Revista Colombiana de Matemáticas Vol. XXI (1987), págs. 85-94

ON A THEOREM OF MÖBIUS: ELEMENTARY VARIATIONS ON THE POLYNOMIAL TONALITY

bу

Victor S. ALBIS-GONZALEZ

§1. Introduction. The following theorem which is due to Möbius in the case of the ring of rational integers \mathbb{Z} , is known to be versatile and general in its applications [3, 37; 2, 93]:

Let $\{(d_j, \alpha_j); d_j \in \mathbb{N}, \alpha_j \in \mathbb{C}, 1 \le j \le n\}, S(m) = \sum_{\substack{d_j \equiv 0 \pmod{m}}} \alpha_j \text{ and } S' = \sum_{\substack{d_j = 1}} \alpha_j.$ Then $S' = \sum_{\substack{m=1}}^{\infty} \mu(m)S(m),$ where μ is the Möbius function.

With its help a good lot of number-theoretic identities and asymptotic formulae can be proved rather easily. Our porpuse in this paper is to prove its analog for the ring $\mathbb{F}[X]$ of polynomials in the indeterminate X and coefficients in a finite field \mathbb{F} , with $q = p^S$ (s ≥ 1) elements, and use it to establish in $\mathbb{F}[X]$ analogs of some known results in the case of the ring \mathbb{Z} .

Let \mathcal{P} denote the set of all monic irreducible polynomials in $\mathbb{F}[X]$; since $\mathbb{F}[X]$ is a unique factorization domain, the set \mathfrak{M} of all its monic polynomials is the free

monoid generated by $P \cup \{1\}$. An arithmetical function of $\mathbf{F}[X]$ is any function $f: \mathbf{ML} \rightarrow \mathbf{C}$. For example,

$$\mu(M) = \begin{cases} 1 & \text{if } M = 1 ;\\ (-1)^k & \text{if } M = P_1 \dots P_k, p_i \in \mathcal{P}, \text{ mutually distinct};\\ 0 & \text{if } P^2 \mid M \text{ for some } P \in \mathcal{P}, \end{cases}$$

is an arithmetical function of $\mathbb{F}[X]$, called the *Möbius func*tion of $\mathbb{F}[X]$. An in the case of the rational integers, this function has a combinatorial character; more precisely, we have the following:

$$\sum_{\substack{D \mid M}} \mu(D) = \begin{cases} 1 & \text{if } M = 1 \\ 0 & \text{if } M \neq 1. \end{cases}$$
(1)

Another example of an arithmetical function is the (absolute) norm of a polynomial: $n(M) = q^{m}$, where $m = \deg M$. Clearly n satisfies $n(MN) = n(M) \cdot n(N)$ for any $M, N \in \mathbf{III}$. An arithmetical function f satisfying $f(MN) = f(M) \cdot f(N)$ whenever (M,N) = 1, is called *multiplicative*, and *completely multiplicative* if f(MN) = f(M) f(N) for arbitrary $M, N \in \mathbf{III}$. Thus n is completely multiplicative, while μ is just multiplicative. If $M = P_1^{e_1} \dots P_k^{e_k}$ is the canonical decomposition of $M \in \mathbf{III}$ in elements of \mathcal{P} , then the following formula is valid for any multiplicative arithmetical function f:

$$\sum_{\substack{D \mid M}} f(D) = \sum_{\substack{j=1 \\ i=0}}^{k} \left(\sum_{\substack{j=0 \\ i=0}}^{e_j} f(P_j^i) \right)$$
(2)

(where the right-side member equals 1 if M = 1). In particular, we have the following identities:

$$\sum_{\substack{D \mid M}} \mu(D) f(D) = \prod_{j=1}^{k} (1 - f(P_j)), \qquad (3)$$

$$\sum_{\substack{D \mid M}} \mu(D) / n(D) = \prod_{j=1}^{k} (1 - n(P_j)^{-1}), \qquad (4)$$

and

86

or again

$$\emptyset(M) = \sum_{D \mid M} \mu(D) n(M/D) = n(M) \cdot \sum_{D \mid M} \mu(D) / n(D), \quad (5)$$

where $\emptyset(M)$, the number of invertible elements of the ring $\mathbf{F}[X]/(M(X))$, is the analogous of the Euler \emptyset -function.

