Revista Colombiana de Matemáticas $Vol. XXI (1987), p\bar{a}qs. 85-94$

ON A THEOREM OF MÖBIUS: FLEMENTARY VARIATIONS ON THE POLYNOMIAL TONALITY

by

Víctor S. ALBIS-GONZALEZ

§1. Introduction. The following theorem which is due to Mobius in the case of the ring of rational integers \mathbb{Z} , is known to be versatile and general in its applications $\left[3, \right]$ 37 ; **2**, 93]:

Let $\{ (d_j, \alpha_j) ; d_j \in N, \alpha_j \in \mathbb{C}, 1 \le j \le n \}, S(m) =$ $\sum_{d_j \equiv o \pmod{m}} \alpha_j$ and $S' = \sum_{d_j = 1} \alpha_j$. Then $S' = \sum_{m=1}^{\infty} \mu(m) S(m)$, where u is the Möbius function.

With its help a good lot of number-theoretic identities and asymptotic formulae can be proved rather easily. Our porpuse in this paper is to prove its analog for the ring F[X] of polynomials in the indeterminate X and coefficients in a finite field **F**, with $q = p^S$ (s ≥ 1) elements, and use it to establish in F[X] analogs of some known results in the case of the ring Z .

Let P denote the set of all monic irreducible polynomials in F[X]; since F[X] is a unique factorization domain, the set m of all its monic polynomials is the free monoid generated by P U {1}. An *arithmetical function of* $\mathbb{F}[X]$ is any function $f: \mathbb{M} \to \mathbb{C}$. For example,

$$
\mu(M) = \begin{cases} 1 & \text{if } M = 1; \\ (-1)^k & \text{if } M = P_1 \dots P_k, \ p_i \in P, \text{ mutually distinct}; \\ 0 & \text{if } P^2 \mid M \text{ for some } P \in \mathcal{P}, \end{cases}
$$

is an arithmetical function of IF[X] , called the *Mobius function of* IF[X]. An in the case of the rational integers, this function has a combinatorial character; more precisely, we have the following:

$$
\sum_{D \mid M} \mu(D) = \begin{cases} 1 & \text{if } M = 1 \\ 0 & \text{if } M \neq 1. \end{cases}
$$
 (1)

Another example of an arithmetical function is the *(absolute) norm* of *a polynomial*: $n(M) = q^m$, where $m = deg M$. Clearly n satisfies $n(MN) = n(M) \cdot n(N)$ for any $M, N \in \mathbb{TH}$. An arithmetical function f satisfying $f(MN) = f(M) \cdot f(N)$ whenever $(M, N) = 1$, is called *multiplicative.* and *completely multiplicative* if $f(MN) = f(M) f(N)$ for arbitrary $M, N \subset \mathbb{H}$. Thus n is completely multiplicative, while u is just multiplicative. If $M = P_1^{e_1} \dots P_k^{e_k}$ is the canonical decomposition of $M \subseteq \mathbb{M}$ in elements of *P,* then the following formula is valid for any multiplicative arithmetical function f:

$$
\sum_{D \mid M} f(D) = \sum_{j=1}^{k} \left(\sum_{i=0}^{e_j} f(p_j^i) \right)
$$
 (2)

(where the right-side member equals 1 if M 1). In particular, we have the following identities:

$$
\sum_{D \mid M} \mu(D) f(D) = \prod_{j=1}^{k} (1 - f(P_j)), \qquad (3)
$$

$$
\sum_{D \mid M} \mu(D) / n(D) = \prod_{j=1}^{k} (1 - n(P_j)^{-1}), \qquad (4)
$$

and

86

or again

$$
\emptyset(M) = \sum_{D \mid M} \mu(D) n(M/D) = n(M) \cdot \sum_{D \mid M} \mu(D) / n(D), \qquad (5)
$$

where $\emptyset(M)$, the number of invertible elements of the ring $\mathbb{F}[X]/(M(X))$, is the analogous of the Euler \emptyset -function.

Another arithmetical function of interest is

$$
\tau(M) = \sum_{D \mid M} 1 = \sum_{j=1}^{m} \sum_{\substack{D \mid M \\ \deg D = j}} 1
$$

the number of divisors in π of the polynomial $M \in \pi$, $deg M = m$.

