A SIMPLE PROOF OF A GENERALIZATION OF EISENSTEIN'S IRREDUCIBILITY CRITERION

by

Nelo D. ALLAN(*)

Abstract. We present a simple proof of Königsgberg's Criterion, [K] p.69 and also present families of irreducible polynomials over some fields. In particular, if \((n,h) = 1, a_0, \ldots, a_{n-1} \in \mathbb{Z} = \text{ring of integers and } p \text{ is a prime not dividing } a_0, \text{ then } f(x) = x^n - p^h(a_0 + a_1 + \ldots + a_{n-1}x^{n-1}) \text{ is irreducible over the rationals}. \text{ Also if } k \text{ is any field, then } F(x,y) = x^n - ay^h + \sum_{t=1}^{n-1} a_t x^t y^{\lambda(t)}, \text{ } a_t, \lambda(t) \in \mathbb{Z}, a_t \neq 0, \text{ and } n\lambda(t) + ht > nh, \text{ is irreducible in } k[x,y].

This is an expository note which has as objective to give a simple up-to-date, elementary proof of Königsgberg's generalization of the Eisenstein's Irreducibility criterion.

Let \(k\) be a complete discrete valuation field with ring of integers \(R\), valuation \(v\) and prime \(\pi\). Let \(F(x) \in R[x] \) be a minic polynomial; we want to find conditions under which \(F(x)\) is irreducible. We let \(F(x) = \sum_{i=0}^{n} a_i x^{n-i}, a_0' = 1, \text{ and we set } a_i' = \pi^{\lambda(i)} a_i, \text{ with } v(a_i) = 0 \text{ if } a_i' \neq 0 \text{ and } \lambda(i) \in \mathbb{Z}. \text{ In the car-}

(*) This research has been fully supported by the reciprocity agreement NSERC-CNP. (Canada-Brazil).
tesian plane we plot the Newton Polygon, $P(F)$, of F. It consists of the lower part of the boundary of the convex hull of the points $\{(i,\lambda(i))|i=0,...,n, a_i \neq 0\}$.

A necessary condition for the irreducibility of F is that $P(F)$ consists of a single segment E joining $(n,0)$ to $(0,h)$ for $h = \lambda(n)$. We set $n = um$, $h = vm$, with $(u,v) = 1$, and look at the polynomial F_0 formed by the terms whose corresponding points lie on E. Roughly speaking we erase the positive powers of n out of F_0 and replace x^u by x; if the new polynomial $F^*(X)$ is irreducible mod π, then f is irreducible. Clearly, we can immediately construct families of irreducible polynomials, one of them $x^n - \pi^hH(x)$, $\pi^hH(0)$, $(n,h) = 1$, and degree of $H =: d^OH \leq n-1$. If $h = 1$ we get the Eisenstein's criterion. This criterion follows easily from [W] and puts in evidence the fact that Newton's polygons give a better understanding of the Eisenstein's criterion: it is a first stage of a process that if we parallel to the theory of singularities of a curve, it corresponds to the usual stages of separating branches of a curve, at a singular point (see [M] and also [A]).

It is well known that if F is irreducible, then its polygon is a segment (see [W], p.74). Hence a necessary condition in order to have the irreducibility of F is that $P(F) = E$ be a segment, which we shall assume not to be parallel to the x-axis. Consequently its end points are $\{(0,h),(n,0)\}$, $h = \lambda(n)$ and again writing $n = um$, $h = vm$, $(u,v) = 1$, then the equations of the line ℓ_0 support of E is $xv + uy = mvu$. We write $F(x) = F_0(x) + F_1(x) + ..., \text{ with } F_j(x)$ being the sum of the terms of F whose corresponding points lie on the line $\ell_j = \ell(m,j) : xv + yu = muv + j$; thus

$$F_0(x) := F_0(x,\pi) = x^{mu} + \sum_{t=1}^{m} a^"t x^{u(m-t)\pi ut}, \quad a^"t = a^{mt}$$

can be regarded as a homogeneous (v,u)-weighted form in (x,π), of total weight muv. The same is true form F_j but now the total weight is $muv + j$.