Another arithmetical function of interest is

$$\tau(M) = \sum_{\substack{D \mid M \\ \dots \\ D \mid M}} 1 = \sum_{\substack{j=1 \\ \dots \\ deg }} \sum_{\substack{D \mid M \\ D \mid j}} 1,$$

the number of divisors in $\pi\pi$ of the polynomial M = $\pi\pi$, deg M = m.

If $M = P_1^{e_1} \dots P_k^{e_k}$, $e_i \ge 1$, is the canonical decomposition of M, we obtain from (2) the following identity:

$$\tau(M) = (e_1 + 1) \dots (e_k + 1), \qquad (6)$$

and from this the following inequality, for $\varepsilon \leqslant 1$:

 $\frac{\tau(M)}{n(M)^{\varepsilon}} = \frac{(e_1+1)}{a^{e_1}f_{1\varepsilon}} \cdots \frac{(e_k+1)}{a^{e_k}f_k\varepsilon} < C ,$

for some constant C, where $f_i = \deg P_i$. Indeed, for each i $(e_i + 1)/q^{e_i f_i \varepsilon} \leq (e_i + 1)/2^{e_i f_i \varepsilon} \leq (e_i + 1)/2^{e_i \varepsilon} < 1/\varepsilon \log 2$ since $\varepsilon \log 2 < 1$. On the other hand, $f_i \varepsilon \ge 1$ implies that $q^{e_i f_i \varepsilon} \ge 2^{e_i}$, which in turn implies that $(e_i + 1)/q^{e_i f_i \varepsilon} \le (e_i + 1)/2^{e_i} \le 1$. But the number of primes P_i such that $f_i = \deg P_i < 1/\varepsilon$ is finite, say R. Thus

$$\frac{\tau(M)}{n(M)^{\varepsilon}} \leqslant \left(\frac{1}{\varepsilon \log 2}\right)^{R} = C.$$

Thus we have shown: for any $\varepsilon > 0$,

$$\tau(M) = O(n(M)^{\varepsilon}) \ as \ n(M) \neq \infty$$

(Cfr. [3, 44-45]).

87

(7)

In this paper we will make use of the ζ -function of the field $\mathbf{F}(X)$:

$$\zeta_{\mathbf{F}(X)}(s) = \sum_{M \in \mathbf{m}} 1/n(M)^{s} = \sum_{k=0}^{\infty} q^{k}/q^{ks} = q^{s-1}/(q^{s-1}-1)$$
(8)

which converges absolutely for all s > 1.

In §2, we will prove the analog of Möbius theorem in $\mathbb{F}[X]$ and some of its corollaries. In §3 we apply these results to obtain explicit and asymptotic formulae for the generalized Ø-functions introduced by Carlitz [1]; in particular, we are able to compute the average order of these Ø-functions. Also we present a result totally analogous to the case of integers about the probability that k monic polinomials, taken at random, are relatively prime [3, 49].

§2. Möbius's Theorem in $\mathbb{F}[X]$.

THEOREM. Let { (D_j, α_j) ; $D_j \in \mathbf{TT}$, $\alpha_j \in \mathbf{C}$, $1 \le j \le n$ }, $S(M) = \sum_{M \mid D_j} \alpha_j$ and $S' = \sum_{D_j=1} \alpha_j$. Then $S' = \sum_{M \in \mathbf{TT}} \mu(M) S(M)$. *Proof.* We have $\sum_{M \in \mathbf{TT}} \mu(M) S(M) = \sum_{M \in \mathbf{TT}} \mu(M) \sum_{M \mid D_j} \alpha_j = \sum_{j=1}^{n} \alpha_j (\sum_{M \mid D_j} \mu(M)) = \sum_{D_j=1} \alpha_j = S'$, by virtue of (1).

