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TWO PROOFS OF THE KANTOROVICH INEQUALITY
AND SOME GENERALIZATIONS

by

Wolfgang J. BUHLER

Abstract. Two elementary probabilistic proofs of the Kan-
torovich inequality are given and various generalizations and
inequalities are discussed.

§1. Introduction. The Kantorovich inequality in its simplest
form seems to have been found originally as early as 1914 by
Schweitzer [8]. In the context of statistical applications
it is usually stated in the form

1 € (x'Ax)+(x'A"'x) ¢ (a+b)2/4ab 1)

where A is a positive definite nxn matrix with eigenvalues
0 < a = 11 < AZ
For given A there are unit vectors X1, X, for which the
left or right inequality respectively is an equality. There
have been various generalizations and modifications, see e.
g. [6] and the references given there. My own interest in
the matter comes from reading the proof in [7]. This proof

-1 i
starts by transforming the term F = (x,Ax)(x'A 'x) by diago-

s...sxn = b and x is a unit vector.
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nalizing A into

Letting P; = yf this has the following probabilistic inter-
pretation not used in [7]. F is the product of the expected
value of a random variable Z taking values Ai with probabil-
ities P; and of the expected value of 1/Z. Both proofs giv-
en in the present paper use the representation of F as

EZE(1/2).

§2. First proof and generalization. Let Z be a random vari-
able, not necessarily discrete, taking values in [a,b], 0 <

a < b < ow,

THEOREM 1. 1 < EZ-E(1/Z) < (a+b)’/dab. (2)
The night inequality L& an equality 4Lf and only i§ I takes
each 04 the values a and b with probability 1/2, the Legt
inequality if§ and only if§ Z 48 degenenrate.

REMARK. The special case where the random variable Z
is defined as an integrable function on [0,1] is already

contained in Schweitzer [8].

Proof of Theorem 1. We start from the well known bound

for the covariance

EZ-E(1/2) < E[2(1/2)] + [V(Z)V(1/2)]"

the symbol V denoting the variance. Combining this with the
fact that the variance of the bounded variable Z is at most
(a+b)2/4 (and similarly for V(1/Z)) we obatin the upper bound
1+{(a*b) 274 (1/a+1/6) 27415 = (a+b)/44b. The first bound is
attained if 1/Z is a.s. a decreasing linear function of Z
which allows at most two values, the second if the two val-
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ues a and b have probability 1/2 each. The left inequality
in (2) could be proved via essentially the same path. It is
however also a simple application of Jensen's inequality.

COROLLARY. Let (Q,F,u) be a measure space with u(Q) <1
and Let f be a measurable neal valued function on Q with
a < f(w) < b almost everywhene |u|. Then

jfdu jm/f)du < (a+b)2/4ab. (3)

Proof. Augment Q by an additional point 8§ and u by a
point mass 1-u(Q) at § to make @ into a probability space.
Define the random variable Z as f on Q@ and Z(§) = a, say.
Then apply Theorem 1.

Let x, y be two unit n-vectors, A a matrix as above
(without loss of generality assumed to be diagonal). Then

p({i}) = |xiyi| defines a measure on {1,2,...n} to which we
can apply the Corollary with f(i) = Ai. The resulting ine-
quality
ixsh 2
(X"AY) - (y'AT'x) s DAy DXy DAY Xy | < (arb)7/4ab

is Strang's [9] generalization of Kantorovich's inequality.

§3. Second proof and further generalization. The second proof
makes use of the convexity of f(x) = 1/x and can in fact be

applied for any convex f. We are thus led to

THEOREM 2. Let Z be a handom variable with P(asg Zg<b) =1,
0 <a<b< o; et f be defined on [a,b] and convex with

f(a) = A > B = f(b). Then we have

EZ ££(2) < max {(Ab-Ba)>/[4(A-B) (b-a)], aA, bB}. (4)

Equality s neached forn some I taking at mosi the two values
a and b. I§ £ s concave then the inequality <4 nevensed, L.e.
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(4) yields a Lowenr bound.

Proof. The two dimensional random variable (Z,f(Z))
takes its values on the graph of f. E being a convex opera-
tion the point (EZ,Ef(Z)) must lie in the (closed) shaded
region R bounded by the graph of f and by the straight line
g(z) = A+(B-A)(z-a)/(b-a).

The aim is now to maximize the area zy of a rectangle with
(z,y) « R. Obviously zy' > zy such that we can limit our
search to points (z,g(z)). The area h(z) = z-g(z) is maxi-

mized when
0 = h'(z) = g(z) +2g'(z) = {A(b-a) + (B-A)(z-a) +z(B-A)}/(b-a) ,

i.e. when z = (Ab-Ba)/2(A-B) =: Zy with h(zj) =
(Ab«Ba)Z/[4(A-B)(b-a)]. Here z = aa + (i-a)b with

o = (Ab+Ba-2Bb)/[2(b-a) (A-B)].

