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TWO PROOFS OF THE KANTOROVICH INEQUALITY
AND SOME GENERALIZATIONS

by

Wol fgang J. BUHLER

Abstract. Two elementary probabilistic proofs of the Kan-
torovich inequality are given and various generalizations and
inequalities are discussed.

§l. Introduction. The Kantorovich inequality in its simplest
form seems to have been found originally as early as 1914 by
Schweitzer [8]. In the context of statistical applications
it is usually stated in the form

1 ~ -1 Z(x 'Ax) •(x'A x) ~ (a+ b) /4ab (1 )

where A is a positive definite nxn matrix with eigenvalues
o < a A1 ~ AZ ~ ...~An = b and x is a unit vector.

For 'given A there are unit vectors xl' Xz for which the
left or right inequality respectively is an equality. There
have been various generalizations and modifications, see e.
g. [6] and t he references given there. My own interest in
the matter comes from reading the proof in [7]. This proof

- 1 .starts by transforming the term F = (x,Ax) (x'A x) by dlago-
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nalizing A into

n 2 n 2 -1 . n 2F = (L YiAi)( L y.A. ),Wlth L y. 1.i=l i=l 1 1 i=l 1

Letting p. = y? this has the following probabilistic inter-
1 1

pretation not used in [7]. F is the product of the expected
value of a random variable Z taking values A. with probabil-

1
ities Pi and of the expected value of liZ. Both proofs giv-
en in the present paper use the representation of F as
EZE(l/Z).

§2. First proof and generalization. Let Z be a random vari-
able, not necessarily discrete, taking values in [a,b], 0 <

a < b < 00

THEOREM 1. 1 ~ E Z • E ( 1 I Z) -s ( a + b) 2 14 a b . ( 2)

The ~igh~ inequali~y i~ an equali~y i6 and only 16 Z take6
eaQh 06 ~he value6 a and b wi~h p~obabili~y 1/2, the le6t
inequal~~y i6 and only i6 Z i6 degene~a~e.

REMARK. The special case where
is defined as an integrable function
contained in Schweitzer [8J.

the random variable Z
on [O,lJ is already

\

Proof of Theorem 1. We start from the well known bound
for the covariance

EZ·E(l/Z) ~ E[Z(l/Z)] + [V(Z)V(l/Z)]~

the symbol V denoting the variance. Combining this with the
fact that the variance of the bounded variable Z is at most
(a+b)2/4 (and similarly for V(l/Z)) we obatin the upper bound
1+{(a+b)2/4'(1/a+l/b)2/4}~ = (a+b)2/4ab. The first bound is
attained if liZ is a.s. a decreasing linear function of Z
which allows at most two values, the second if the two val-
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ues a and b have probability 1/2 each. The left inequality
in (2) could be proved via essentially the same path. It is
however also a simple application of Jensen's inequality.

COROLLARY. LeA: (II,F,ll) be a mea.6ulte .6pac.e with ll(rl)< 1
and let f be a mea.6ultable Iteal valued 6unc..:tion on II wi.:th
a < few) < b almo.6t eveltywhelte Illi. Then

Jfdll f(l/f)dll < (a+b)2/4ab. (3)

Proof. Augment II by an additional point 0 and II by a
point mass 1-11(1I) at 0 to make II into a probability space.
Define the random variable Z as f on II and Z(o) = a, say.
Then apply Theorem 1.

Let x, y be two unit n-vectors, A a matrix as above
(without loss of generality assumed to be diagonal). Then
llUi}) = IXiYil defines a measure on {1,2, ...n} to which we
can apply the Corollary with f(i) = \-. The resulting ine-

1

quali ty

(x'Ay).(y'A-1x) ~ '\.lx.Y.Il:(l/\.)\x.y.1 ~ (a+b)2/4abL 1 11 1 11

is Strang's [9J generalization of Kantorovich's inequality.

§3. Second proof and further generalization. The second proof
makes use of the convexity of f(x) = l/x and can in fact be
applied for any convex f. We are thus led to

THEOREM 2. Le.:t
o < a < b < 00; le.:t f

Z be a Itan.dom
be de6ined on
Then we have

valtiabte with P (a~ Z~ b) = 1,

[a,b] and c.onvex wi.:th

f(a) = A > B feb) .

EZ-Ef(Z)~ max{(Ab-Ba)2/[4(A-BHb-a)), aA, bBl. (4)

Equality i.6 Iteac.hed 60lt .60me Z taQing at mO.6t .:the .:two vatu~
a ilnd b. 16 f if.> c.one-ave .:then .:the inequality if.> Iteveltf.> ed, i.e.
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(4) yield4 a lowe~ bound.
Proof. The two dimensional random variable (Z,f(Z))

takes its values on the graph of f. E being a convex opera-
tion the point (EZ,Ef(Z)) must lie in the (closed) shaded
region R bounded by the graph of f and by the straight line
g(z) = A+(B-A)(z-a)/(b-a).

yl---'---~

B _.- --- -I- -- - - --

a z b

The aim is now to maximize the area zy of a rectangle with
(z,y) , R. Obviously zy' > zysuch that we can limit our
search to points (z,g(z)). The area h(z) = z e g Iz) is maxi-
mized when

-0 = h'(z) = g(z) + zg'(z) = {A(b-a)+ (B-A)(z-a)+ z(B-A)}/(b-a) ,

i.e. when z = (Ab-Ba)/2(A-B)
(Ab-Ba)2/[4(A-B)(b-a)]. Here Zo

a = (Ab+Ba-2Bb)/[2(b-a) (A-B)].

