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ENERGY ANALYSIS OF A NONLINEAR SINGULAR DIFFERENTIAL
EQUATIONS AND APPLICATIONS

by

Alfonso CASTRO and Alexandra KUREPA

Resumen. Damos condiciones suficientes sobre la funcidn g
para que la energia E(t,d) de las drbitas de la ecuacidn no li-
neal y"+8zlytig(u) = p(r), tef0,%), u(0) = d, u'(0) = 0 sa-
tisfaga E(t,d) + ® cuando d » ® uniformemente para t en inter-
valor acotados. Indicamos como usar estos resultados para el
estudio de un problema de Dirichlet.

Abstract. In this paper we give sufficient conditions on
the function g so that the energy E(tﬁd of the solutions to
the nonlinear singular equation: u'"+=g=u'+g(u) = p(t),
té:[O,m), u(0) = d, u'(0) = 0 tends to infinity on bounded
intervals as d tends to infinity. We indicate how to apply
these results to a superlinear Dirichlet problem.

§1. Introduction. In this paper we study the "energy' of the
solutions to the singular initial value problem

weNlyrs gy = p(t), e [0,1]

u(0) = d a.1n
u'(0) = 0

where N > 1, g:R » R is a locally Lipschitzian function,

)
(9]
<



T >0, and p ::Lm[O,T]. Arguments based on the contraction
mapping principle show that for each d « R problem (1.1)
has a unique solution u(t,d) on the inverval [0,»), depend-
ing continuously on d. The energy of the solutions to (1.1)

is defined by

E(t,d) = (u'(t,d))?/2+G(u(t,d)), (1.2)

u
where G(u) = [ g(v)dv. Our main results give sufficient con-

.. 0
ditions so that

E(t,d) » » as d + t= (1.3)

uniformly for t « [0,T]. Property (1.3) plays a central role
in the study of the oscillations of the solutions to (1.1).
The reader is refered to [2] and [3] for the applications to
the study of radially symmetric solutions for superlinear
boundary value problems. Theorems 3.1 and 3.2 extend the re-
sults of section 2 of [2]. This in turn implies the extension

of Theorem A of [2] (see Theorem B below).

§2. Preliminary Lemmas. Throughodt this paper c will denote
various positive constants depending on (N, |ple,g). We will
assume that g is strictly increasing, and g(0) = 0.

For Ke (0,1] we define

Ak, u):= NG(xu) - E%Z-ug(u) , 2.1)

A, (<) := lim A(x,u) (u/g(uw)N/ 2. (2.2)

u~ to

The next lemma provides growth conditions of the nonlinear-
ity g closely related to the Sobolev inequalities (see [1]).

LEMMA 2.1. A) 14 N » 3 and A(x,u) {4 bounded below for
some k = (0,1], and all u>0 (respec. u < 0) then

lg(u)| < c(Ju]¥+1)



fon u>0 (respec. u<0), where q:= N+2& 1-x) 2N

B) I§ N =2 and (u/g(u))G(u) + » as u » = (respec.
u + -») then for any j > 0 therne exists c c(j) such that

G(u) < c(exp(u?/j) +1)

gorn u > 0 (respec.u < 0).
Proof. A) Let b be such that

NG (ku) - E%gg(u)u > b for all u > 0. (2.3)

Thus NG(s) - E%ég(s)s > b. Hence, multiplying by

(—Ngg) s-(ZKN+N-2)/(N-2) we obtain
(S-ZKN/(N-Z)G(S)), 2 _N%bs—(ZKN+N-Z)/(N-2). 2.4)

Integrating on [1,s] we infer

2kN/(N-2) , b

N

G(s) < G(1)s 'r% G2KN/(N-2)  2N/(N-2) . (5 5y

Thus from (2.3) we have

g(u) < E_Q(‘%L?)iy’l p Nz_ljz N/ (N-2))-1 | (2NN (VD) gy

B) Given any positive constant j there exists b such
that

sG(s) - jg(s) > b. (2.6)
Multiplying (2.6) by -% exp(-sz/(Zj)) and integrating on

[1,s] we obtain
s
exp(-sz/(Zj))G(s) < exp(-1/(23))6(1) +b{ (-1/j)exp(-t2/(2j))dt.
hence

G(s) < c(exp(sz/(lj))+1) < c(exp(sz/j)+1), 2.7

which proves the lemma.



For x « (0,1) and d > 0, let ty:= t1(K,d) be such that
d » u(t,d) > xd for all t «[0,tq) and u(t,,d) = xd. Multi-
plying (1.1) by N1 we infer (rN-lu'(r,d))' =
NV (-g(u(r,d)) +p(r)). Therefore

t
u(t,d) = ¢ N N ) sgqucr, d)) ] dr. (2.8)
o
From (2.8) we see that if g is bounded above then u' is

bounded below. Hence, for d sufficiently large we have t1>'L
Thus, for all t « [0,T] we get

E(t,d) > G(kd). (2.9)

On the other hand if g(d) - » as d » =, then by choosing d
such that g(xd) > |p|,, from (2.8) we see that

t
u'(t,d) >t PN p)-g@]dr > (ol - g@]F (2.10)
(0]

Integrating over {0,1:1] we find thatd > d-(|p]_+ g(d))t12/(ZN).