COROLLARY 1. Let $A_1, \ldots, A_n \in III$ and let $F: \{A_1, \ldots, A_n\} + C$ be an arbitrary function. Then for a given $M \in III$ the following holds:

$$\sum_{(A_{j},M)=1} F(A_{j}) = \sum_{D|M} \mu(D)S(D), \qquad (9)$$

where $S(D) = \sum_{D|A_j} F(A_j)$.

Proof. Let us take $D_j = (A_j, M)$ and $\alpha_j = F(A_j)$; then $S' = \sum_{(A_j, M)=1} F(A_j)$ and $S(D) = \sum_{D|(A_j, M)} F(A_j)$; since S(D) = 0if $D \uparrow M$, the corollary follows. A generalization of the above corollary is the following:

COROLLARY 2. Let k be an integer greater than 1, and let $\mathbf{A} = \{(A_1^{(j)}, \dots, A_k^{(j)}); A_1^{(j)}, \dots, A_k^{(j)} \in \mathbf{M}, 1 \le j \le n\}.$ If $\mathbf{F}: \mathbf{A} \neq \mathbf{C}$ is an arbitrary function, then

 $\sum_{g.c.d.(A_1^{(j)},...,A_k^{(j)})=1} F((A_1^{(j)},...,A_k^{(j)})) = \sum_{D \in \mathbf{m}} \mu(D)S(D), \quad (10)$

where $S(D) = \sum_{\substack{j \in C.d. (A_1^{(j)}, \dots, A_k^{(j)})}} F((A_1^{(j)}, \dots, A_k^{(j)})).$

Proof. The corollary follows by taking $D_j = g.c.d.(A_1^{(j)}, \ldots, A_k^{(j)})$ and $\alpha_j = F((A_1^{(j)}, \ldots, A_k^{(j)}))$ in the theorem.

§3. Some aplications of Möbius Theorem.

a) The generalized \emptyset -functions. Let r be a non-negative integer and $M \in \mathbf{TI}$. With Carlitz [1] let us define $\emptyset_r(M)$ to be the number of polynomials in \mathbf{TI} that are prime to M and of degree r. It is clear that $\emptyset_0(M) = 1$ for any $M \in \mathbf{TI}$. Let us take $\{(D_j, \alpha_j)\}$ where $D_j = (A_j, M)$ and $\alpha_j = 1$, and A_j runs over the set of all polynomials in \mathbf{TI} of degree = r. Thus $\emptyset_r(M) = S' = \sum_{D_j=1} 1$ and $S(D) = \sum_{D \mid D_j} 1 = 0$ if $D \mid M$ and $S(D) = \sum_{D \mid A_j 1}$ if $D \mid M$. That is, if $D \mid M$ then S(D) is the number of multiples of D whose degree is r; this number equals q^{r-d} , where d = deg D. The foregoing argument and Möbius theorem establish thus the following property:

PROPOSITION 1. Let $\emptyset_r(M)$ denote the number of monic polynomials that are prime to M and of degree r. Then

$$\emptyset_{r}(M) = q^{r} \sum_{\substack{D \mid M \\ 0 \leq \deg D \leq r}} \mu(D) / n(D).$$
(11)

If $r \ge \deg M$ we have $\emptyset_r(M) = q^r \emptyset(M) / n(M)$. In particular, $\vartheta_r(M) = \emptyset(M)$ if $r = \deg M$.

The last part of the proposition follows from (5) and the fact that S(D) = 0 if deg $D > r \ge \deg M$.

