) z} \tag{1}
$$

we have

$$
\text{Re } \frac{zh_{\lambda}^{\prime}(z)}{h_{\lambda}(z)} \geq \frac{1}{2} - \frac{|\lambda - 1|}{1 - |\lambda - 1|} = \frac{1 - 3|\lambda - 1|}{2(1 - |\lambda - 1|)} = \sigma \geq 0,
$$

provided $|\lambda - 1| \leq 1/3$. Thus, $h_{\lambda} \in S^*$ for all (complex) λ in $|\lambda - 1| \leq 1/3$.

This order of starlikeness σ cannot be improved. Indeed if $-\pi < arg(\lambda-1) < \pi$, set $\alpha = -arg(\lambda-1)$ and $z = -e^{i\alpha}$ to obtain

$$
\frac{z \ h_{\lambda}(z)}{h_{\lambda}(z)} = \frac{1 + e^{-i\alpha}}{2 + 2 \cos \alpha} - \frac{|\lambda - 1|}{1 - |\lambda - 1|}.
$$

The real part of this expression is σ . For $2/3 \le \lambda \le 1$, set $z = e^{i\theta}$, $\theta \neq 0$. Then Re{ $e^{i\theta}h'_{\lambda}(e^{i\theta})/h_{\lambda}(e^{i\theta})$ } tends to σ as $\theta \rightarrow 0$.

For $0 \leq \lambda \leq 1$, we have

$$
Re\{ (1-z) h_{\lambda}^{'}(z) \} \ge \lambda Re\{ \frac{1}{1-z} \} + (1-\lambda) Re (1-z) \ge \lambda/2,
$$

and hence $h_1 \in C$. Since $S^* \subset C$, we also have $h_1 \subset C$ when $|\lambda - 1| \leq 1/3$.

Since the Hadamard product of $g \in K$ and a function in C or in S^* is respectively in C or in S^* [7], the general result of Theorem 1 is a consequence of our special case. In fact, we have slightly more than is stated, namely, $(1-\lambda)z + \lambda g(z)$ is in S^{*} for all $g \in K$ if and only if λ is a complex number in $|\lambda - 1| \leq 1/3$.

§3. **Proof of Theorem** 2. We begin by finding the radius of starlikeness of the family $h_{\lambda}(z) = (1-\lambda)z + \lambda z/(1-z)$ where $0 < \lambda < 2/3$. This is equivalent to finding r = min r₁, 0 < λ \langle 2/3, where \mathbf{r}_{λ} is the modulus of the smallest zero of Re {z $h'_1(z)/h_1(z)$ }. For a fixed λ , this real part is zero at $z = re^{i\theta}$ if by (1)

$$
V = V(r,\mu,t) = 1 + \mu^2 r^2 (2 + r^2) - (1 + 3\mu) (1 + \mu r^2) r t + 4\mu r^2 t^2 = 0,
$$

where $\mu = 1-\lambda(-1/3 < \mu < 1)$ and $t = \cos\theta$. By completing the square,

$$
V \ge 1 + \mu^2 r^2 (2 + r^2) - (1 + 3\mu)^2 (1 + \mu r^2)^2 / 16\mu
$$
 (2)

and equality holds if $t = t(r,\mu) = (1+3\mu)(1+\mu r^2)/8\mu r$. Since, for fixed μ , t is a decreasing function of r, we have $t(r,\mu)$ $> t(1,\mu) = (1+3\mu)(1+\mu)/8\mu$ and the latter is less than unity for $1/3 < \mu < 1$. Thus, for each μ in (1/3,1) there is a range of r, $r_0 < r < 1$, such that $t = t(r, \mu) < 1$. In this range, equality holds in (2) and the right hand side of (2) $\overline{1}$ S

$$
V(r,\mu,t(r,\mu)) = (1-\mu) \{ (4+s-(4-s)\mu r^2) (4-s-(4+s)\mu r^2) \}/32,
$$

where $s = \sqrt{2(1-\mu)/\mu} = \sqrt{2\lambda/(1-\lambda)}$. Since $\mu < 1$ and $r < 1$, the last expression is zero if and only if μr^2 = $(4-s)/(4+s)$, that is,

$$
r^2 = r_\lambda^2 = \frac{1}{1-\lambda} \frac{4-\sqrt{2\lambda/(1-\lambda)}}{4+\sqrt{2\lambda/(1-\lambda)}}
$$

The minimum with respect to λ of r_λ^2 occurs when $\lambda = (5-\sqrt{13})/9$

and $r^2 = a^2 = 13\sqrt{13} - 46$ for this value of λ .

We have proved that $h_1(az)/a$ is starlike for $0 \le \lambda \le 1$. The Hadamard product of this function with a $g \in K$ is therefore in S^* [7]. This product is $H_1(z) = (1-\lambda)z + \lambda g(az)/a$ and the first part of Theorem 2 is proved. The function h_{λ} with $\lambda = (5-\sqrt{13})/9$ is used to prove the sharpness part of the theorem.

For a fixed $\lambda \in (0, 2/3)$ we also have that the Hadamard product of $g \in K$ and $h_\lambda(r_\lambda z)/r_\lambda$, where r_λ is determined from (3), is starlike in E. Thus, $(1-\lambda)z + \lambda g(r_{\lambda}z)/r_{\lambda}$ is in S^* for all $g \in K$.

§4. Proof of Theorem 3. There is an elementary sufficient condition for H₁ = (1- λ)z + λ f(z) to be in S^* for $0 \le \lambda \le 1$ when $f \in S^*$.

LEMMA. If $f \in S^*$ and $Re\{f' + f/z\} \ge 0$ for $z \in E$, then $H_1 \in S^*$.