We shall denote by \k the residue class field of k and
then we shall associate to F a polynomial F^* of m-th degree in $k[X]$ defined by

$$F^*(X) = X^m + \sum_{t=1}^{m} \tilde{a}_t X^{m-t}.$$

where \tilde{a} denotes the reduction of a mod π. If $G(X)$ is another monic polynomial in $R[x]$ such that $P(G)$ is a segment E' parallel to E, then G decomposes as sum $G = G_0 + G_1 + \ldots$ of polynomials G_j which can be also regarded as weighted forms in (x, π) with respective weights (v, u), say of total degree $su + j$. Using the same procedure, we arrive at polynomial G^* of degree s in $\tilde{k}[X]$. Now it is easy to verify that $P(FG)$ is also a segment parallel to E, and because we are working with some sort of weighted forms, $(FG)_0 \equiv F_0 G_0 \mod \pi$, and hence $(FG)^* = F^* G^*$. (For, the corresponding points of F, G all lie in the union of all $\ell(m + s, j + t + ku)$).

We can now state our main theorem:

Theorem. Assume that $f \equiv x^n \mod p$, that the Newton polygon of the monic polynomial $F(x) \in R[x]$ is a segment, and that the form F^* is irreducible. Then F is irreducible in $R[x]$.

Proof. In fact, let us assume that F is reducible say $F = \Pi F_i$, F_i nonconstant irreducible, which, by Gauss' lemma, we may assume that $F_i \in R[x]$. Now as remarked before, the diagram of F_i is segment. If \bar{k} is the splitting field of F, \bar{v} is the unique extension of v to \bar{k}, and $a \in \bar{k}$ is a root of F, then $\bar{v}(a) = -\text{slope of } E$. Consequently, if $P(F_i) = E_i$ and a_i is any root of F_i, then $\bar{v}(a_i) = -\text{slope of } E = -\text{slope of } E_i$. Consequently all E_i are parallel to E and $F^* = \Pi F_i^*$. As F_i are non constant, F_i^* are non trivial proper divisor of F^* and this is a contradiction. Therefore F is irreducible.

Since irreducibility over \mathbb{Z}_p, the ring of the p-adic integers, p prime, implies irreducibility over the ring of integers \mathbb{Z}, we have:

Corollary. Let $a_i \in \mathbb{Z}$, be such that $F^*(X) = X^m + \sum a_i X^{m-1}$.
is irreducible mod p. We let u, v be relatively prime, (u,v) = 1. Let \(H(x) = \sum_{i=0}^{n-1} b_i x^i p^{\lambda(i)} \in \mathbb{Z}[x] \) be such that
\(\lambda(i) > 0 \) and if \(b_i \neq 0, iv + \lambda(i)u > muv \). Then
\[
F(x) = x^{um} + \sum a_i x^{m-i} p^i v + H(x)
\]
is irreducible.

We close our note with five remarks:

REMARK 1. The condition \((n,h) = 1\) is already sufficient for the irreducibility of \(F \), because \(m = 1 \) and then \(F^* \) is linear. (See [V], p.77, Ex.1).

REMARK 2. Our last corollary can be applied to a more general situation, namely the case where \(R^* \) is a Dedekind domain, \(p \) is a primer and \(R \) its \(p \)-adic completion.

REMARK 3. Another case where our theorem applies is when \(R = L[Y] \) is the formal power series ring in one variable over a field \(L \), and \((n,h) = 1\)

\[
F(x,y) = ax^n - by^h + H(x,y) \in L[x,y]
\]
with \(a, b \in L \), \(ab \neq 0 \), and

\[
H(x,y) = \sum\{a_{ij} x^i y^j | hi + jn > hn, i < n, a_{ij} \in L\}.
\]

\(F \) is irreducible in \(R[x] \) and a fortiori in \(L[x,y] \subset R[x] \).

REMARK 4. We let \(v_0 \) be the valuation \(u.v \). It was observed by Rella (see (R)) that we have an extension \(v_1 \) of \(v_0 \) to \(k[x] \) by setting \(v_1(x) = v \). The residue class ring of \(v_1 \) is \(\tilde{k}[x] \) where \(X \) is the image of \(x^{u_{n-1}} \). In our case

\[
v_1(F_j) = muv + j \text{ hence the image of } \pi^{-muv} F(X) \text{ coincides with } F^*(X).
\]
REMARK 5. It is also easily seen that in the case where \(N \) is prime all the irreducible polynomials of degree \(N \) are either obtained by lifting the irreducibles of \(k[x] \) or up to a linear change of variables, by considering polynomials as in Remark 3 with \(w = y \). If in Remark 3, \(L \) is formally real and \(N \) is odd the same holds for the irreducible germs at the origin.

Finally a next step generalization, the Dumas Criterion comes when in the corollary we replace \(x \) by a polynomial \(w(x) \), irreducible mod \(p \). (see [A], [M] and [V]).

BIBLIOGRAPHY

Departamento de Matemática
Universidade Estadual de Campinas
Caixa Postal 1170
13100 Campinas, SP, Brasil

(Recibido en octubre de 1986).