If $M = P_1^{e_1} \dots P_k^{e_k}$, $e_i \ge 1$, is the canonical decomposition of M, we obtain from (2) the following identity:

$$
\tau(M) = (e_1 + 1) \dots (e_k + 1), \tag{6}
$$

and from this the following inequality, for $\varepsilon \leq 1$:

 $\frac{\tau(M)}{n(M)} \varepsilon = \frac{(e_1+1)}{e^e_1 f_1 \varepsilon} \cdots \frac{(e_k+1)}{e^e_k f_k \varepsilon} < C,$

for some constant C, where $f_i = \deg P_i$. Indeed, for each i
 $(e_i + 1)/q^{e_i f_i \epsilon} \leq (e_i + 1)/2^{e_i f_i \epsilon} \leq (e_i + 1)/2^{e_i \epsilon} \leq (1/\epsilon \log 2)$ since $\epsilon \log 2 < 1$. On the other hand, $f_i \epsilon \ge 1$ implies that $q^{e_i f_i \varepsilon} \geq 2^{e_i}$, which in turn implies that $(e_i + 1)/q^{e_i f_i \varepsilon}$ $(e_i + 1)/2^{e_i} \le 1$. But the number of primes P_i such that f_i = deg P_i < 1/ ϵ is finite, say R. Thus

$$
\frac{\tau(M)}{n(M)^{\epsilon}} \leqslant \left(\frac{1}{\epsilon \log 2}\right)^{R} = C.
$$

Thus we have shown: for any $\varepsilon > 0$,

$$
\tau(M) = 0(n(M)^{\epsilon}) \text{ as } n(M) \rightarrow \infty
$$

 $(Cfr. [3, 44-45]).$

87

 (7)

In this paper we will make use of the ζ -function of the field $\mathbb{F}(X)$:

$$
\zeta_{\mathbb{F}(X)}(s) = \sum_{M \in \mathbb{III}} 1/n(M)^{s} = \sum_{k=0}^{\infty} q^{k} / q^{ks} = q^{s-1} / (q^{s-1} - 1) \qquad (8)
$$

which converges absolutely for all $s > 1$.

In §2, we will prove the analog of Möbius theorem in $\mathbb{F}[X]$ and some of its corollaries. In §3 we apply these results to obtain explicit and asymptotic formulae for the generalized \emptyset -functions introduced by Carlitz $\lceil 1 \rceil$; in particular, we are able to compute the average order of these \varnothing -functions. Also we present a result totally analogous to the case of integers about the probability that k monic polinomials, taken at random, are relatively prime [3, 49].

§2. **Mobius's Theorem in** F[X].

THEOREM. Let $\{ (D_j, \alpha_j) \; ; \; D_j \in \pi, \; \alpha_j \in \mathbb{C}, \; 1 \le j \le n \}$,
 $S(M) = \sum_{M \mid D_j^{\alpha_j}} \text{ and } S' = \sum_{D_j = 1}^{\infty} \alpha_j$. Then $S' = \sum_{M \in \pi} \mu(M) S(M)$. **Proof.** We have $\sum_{M \in \mathbf{III}} \mu(M) S(M) = \sum_{M \in \mathbf{III}} \mu(M) \sum_{M | D_i} \alpha_j =$ $\sum_{i=1}^{n} \alpha_{j} (\sum_{M|D_{i}} \mu(M)) = \sum_{D_{i}=1} \alpha_{j} = S'$, by virtue of (1).

COROLLARY 1. Let A_1, \ldots, A_n \in TII and let $F: {A_1, \ldots, A_n} \rightarrow 0$ be an arbitrary function. Then for a given $M \in \text{TT}$ the fol-*.tow,tng h oLd «:*

$$
\sum_{(A_j, M) = 1} F(A_j) = \sum_{D \mid M} \mu(D) S(D), \qquad (9)
$$

where $S(D) = \sum_{D|A_j} F(A_j)$.