COROLLARY. We have for any $\varepsilon > 0$,

$$\emptyset_{\mathbf{r}}(\mathbf{M}) = q^{\mathbf{r}} \emptyset(\mathbf{M}) / \mathbf{n}(\mathbf{M}) + 0(\mathbf{n}(\mathbf{M})^{\varepsilon})$$
(12)

as $n(M) \rightarrow \infty$.

The proof of this statement is as follows: (11) can be written as

$$\emptyset_{\mathbf{r}}(\mathbf{M}) = q^{\mathbf{r}} \emptyset(\mathbf{M}) / \mathbf{n}(\mathbf{M}) - \mathbf{A}(\mathbf{r};\mathbf{M}),$$

where

$$A(r;M) = q^{r} \cdot \sum_{\substack{D \mid M \\ r < \text{degD} \leqslant m}} \mu(D) / n(D) \text{ and } m = \text{deg } M.$$

Consequently, using (7), we have

 $\begin{aligned} |A(\mathbf{r};M)| \leq q^{\mathbf{r}} \cdot \sum_{\substack{D \mid M \\ \mathbf{r} < \text{degD} \leq \mathbf{m}}} |\mu(D)| \leq q^{\mathbf{r}} \cdot \sum_{\substack{D \mid M \\ D \mid M}} |\mu(D)| \leq q^{\mathbf{r}} \tau(M) \leq q^{\mathbf{r}} C(n(M)^{\varepsilon}) \end{aligned}$

which proves the corollary.

As a consequence of (4) the function $\emptyset_r(M)$ can also be expressed as

$$\emptyset_{\mathbf{r}}(\mathbf{M}) = \mathbf{q}^{\mathbf{r}} \cdot \prod_{\substack{\mathbf{P} \in \mathcal{P} \\ \mathbf{P} \mid \mathbf{M}}} \left(1 - \frac{1}{n(\mathbf{P})}\right) + O(n(\mathbf{M})^{\varepsilon})$$

or and a constant of the const

formulae which shed some light on that proposed by Carlitz

in [1, 44,(9)], whose meaning is quite difficult to grasp.

If now $\pi(r;M)$ is the number of monic polynomials that are prime to $M \in \mathbf{III}$ and are of degree $\leq r$, it is clear that

$$\pi(\mathbf{r};\mathbf{M}) = \emptyset_{\mathbf{O}}(\mathbf{M}) + \emptyset_{\mathbf{1}}(\mathbf{M}) + \dots + \emptyset_{\mathbf{r}}(\mathbf{M}),$$

and, therefore,

$$\pi(\mathbf{r};\mathbf{M}) = \sum_{j=0}^{\mathbf{r}} q^{j} \sum_{\substack{D \mid \mathbf{M} \\ o \leq \text{deg}D \leq j}} \mu(D)/\pi(D)$$
$$= \sum_{j=0}^{\mathbf{r}} \sum_{\substack{D \mid \mathbf{M} \\ \text{deg}D = i}} \{\frac{q^{\mathbf{r}+1-j}-1}{q-1}\}\mu(D)$$

This last expression can be rewritten as follows

$$\frac{q^{r+1}}{q^{-1}} \cdot \sum_{\substack{D \mid M \\ o \leq \deg D \leq r}} \frac{\mu(D)}{n(D)} - \frac{1}{q^{-1}} \cdot \sum_{\substack{D \mid M \\ o \leq \deg D \leq r}} \mu(D),$$

which, in particular, implies that

$$\pi(\mathbf{r};1) = \frac{q^{r+1}-1}{q-1} = q^{r} + q^{r-1} + \ldots + q + 1,$$

and

$$\pi(r;M) = \frac{q^{r+1}\emptyset(M)}{(q-1)n(M)} = \frac{q^{r+1}}{q-1} \prod_{\substack{P \mid M}} (1 - \frac{1}{n(P)}) \text{ if } r \ge m = \deg M.$$