Zo with h(zo) =
= aa + (l-a)b with

The local maximum of h at z being the only extremum it iso
obviously a global maximum over the whole line g. However
not always is a ~ z ~ b. If it is, i.e. if 0 ~ a. ~. 1 theno
the variable Z with P(Z=a) = a = l-P(Z=b) will have EZEf(Z)
= h(z ); if a. < 0 the Z degenerate at a will bring EZ-Ef(Z)

o= aA; if a > 1 then Z degenerate at b will attain the upper
bound in the form bB.
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REMARK. If in the figure we let z = EX = Sb+(l-S)a
and y = Ef(X) for some random variable X wi th P(a.::;X.::;b) = 1

then with y' = BB + (l-S)A we find the estimate

f(EX) ~ Ef(X) ~ [(Ab-aB) - (A-B)EX] /(b-a).

The left inequality is of course Jensen's, the right ine-
quality holds without the restrictions that 0 < a and A > B.
In the present context, if EX is known, it is sharper than
(4) .

COROLLARY. Let Z be a~ in the Theo~em. Let f,g both be
eonvex, o~e 06 them ine~ea~ing the othe~ dee~ea~ing, f(a)
A,f(b) = B, g(a) = C,g(b) = D. Then

Eg(Z) Ef(Z) ~ max{(AD-BC)2/[4(C-D)(B-A)],AC,BD} (5)

Ppoof. Under the conditions stated fog-1 is convex and
decreasing. Thus the theorem can be applied with Y = g-l(Z)
in lieu of Z. (4) then takes the form (5).

§4. The inequality of Greub and Rheinboldt. The following
inequality contains that given by Greub and Rheinboldt [3]
as a special case.

THEOREM 3. Let X,Y be ~andom va~iabte~ de6ined on a
p~obabitity ~paee (~,F,P) with a ~ X .::;b and A .::;Y ~ B a.s.
Then

(6)

Proof: We first remark that both sides of (6) are in-
variant to scale. We thus rescale X and Y to achieve EXY = 1
wi thout changing the ratio X/Y. The equation !XYdP = EXY = 1
displays XY as the density of a probability measure Q. De-
noting by EQZ = jZdQ = jZXYdP = EZXY the corresponding ex-
pectation we obtain

2 2 (a/Btb/A~2 _ (aA+bB)2
EX ·EY = EQ(X/Y)'EQ(Y/X) ~ 4(a/B)(b N- 4aAbB
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where we have applied (2) to Z
(n,F,Q).

X/Y as a random variable on

COROLLARY. I6 G ~nd H ~4e eommu~ing m~~4iee~ wi~h ei-
genv~tuec 0 = a = A1 ~ A2~' ..~An =b ~nd 0 < A ,< ~1 ~ ~2 ~
... ~ ~n = B, ~hen

(7)

Proof. G and H can simultaneously be diagonalized.
The Corollary then, in an analogous way as (1), follows
from Theorem 1.

§5. Examples. Let us go back to the original situation of a
matrix A with eigenvalues 0 < a = A1~ ...~An = b. Then for
m,k > lone has

for all x of unit length. This is just an applicatioR of the
corollary of Section 3 with fez) = zm,g(z) = z-k Except in

h k th 't t' 'Whl'ch am-k or bm-kt e case m = ere are Slua Ions In
is the appropriate upper bound. When m = 1 or k = 1 it may
be worthwhile to cancel two factors b-a to get the bound e.
g. 'in the form

2 -1 2 2 2(x'A x)(x'A x) ~ max{(a,b,(b +ab+a ) 1[4ab(b+a)]} u (8)

As a further illustration we consider an application
of Theorem 2. Let 0 < s < r and let X be a random variable
with Pea ~ X ~ b) 1. Put Z = XS and fez) = z-rls. Then
according to Theorem 2 we have

v. (9)

Considering the special situation in which EXs = 1 this
leads to (EXs) l/s(EX-r) 1/r = (EXs EX-r)2/r ~ U where
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For the general situation EXs =: CS the upper bound for
(EXs) l/s(EX-r) l/r will be Uc(r-s)/r which is at most
Ub(r-s)/r.

Our approach also covers a more general situation. Let
H be a Hilbert space of real valued square integrable func-
tions with scalar product <x,Y> = !x(t)y(t)dt. Let the oper-
ator A be given by (Ax) (t) = h(t)x(t) where 0 < a ~ h(t) ~ b
for all t. Then (A-lx)(t) = x(t)/h(t) and the value U given
in (8) will be an upper bound for the product <A2x,xXA-1x,x>,
a result which obviously extends to the class of self ad-
joint integral operators that can be transformed into the
"diagonal" form considered. Similarly the inequalities of
Strang and of Greub and Rheinboldt apply in this context.
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