The local maximum of h at z, being the only extremum it is
obviously a global maximum over the whole line g. However
not always is a < z, < b. If it is, i.e. if 0 € a < 1 then
the variable Z with P(Z=a) = a = 1-P(Z=b) will have EZEf(Z)
= h(zo); if o < 0 the Z degenerate at a will bring EZ-Ef(Z)
= aA; if o > 1 then Z degenerate at b will attain the upper
bound in the form bB.
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REMARK. If in the figure we let z = EX = Bb + (1-8)a
and y = Ef(X) for some random variable X with P(agXgb) =1
then with y' = 8B + (1-B)A we find the estimate

f(EX) < Ef(X) < [(Ab-aB) - (A-B)EX]/(b-a).

The left inequality is of course Jensen's, the right ine-
quality holds without the restrictions that 0 < a and A > B.
In the present context, if EX is known, it is sharper than

(4).

COROLLARY. Let Z be as 4in the Theorem. Let f,g both be
convex, one 04 them Lncreasing the othen decreasing, f(a) =
A,f(b) = B, g(a) = C,g(b) = D. Then

Eg(Z) E£(Z) < max{(AD-BC)?/[4(C-D)(B-A)],AC,BD} (5)

Proof. Under the conditions stated fog'1 is convex and
decreasing. Thus the theorem can be applied with Y = g'1(Z)
in lieu of Z. (4) then takes the form (5).

§4. The inequality of Greub and Rheinboldt. The following
inequality contains that given by Greub and Rheinboldt (3]

as a special case.

THEOREM 3. Let X,Y be random variables defined on a
probability space (Q,F,P) with a £ X < b and A ¢ Y £ B a.s.
Then

Ex2-EY2/(EXY)? < (aA+bB)%/4aAbB. (6)

Proof. We first remark that both sides of (6) are in-
variant to scale. We thus rescale X and Y to achieve EXY =1
without changing the ratio X/Y. The equation [XYdP = EXY =1
displays XY as the density of a probability measure Q. De-
noting by EqZ = [2dQ = [ZXYdP = EZXY the corresponding ex-
pectation we obtain

, 2
EX?.EY? = Eq(X/Y) *EQ(Y/X) < {a/Bs0i4)

_ (aA+bB)?
4(a/B) (b/A) 4aAbB ’

N
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where we have applied (2) to Z = X/Y as a random variable on

(@,F,Q.

COROLLARY. If§ G and H are commuting matrnices with ei-
genvalfues 0 = a = k1 < Azs...skn = b and 0 < A < My € Uy €
R B, then

(x' G2x) (x'H?x) / (x'GHx) % < (aA+bB)%/4aAbB, (7)

Proof. G and H can simultaneously be diagonali:zed.
The Corollary then, in an analogous way as (1), follows

from Theorem 1.

§5. Examples. Let us go back to the original situation of a
matrix A with eigenvalues 0 < a = A1s...sxn = b. Then for
m,k > 1 one has

x'A™) (' AKx) < maxta™ K, p™ K, ™KK 2/ 1 Kpk (™2™ (680 )

for all x of unit length. This is just an application of the
corollary of Section 3 with f(z) = zm,g(z) = z’k. Except in
the case m = k there are situations in which a™ ¥ or bk
is the appropriate upper bound. When m = 1 or k = 1 it may
be worthwhile to cancel two factors b-a to get the bound e.

g. in the form
2 -1 2 252 _
(x'A“Xx) (x'A” 'x) < max{(a,b,(b"+ab+a”)“/[4ab(b+a)]} = U (8)

As a further illustration we consider an application
of Theorem 2. Let 0 < s < r and let X be a random variable
with P(a € X ¢ b) = 1. Put Z = X° and £(z) = 2z ¥/S. Then

according to Theorem 2 we have

EXSEX T < max{aST;(a%67-b%a 1) %/ [4(b%-a%) (aT-b )]} = V. (9)

Considering the special situation in which EX® = 1 this
leads to (EXS)”S(EX'I‘)”r = (EX® EX-r)Z/r < U where
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= max{a(S /T, 5T a5 ) 2/T 1y (b5 a5y T -aT) (ab) 2] V7).

For the general situation EX° =: c° the upper bound for

(EXS)1/j(EX'T)1/r will be U T 9T hich is at mose
up(T-s)/T,

Our approach also covers a more general situation. Let
H be a Hilbert space of real valued square integrable func-
tions with scalar product <x,y> = [x(t)y(t)dt. Let the oper-
ator A be given by (Ax)(t) = h(t)x(t) where 0 < a ¢ h(t) b

for all t. Then (A_lx)(t) = x(t)/h(t) and the value U given
in (8) will be an upper bound for the product <A2xga<A'1x,x>,
a result which obviously extends to the class of self ad-
joint integral operators that can be transformed into the
""diagonal" form considered. Similarly the inequalities of

Strang and of Greub and Rheinboldt apply in this context.
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