Proof. Let us take $D_j = (A_j, M)$ and $\alpha_j = F(A_j)$; S' = $\sum_{(A_i,M)=1} F(A_j)$ and S(D) = $\sum_{D|(A_i,M)} F(A_j)$; since if D[†]M, the corollary follows. then $S(D) =$

A generalization of the above corollary is the following:

SHE COROLLARY 2. Let k be an integer greater than 1, and Let $A = \{ (A_1^{(j)}, \ldots, A_k^{(j)}); A_1^{(j)}, \ldots, A_k^{(j)} \in \mathfrak{m}, 1 \leq j \leq n \}.$ I_0 $F: A \rightarrow \mathbb{C}$ is an arbitrary function, then

g.c.d. $(A_1^{(i)},...,A_k^{(j)})=1$
F($(A_1^{(j)},...,A_k^{(j)})$) = $\sum_{D \in \mathbf{TT}} \mu(D)S(D)$, (10)

 $D|g.c.d. (A_1^{(j)}, \ldots, A_k^{(j)})$ $F((A_1^{(j)}, \ldots, A_k^{(j)}))$. where $S(D)$ =

Proof. The corollary follows by taking $D_j =$
g.c.d. $(A_1^{(j)},...,A_k^{(j)})$ and $\alpha_j = F((A_1^{(j)},...,A_k^{(j)})$ in the theorem.

§3. Some aplications of Mobius Theorem.

a) The generalized θ -functions. Let r be a non-negative integer and $M \in \mathbf{III}$. With Carlitz [1] let us define \emptyset _x(M) to be the number of polynomials in m that are prime to M and of degree r. It is clear that $\emptyset_0(M) = 1$ for any $M \in \mathbf{f}$. Let us take $\{ (D_j, \alpha_j) \}$ where $D_j = (A_j, M)$ and $\alpha_j = 1$,
and A_j runs over the set of all polynomials in \mathbf{f} . Of degree
= r. Thus $\emptyset_r(M) = S' = \sum_{D_j=1}^{r} 1$ and $S(D) = \sum_{D | D_j} 1 = 0$ if
 $D | M$ and $S(D) = \sum$ the number of multiples of D whose degree is r; this number equals q^{r-d} , where $d = deg D$. The foregoing argument and Möbius theorem establish thus the following property:

PROPOSITION 1. Let $\boldsymbol{\emptyset}_r(M)$ denote the number of monic polynomials that are prime to M and of degree r. Then

$$
\emptyset_{\mathbf{r}}(M) = q^{\mathbf{r}} \underset{\mathbf{D} \mid M}{\underset{\mathbf{D} \mid M}{\sum}} \mu(D) / n(D). \tag{11}
$$

 16 r > deg M we have $\emptyset_r(M) = q^T \emptyset(M)/n(M)$. In particular, \emptyset_{r} (M) = \emptyset (M) if r = deg M.

The last part of the proposition follows from (5) and the fact that $S(D) = 0$ if deg $D > r \geqslant$ deg M.

COROLLARY. *We. have. 6o~ any* ^E > 0,

$$
\emptyset_{\Gamma}(M) = q^{\Gamma} \emptyset(M) / n(M) + 0(n(M)^{\epsilon}) \tag{12}
$$

 a_5 n(M) $\rightarrow \infty$.

The proof of this statement is as follows: (11) can be written as

$$
\emptyset_{\mathbf{r}}(M) = q^{\mathbf{T}} \emptyset(M) / n(M) - A(r;M),
$$

where

$$
A(r;M) = q^{r} \cdot \sum_{\substack{D \mid M \\ r \leq \deg D \leq m}} \mu(D) / n(D) \text{ and } m = \deg M.
$$

Consequently, using (7) , we have

 $|A(r;M)| \leqslant q^r$. \sum DIM r-cdeglxm

which proves the corollary.

As a consequence of (4) the function $\overline{\varphi}_{\rm r}(\texttt{M})$ can also be expressed as

$$
\emptyset_{\mathbf{r}}(M) = q^{\mathbf{r}} \cdot \prod_{P \in \mathbf{P}} (1 - \frac{1}{n(P)}) + 0(n(M)^{\epsilon})
$$

or

$$
\emptyset_{\mathbf{r}}(M) = q^{\mathbf{r}} \cdot \prod_{\substack{P \in P \\ P \mid M}} \left(1 - \frac{1}{n(P)}\right) \text{ if } \deg M \leqslant r,
$$

formulae which shed some light on that proposed by Carlitz

in $[1, 44, (9)]$, whose meaning is quite difficult to grasp.