For, if $\mu = \lambda/(1-\lambda)$, $0 \le \lambda \le 1$, we have

Re
$$
\frac{zH'_{\lambda}}{H_{\lambda}}
$$
 = Re $\frac{1+\mu f'}{1+\mu f/z}$ = $\frac{(1+\mu \text{Re}(f'+f/z)+\mu^2|f/z|^2 \cdot \text{Re}(zf'/f)}{|1+\mu f/z|^2} > 0$

for all $z \in E$ and μ , $0 \le \mu \le \infty$, when $f \in S^*$ and $Re\{f' + f/z\} \ge 0$ in E.

It is known [6] that for α > -1 the function

$$
g_{\alpha}(z) = z + \sum_{n=2}^{\infty} \frac{\alpha+1}{\alpha+n} z^n = (\alpha+1) \int_{0}^{1} \frac{z}{1-zt} t^{\alpha} dt
$$

is starlike of order $1/2$ (and in fact convex when $\alpha \geq 0$) in E. Furthermore, in E

$$
\text{Re } \frac{g_{\alpha}(z)}{z} = (\alpha + 1) \int_{0}^{1} \text{Re} \{ \frac{1}{1 - z t} \} t^{\alpha} dt \geq \frac{1}{2}.
$$

Since $z \, g_{\alpha}^{\dagger} + \alpha g_{\alpha}^{\dagger} = (\alpha + 1) z / (1 - z)$, we have

$$
\operatorname{Re}\{g' + \frac{g_{\alpha}}{z}\} = (\alpha + 1)\operatorname{Re}\, \frac{1}{1-z} + (1-\alpha)\operatorname{Re}\, \frac{g_{\alpha}}{z} \geq \frac{1}{2}
$$

when $\alpha \leq 1$. By the lemma, we conclude $h_{\lambda} = (1-\lambda)z + \lambda g_{\alpha}$ is in S^* for $\lambda \in [0,1]$ whenever $\alpha \in [-1,1]$. Theorem 3 now follows since, for such λ and α , H_{λ} = h_{λ} *g is in S* for all $g \in K$ [7].

Since $g_{\alpha}(z) \rightarrow z/(1-z)$ as $\alpha \rightarrow \infty$ (uniformly on compact a subsets of E), we have for fixed λ that $h_{\lambda}(z,\alpha)$ = (1- λ)z + $\lambda g_{\alpha}(z)$ + $(1-\lambda)z + \lambda z/(1-z)$ as $\alpha \to \infty$. Since in §2 we prove the limit function is starlike if and only if $|\lambda-1| \leq 1/3$, the functions $h_1(z, \alpha)$ are not starlike for all α > -1 when $|\lambda - 1| > 1/3$.

§5. Proof of Theorem 4. Let $K_{_{\rm O}}$ = {g \in K : g"(0) = 0}. It is known [3] that $\{w: |w| < \pi/4\} \subset g(E)$ and $|\operatorname{Im}(g/z)| \le \pi/4$ for $z \in E$ when $g \in K_{\mathcal{O}}$.

Suppose $g \in K_0$ and g is analytic in $|z| \leq 1$. gent vector to the convex analytic curve w = $g(e^{i\theta})$, $-\pi \le \theta$ $\leq \pi$ at $\theta = 0$ is $g(1) + ig'(1)$. Thus, $g(1) + g'(1)$ is an outward normal to this curve. Since Re(g/z) $\geqslant \frac{1}{2}$ in E [2,Vol.I, p.135] we have Re g(1) $\geqslant \frac{1}{2}$, $|\texttt{Im} g(1)| \leqslant \pi/4$. Let \texttt{T}_1 and \texttt{T}_2 be the points of $|w| = \pi/4$ such that T_1 – $g(1)$ and T_2 – $g(1)$ are tangent to this circle. It follows that T_1 , T_2 are in the right half plane Re $w \ge 0$ and arg g'(1) is between arg T₁ and arg T₂. This implies Re g'(1) \geqslant 0. Since, for $0 < |z_{o}| < 1$, we have $g(z_{o}z)/z_{o} \in K_{o}$ whenever $g \in K_{o}$, we have shown that Re g'(z) ≥ 0 for $z \in E$ whenever $g \in K_0$. By the lemma, it follows that H $_{\lambda}$ (z) = (1– λ)z + λ g(z) is in S^ A tanfor all $0 \leq \lambda \leq 1$.

REFERENC ES

[1] Chichra, P. and Singh, R., Convex sum of *univalent 6unQ~~on~,* J. Austral. Math. Soc., 14 (1972),503- 507. MR 47 #7014.

10

[2] Goodman, A.W., Univalent Functions, I and II, Mariner Publishing Co., Inc., Tampa, Florida, 1983.

- [3] Hallenbeck, D.J. and Ruscheweyh, S., Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975),
191-195. MR 51 #10603.
- [4] Hayman, W.K., Research problems in function theory, Anthlone Press [University of London], 1967. MR 36 #359.
- [5] MacGregor, T.H., The univalence of a linear combination of convex mappings, London Math. Soc., 44 (1969). $210 - 212$, MR 38 # 4665.
- [6] Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115. MR 51 #3418.
- [7] Ruscheweyh, S. and Sheil-Small, T., Hadamard product of
schlicht functions and the Polya-Schoenberg con $jecture,$ Comment. Math. Helv. 48 (1973), 119-135. MR 48 #6393.
- [8] Styer, D. and Wright, D., On the valence of the sum of two convex functions, Proc. Amer. Math. Soc., 37 (1973) , 511-516. MR 47 #2049.
- [9] Trimble, S., The convex sum of convex functions, Math.
 z^2 , 109 (1969), 112-114. MR 39 #7085.

Department of Mathematical Sciences University of Cincinnati Cincinnati, Ohio 45221, USA.

(Recibido en junio de 1986).