Hence

t) > (N0l + @))% > c@g@)%= ¢, (2.11)

" v
Similar arguments show that if d < 0 then
t, > [AN-D/Upl, - ()] > c(d/g@)?:= ¢ .

LEMMA 2.2. If fon some x « (0,1)A, (k) = = (respeck.
A (x) = =), then for u > 0 (respect. u < 0) and d suff<-

ciently Lange
to
[ T NG - Ng(u())um]dr > cged)d[a/g@]V?
o]

Proof. Since g is an increasing function, then for

Ku u
G(u) = [ g(s)ds+ [ g(s)ds > G(xu) + (1-x)ug(ku).
0 Ku



Thus, if A+(K) = o, then there exists Cy; > 0 such that for
u > C1 (C1 is chosen so that NG(Ku)-ﬁfgg(u)u > 0 for
Ku > Cl) we infer

NG (u) - Nz2g(wu > N6 (xu) + NI cug(xu) - N2g(u)u

> NI cug(cw) » N6 (k) > (9% 2Zg () u.

This inequality and (2.11) for d sufficiently large yield
to . _
[P NGm) - YE gui)um]ar > cgxdd(a/g@nN?
0

and this concludes the proof of the lemma.
We also observe that since

E'(t,d) = u' ()p(t) - =L ur () < |u' @ [Ipl, < 2ol EED

then for 0gt'<t<T and for E(t',d) sufficiently large we
have

E(t,d) ¢ (VE(E,d) + (/2/2)pl_t)% < 3E(t',d).

§3. Main Results. In order to state the next theorem we in-

troduce the following notation

Flx,0,d):= F(d) = Gop' 0 6k, (3.1

g

where p > 0.
THEOREM 3.1. I§ F(d) » = as d » = (respectively as
d » -»), then

lim E(t,d) = =, (respectively lim E(t,d) =)

d+oo & -

uniformly for t = [0,T].
Proof. From the definition of energy and (1.1) we have



(E(r,d))' = -l ()2 + p(ryu (1)

Nlrr@en? - ATZIpl /Z07E | u' (1) |
(3.2)

A\

> Ml ? - FlelZ - & )
- - 20 Te)g g + 20 10) Gy (r)) - 'y Iol2

Multiplying (3.2) by r2(N-1+0) ye infer

2
2O pr ayyr 5 20T -T60 0y _lpl‘I)m 20-1+0)+1  (3.3)
By integrating (3.3) on [t_,t] and using (2.11) and the fact

G > 0 we obtain

E(t,d) > t‘z(N“"p){tg(N""p)E(to,d)

t . £
. | rZ(N'1*°)[2(N-1+p)G(u(r)) -lg%g_ rz]dr}
to

s T 2N-1*0)ca/g(a)N e (k) em),  (3.4)

where m = R. Since by hypothesis F(d) + = as d » =, from
(3.4) the proof of the theorem follows.

THEOREM 3.2. Suppose that fon some a > 0 |g(u)| > alul

fon u sufficiently Lange. Tg A(1,u) <48 bounded below and
for some k = (0,1)A, (k) = = (respectively A (k) = =) then

lim E(t,d) = =, (rnespectively lim E(t,d) =
d+e d-o0
uniformly for t « [0,T].
Proof. In order to simplyfy the notations we write
u(t):= u(t,d). Multiplying (1.1) by rNu' and integrating
over [t,t], 0« t<t, we get

NE(t,d) -TEE,d) +[ RZNT (1)) 2 6 (u(r)) ar - [p(r)r u' (r)dr,
‘ (3.5)
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where we have integrated by parts the term
t N
[t [u"(r)u' (1) + (G(u(r)))']dr
t

Similarly, multiplying (1.1) by r™ !

[t,t] we infer

u and integrating over

t
[N T andar = w ue) N Tu (u®) !
& " (3.6)

+f M gum)u@) -p(ru() Jar
t

By replacing (3.6) in (3.5) we obtain
N

[tE(t,d) +——— uu (0] = N EER, + X2 ud®u ®)]

t
+ [N No(u) -%ﬁg(u(r))u(r)]dr

(o 24

t
+ % p(r)rN-1[ru'(r)-+N%Zu(r)]dr. (3.7

Since u(to) > kd and u' (t ) <0 (see (2.11)), after inte-

grating by parts the term f °Irlw Nu' (r)dr, from (3.7) for

d sufficiently large we obta1n

N-1
[

N e By, d) + Hluce)u (xy)]

N\

to
[N NG (u(n) - YR u))u(n) dr
: (3.8)

to
N-2 _N-1
+ |p|,t§u(to) 'é Iplo(N+=5=T Ju(r)dr

d N
]ﬁ 0

> cdg(.cd)t +|th kd - npuN+
> cdg(xd)th,

where we have also used the fact that g(kd) + » as d » =.