If now $\pi(r;M)$ is the number of monic polynomials that are prime to $M \in \mathbf{m}$ and are of degree $\leq r$, it is clear that

$$
\pi(r;M) = \emptyset_0(M) + \emptyset_1(M) + \ldots + \emptyset_r(M),
$$

and, therefore,

$$
\pi(r;M) = \sum_{j=0}^{r} q^{j} \sum_{\substack{D \mid M \\ O \leq \deg D \leq j}} \mu(D) / n(D)
$$

=
$$
\sum_{j=0}^{r} \sum_{\substack{D \mid M \\ \deg D = j}} {\frac{q^{r+1-j} - 1}{q - 1}} \mu(D)
$$

This last expression can be rewritten as follows

$$
\frac{q^{r+1}}{q-1} \cdot \sum_{\substack{D \mid M \\ 0 \leq \deg D \leq r}} \frac{\mu(D)}{n(D)} - \frac{1}{q-1} \cdot \sum_{\substack{D \mid M \\ 0 \leq \deg D \leq r}} \mu(D),
$$

which, in particular, implies that

$$
\pi(r; 1) = \frac{q^{r+1}-1}{q-1} = q^{r} + q^{r-1} + \ldots + q + 1,
$$

and

$$
\pi(r;M) = \frac{q^{r+1}\emptyset(M)}{(q-1)n(M)} = \frac{q^{r+1}}{q-1} \prod_{P|M} (1 - \frac{1}{n(P)}) \text{ if } r \geq m = \deg M.
$$

More generally,

$$
\pi(r;M) = \frac{q^{r+1}\emptyset(M)}{(q-1)n(M)} - B(r;M)
$$
,

where

where

$$
B(r;M) = \frac{1}{q-1} \sum_{j=r+1}^{\infty} \sum_{\substack{D \mid M \\ \deg D = j}}^{\infty} (q^{r+1-j} - 1) \mu(D).
$$

Since $|q^{r+1-j} - 1| < 1$ if $j > r+1$, we see that

$$
|B(r;M)| \leq \frac{1}{q-1} \sum_{j=r+1}^{m} \sum_{\substack{D \mid M \\ \deg D = 1}} |\mu(D)| \leq \frac{1}{q-1} \sum_{D \mid M} |\mu(D)| \leq \frac{1}{q-1} \tau(M).
$$

Thus, using again (7), we obtain the following property:

PROPOSITION 2. If $\pi(r;M)$ denotes the number of monic polynomials of degree $\leq r$ that are prime to M, and if $\varepsilon > 0$, then the following formula holds

$$
\pi(r;M) = \frac{q^{r+1}\cancel{g}(M)}{(q-1)n(M)} + 0(n(M)^{\epsilon}) = \frac{q^{r+1}}{(q-1)} \prod_{\substack{P \in \mathcal{P} \\ P|M}} \left(1 - \frac{1}{n(P)}\right) + 0(n(M)^{\epsilon}) \tag{13}
$$

when $n(M) \rightarrow \infty$.

Next we investigate the average order of $\phi_r(M)$. To begin with, let us suppose that deg $M \le t$, so that for $\varepsilon > 0$ (12) can be written as

$$
\varnothing_{r}(M) = q^{T} \varnothing(M) / n(M) + O(q^{t\epsilon}).
$$

From this it follows that

$$
\sum_{\substack{M \\ O \leqslant \deg M \leqslant t}} \emptyset_{\substack{\mathbf{r}(M) \\ \mathbf{r}(M) = q^{\mathbf{r}}} = \mathbf{q}^{\mathbf{r}} \sum_{\substack{M \\ O \leqslant \deg M \leqslant t}} \frac{\emptyset(M)}{\mathbf{n}(M)} + O(q^{\mathbf{t}\varepsilon}).
$$

But

 $O \leq$

$$
\sum_{\substack{M \ \text{deg}M \leq t}} \varnothing(M)/n(M) = \sum_{j=0}^{t} \sum_{\substack{M \ \text{deg}M=j}} \varnothing(M)/n(M) = \sum_{j=0}^{t} q^{-j} \sum_{\substack{d \text{deg}M=j}} \varnothing(M)
$$

Since $\int_{deg M=j} \emptyset(M) = q^{j} (q^{j} - q^{j-1})$ [1, 44, (10)], this equation becomes

$$
\begin{cases}\n\frac{1}{M} & \text{if } (M) / n(M) = (q^{t+1} - 1) / q \\
\frac{1}{M} & \text{if } (M) \neq 0\n\end{cases}
$$

Combining (14) and (15) we have

PROPOSITION 3. For any $\epsilon > 0$ the following formula

h.o Ld»

 $\frac{1}{M}$ \emptyset _r(M) M (16)

o<degM<t

 $a\Delta$ t + ∞ .