More generally,

$$\pi(\mathbf{r};\mathbf{M}) = \frac{q^{\mathbf{r}+1} \emptyset(\mathbf{M})}{(q-1)n(\mathbf{M})} - B(\mathbf{r};\mathbf{M}) ,$$

where

$$B(r;M) = \frac{1}{q-1} \sum_{j=r+1}^{\sum} \sum_{\substack{D \mid M \\ \text{deg } D=j}} (q^{r+1-j}-1)\mu(D).$$

Since $|q^{r+1-j} - 1| < 1$ if $j \ge r+1$, we see that

$$|B(\mathbf{r};M)| \leq \frac{1}{q-1} \sum_{\substack{j=r+1 \ deg D=1}}^{m} \sum_{\substack{D \mid M \\ deg D=1}} |\mu(D)| \leq \frac{1}{q-1} \sum_{\substack{D \mid M \\ D \mid M}} |\mu(D)| \leq \frac{1}{q-1} \tau(M).$$

Thus, using again (7), we obtain the following property:

PROPOSITION 2. If $\pi(r;M)$ denotes the number of monic polynomials of degree $\leqslant r$ that are prime to M, and if $\varepsilon > 0$, then the following formula holds

$$\pi(\mathbf{r};\mathbf{M}) = \frac{q^{\mathbf{r}+1} \mathbf{\emptyset}(\mathbf{M})}{(q-1)n(\mathbf{M})} + 0(n(\mathbf{M})^{\varepsilon}) = \frac{q^{\mathbf{r}+1}}{(q-1)} \prod_{\substack{P \in \mathbf{P} \\ P \mid \mathbf{M}}} \left(1 - \frac{1}{n(\mathbf{P})}\right) + 0(n(\mathbf{M})^{\varepsilon}) \quad (13)$$

when $n(M) \rightarrow \infty$.

Next we investigate the average order of $\emptyset_{\mathbf{r}}(M)$. To begin with, let us suppose that deg $M \leq t$, so that for $\varepsilon > 0$ (12) can be written as

$$\emptyset_{\mathbf{r}}(\mathbf{M}) = \mathbf{q}^{\mathbf{r}} \emptyset(\mathbf{M}) / \mathbf{n}(\mathbf{M}) + \mathbf{0}(\mathbf{q}^{t\varepsilon}).$$

From this it follows that

$$\sum_{\substack{M \\ \text{osdeg } M \leq t}} \emptyset_{\mathbf{r}}(M) = q^{\mathbf{r}} \sum_{\substack{M \\ \text{osdeg } M \leq t}} \frac{\emptyset(M)}{n(M)} + 0(q^{t\varepsilon}).$$

But

$$\sum_{\substack{M \\ M \\ o \leq degM \leq t}} \emptyset(M) / n(M) = \sum_{j=o}^{t} \sum_{\substack{M \\ j=o}} \emptyset(M) / n(M) = \sum_{j=o}^{t} q^{-j} \sum_{\substack{M \\ degM=j}} \emptyset(M)$$

Since $\sum_{\deg M=j} \emptyset(M) = q^j (q^j - q^{j-1}) [1, 44, (10)]$, this equation becomes

$$\sum_{\substack{M \\ n \leq \deg M \leq t}} \emptyset(M) / n(M) = (q^{t+1} - 1) / q$$

Combining (14) and (15) we have

PROPOSITION 3. For any $\varepsilon > 0$ the following formula

holds

 $\sum_{M} \emptyset_{r}(M) = q^{r-1}(q^{t+1}-1) + 0(q^{t\epsilon})$ (16)

o≼degM≼t

as $t \rightarrow \infty$.