In order to simply our notation we define:



H(t):= [tE(t,d) + 52 u(t)u' (1)]. (3.9)

Therefore, from (3.8) we have

H(ty) » cdg(xd)t,. (3.10)
We claim that
ltgu () + L uce )| < H(t,). (3.11)

If (3.11) does not hold then either
a) u(t)) >cH(t)), or b) ltou'(to)l > cH(t,) (3.12)
Since A, (k) = =, and g is increasing we have
N-2
SN dg(d) < G(xd) « kdg(xd). (3.13)
Therefore if (a) holds then by using (3.13) we infer

%
kd > cdg(xd)t, > cdg(xd)(d/g(d)) »cdg(xd)(d?/G(xd))*
> cd/G{xd),

which is a contradiction. Hence (a) cannot hold.
From (2.10) we see that for d sufficiently large
' 2g(d) /
u (to) > - N to- Therefore if (b) holds then we have

2g(d), 2

Nts > Iu'(to)lto > H(ty) » cdg(xd)t .

(o]

Hence,

g(d) » cd(g(xd))?. (3.14)

On the other hand, from (3.13) we get that g(d) < G(kd)/d
< cdg(kd)/d < cd(g(kd)), which contadicts (3.14). Thus (3.11)

<

hods.
Let now t > t_ be such that for all r « [t_,t]

[ru' (r) + r%——Z—u(r)I < H(r). (3.15)

162



Since A(1,u) is bounded below and A, (x) = =, we see that

>

there exists a constant K such that

NG(u) - Y Zg(u)u > K. (3.16)

By combining (3.7) and (3.16) we infer

N THE) T < Ipl T [t ()« BRu(n) |]
(3.17)
+ (N6 (u(r)) - Sgur))um N

\"4

> -Iplor™ TH(D) - kN Nl HG) - kD
Multiplying (3.17) by e"p"°°r we get

(el PloT N-Tgepype 5 gr¥-TelpleT (3.18)
From (2.11), (3.13) and Lemma 2.1 we have

N/2 + -
dgld)) » cdg@ ) > cag(@ (gD > ™MD gran "V
L gt (V2 ¥a(1-(N/2)) ©(3.19)

Hence, by integrating (3.18) on [to,t] and using (3.10) and
(3.19), for d sufficiently large we obtain

N i) 5 cfe Pl=Te (N"Dpee ) 1] » cdg(xd) th.

Therefore, (see (3.9)), we have that either
E(t,d) » cdg(xd)t Nt} > cdg(xd)T NN > cdg(kd)th . (3.20)

or else

u(t)u' (1) > cdg(xd)t' M and E(t,d) > cdg(cd)t M) L (3.21)

From (3.21) we infer .

TR oo o e G L SREOL I 3.2



Since E(t,d) > G(u(t)) > N g(u(t))u(t)-K » c(u(t))?, from
(3.20) and (3.22) we have

E(t,d) » cdg(xd)th , (3.23)

for all te« [0,T] for which (3.15) holds.

If (3.15) does not hold for all t « [ty,T], then let
t < T be the such that (3.15) holds for all t « [t,,t] and
not for t. By the continuity of u and u' we have

ltu(®) + X 2ucdy| = H(D), (3.24)
and
N THD) » cdg(Kd)tg. (3.25)

From (3.24) and (3.25) we see that either
28|u' (B) | > H(E) » cdg(xd) (8) N*TeN (3.26)

or
(N-2) [u(®) | > H(D) > cdg(xd) (D) Vel (3.27)

In either case

E(E,d) > cd(g(xd))?(E) 2N D20 (3.28)

where we have also used the fact that |g(u)| > alu| for u
sufficiently large. By integrating (3.3) on [t,t] and choos-
ing p « (0,1) sufficiently small, from (3.19) and (3.28),
for d sufficiently large, we obtain

E(t,d) » T 2N e-Dggy)2(NWe-Tg(g q) +m})

\%

T'Z(N*p'”{ctg (dg(Kd)tg)Z +m) (3.29)

A\

> T'Z(N+°_1){cd (g(d))'°d2+N+Q(2_N)-+m}

. cdp+N+2+q(2—p-N).
Now, from (3.23), (3.19) and (3.29) the proof of the theo-

rem follows.
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§4. Applications. The existence of radially symmetric solu-
tions to the boundary value proble

Au + g(u) = p(|x]) x e« q,
4.1

u=20 X « 69,

where Q@ is the ball of radius T in RN centered at the ori-
gin, is equivalent to the existence of solutions to (1.1)
satisfying

u(T) = 0.

Combining the above results with the phase plane analysis
in [2] it follows:

THEOREM B. Suppose lim &) = « | 14
[ufe

i) A(1,u) 4s bounded below and A (x) = = (respective-
Ly A (k) = =) gorn some x =(0,1), on

ii) F(d) » © as d » = (respectively F(d) » »asd » -=),
then (4.1) has infinditely many radially symmetric solutions
with u(0) > 0 (respectively u(0) < 0).

We observe that condition (i) in Theorem B includes
= ,(N+2)/(N-2) :
cases such as g(u) = u for either u < 0 or u > 0.
Theorem B improves Theorem A of [2]. The reader is refered
to [2] for details of the proof.
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