Finally, if ϵ < 1.

$$
\frac{1}{q^{\mathsf{t}}} \int\limits_{\substack{M \\ 0 \leq \deg M \leq \mathsf{t}}} \emptyset_{\mathbf{r}}(M) = q^{\mathbf{r}} \left(1 - \frac{1}{q^{\mathsf{t} + 1}}\right) + o\left(q^{\mathsf{t} \left(\varepsilon - 1\right)}\right)
$$

tends to q^r as $t \rightarrow \infty$, which shows that the average order of $\textbf{\textit{p}}_{\textbf{r}}(\texttt{M})$ is q'. If $\texttt{r} > 1$, we also can say that the average order of $\emptyset_{\texttt{r}}(\texttt{M})$ is $\zeta(\texttt{r})(q'-q)$ where ζ is the ζ -function of the field $F(X)$.

b) *A probabilistic result.* Let $A_{r,k} = \{(A_1^{(1)},...,A_k^{(j)})\}$ $A_i^{(j)} \in \mathbf{m}$, $n(A_i^{(j)}) \leqslant q^r$; $k \geqslant 2$; this set has $((q^{r+1}-1)/(q-1))^k$ elements. Let $A_{r,k}^*$ denote the set of ele-
ments of A_{r-k} satisfying g.c.d. $(A_1^{(j)},...,A_k^{(j)}) = 1$, and let S' be its number. It is clear then that

$$
\text{Prob } A_{r,k}^* = S'/((q^{r+1}-1)/(q-1))^k
$$
 (17)

represents the probability that k polynomials of degree $\leq r$ are relatively primer. Defining the probability that k elements of $π$ taken at random are relatively prime as the limit of (17) as $r \rightarrow \infty$, we are able to prove the following:

PROPOSITION 4. The probability that k $(k \geq 2)$ monic *polynomiaf.-~ cau e« at ~altdom alte.~elative.ly plt.i.me.La give.n by*

$$
1 / \zeta(k)
$$

where $\zeta(k)$ is the ζ -function of the field $\mathbb{F}(X)$.

Proof. The value S' can be computed by means of corollary 2 of the theorem, by taking $D_j = g.c.d.(A_1^{(j)},...,A_k^{(j)})$, and $F((A_1^{(j)},...,A_k^{(j)})) = 1$, so that $S' = \sum_{M \in \mathcal{III}} \mu(D)S(D)$, where

$$
S(D) = \sum_{D | g.c.d. (A_1^{(j)},...,A_n^{(j)})} 1 = (q^{r-d})^k
$$

if $d = deg D \le r$ and $S(D) = 0$ if deg $D > r$. Thus

$$
S' = \sum_{\substack{D \\ o \le \deg D \le r}} \mu(D) (q^{r-d})^k = q^{rk} \sum_{j=0}^r \sum_{\substack{D \\ \deg D = j}}^{\chi} \frac{\mu(D)}{n(D)^k}
$$

which in turn, using the relations $\sum_{\text{deg } D = i} \mu(D) = 0$ if $j \ge 2$ and = -q if $j = 1$ [1.43], becomes

$$
S' = q^{rk} (1 - \frac{q}{q^k}) = q^{rk} (q^{k-1} - 1) / q^{k-1}.
$$

Therefore,

$$
\text{Prob } A_{r,k}^* = \frac{q^{k-1}-1}{q^{k-1}} \left(\frac{q^r (q-1)}{q^{r+1}-1} \right)^k
$$

which tends to $(q^{k-1}-1)/q^{k-1} = \zeta(k)^{-1}$ as $r \to \infty$, since $k > 2$.

This result is completely analogous to the one obtained in the case of rational integers $(cf. [3, 49])$.

The author wishes to express his gratitude to the referee for some helpful suggestions which inproved the contents and presentation of this paper.

REFERENCES

[1] Carlitz, L., The arithmetic of polynomials in a Galois
field, Amer. J. Math. 54 (1932), 39-50.

[2] Grosswald, E., Topics from the Theory of Numbers, 2nd ed. MacMillan (New York).

[3] Vinográdov, I.M., Fundamentos de la teoría de los números, Mir (Moscú), 1971.

Departamento de Matemáticas y Estadística Universidad Nacional de Colombia Ciudad Universitaria Bogotá, D.E. Colombia.

(Recibido en septiembre de 1986)