Finally, if $\varepsilon < 1$,

$$\frac{1}{q^{t}} \sum_{\substack{M \\ 0 \le degM \le t}} \emptyset_{\mathbf{r}}(M) = q^{\mathbf{r}} \left(1 - \frac{1}{q^{t+1}}\right) + 0 \left(q^{t(\varepsilon-1)}\right)$$

tends to q^r as $t \to \infty$, which shows that the average order of $\theta_r(M)$ is q^r . If r > 1, we also can say that the average order of $\theta_r(M)$ is $\zeta(r)(q^r-q)$ where ζ is the ζ -function of the field $\mathbf{F}(X)$.

b) A probabilistic result. Let $\mathbf{A}_{r,k} = \{(A_1^{(j)}, \dots, A_k^{(j)}); A_1^{(j)} \in \mathbf{fn}, n(A_1^{(j)}) \leq q^r\}; k \geq 2; \text{ this set has} ((q^{r+1}-1)/(q-1))^k \text{ elements. Let } \mathbf{A}_{r,k}^* \text{ denote the set of elements of } \mathbf{A}_{r,k} \text{ satisfying g.c.d.}(A_1^{(j)}, \dots, A_k^{(j)}) = 1, \text{ and let } S' \text{ be its number. It is clear then that}$

Prob
$$A_{r,k}^{*} = S' / ((q^{r+1} - 1) / (q - 1))^{k}$$
 (17)

represents the probability that k polynomials of degree \leq r are relatively primer. Defining the probability that k elements of **MT** taken at random are relatively prime as the limit of (17) as $r \rightarrow \infty$, we are able to prove the following:

PROPOSITION 4. The probability that k $(k \ge 2)$ monic polynomials taken at random are relatively prime is given by

 $1/\zeta(k)$

where $\zeta(k)$ is the ζ -function of the field $\mathbb{F}(X)$.

Proof. The value S' can be computed by means of corollary 2 of the theorem, by taking $D_j = g.c.d.(A_1^{(j)}, \ldots, A_k^{(j)}))$, and $F((A_1^{(j)}, \ldots, A_k^{(j)})) = 1$, so that S' = $\sum_{M \in \mathbf{TT}} \mu(D)S(D)$, where

$$S(D) = \sum_{\substack{D \mid g.c.d. (A_1^{(j)}, \dots, A_n^{(j)})}} 1 = (q^{r-d})^k$$

if $d = deg D \leq r$ and S(D) = 0 if deg D > r. Thus

$$S' = \sum_{\substack{D \\ 0 \leq degD \leq r}} \mu(D) (q^{r-d})^{k} = q^{rk} \sum_{\substack{j=0 \\ degD=j}}^{r} \sum_{\substack{D \\ degD=j}} \frac{\mu(D)}{n(D)^{k}}$$

which in turn, using the relations $\sum_{degD=j} \mu(D) = 0$ if $j \ge 2$ and = -q if j = 1 [1,43], becomes

S' =
$$q^{rk} \left(1 - \frac{q}{q^k}\right) = q^{rk} (q^{k-1} - 1)/q^{k-1}$$
.

Therefore,

Prob
$$\mathbf{A}_{\mathbf{r},\mathbf{k}}^{\star} = \frac{q^{k-1}-1}{q^{k-1}} \left(\frac{q^{\mathbf{r}}(q-1)}{q^{\mathbf{r}+1}-1}\right)^{k}$$

which tends to $(q^{k-1}-1)/q^{k-1} = \zeta(k)^{-1}$ as $r \neq \infty$, since k > 2.

This result is completely analogous to the one obtained in the case of rational integers (cf. [3, 49]).

The author wishes to express his gratitude to the referee for some helpful suggestions which inproved the contents and presentation of this paper.

REFERENCES

 Carlitz, L., The arithmetic of polynomials in a Galois field, Amer. J. Math. 54 (1932), 39-50.

[2] Grosswald, E., Topics from the Theory of Numbers, 2nd ed. MacMillan (New York).

 [3] Vinográdov, I.M., Fundamentos de la teoría de los números, Mir (Moscú), 1971.

Departamento de Matemáticas y Estadística Universidad Nacional de Colombia Ciudad Universitaria Bogotá, D.E. Colombia.

(Recibido en septiembre de 1986)