Revista Colombiana de Matemáticas Vol. XXI (1987), págs. 187-200

GENERATING UNIFORMLY DISTRIBUTED POINTS IN A SPHERE OF NORM | | | | IN Rⁿ

by

Stefan Corneliu STEFANESCU and Virgil CRAIU

Summary: In this paper an efficient algorithm is given for generating uniformly distributed points in a sphere in the space \mathbb{R}^n with norm $\|\cdot\|_p$. A way is suggested for generating uniformly distributed points in a general sphere of norm $\|\cdot\|_p^{(\overline{C})}$, or in the intersection of such domains in \mathbb{R}^n_+ , and uniformly distributed points on the surface of the Euclidean norm sphere or in a bounded domain of \mathbb{R}^n . The classical results are obtained as particular cases.

§1. Introduction. Let \mathbb{R}^n the n-dimensional real space. For p>0, we consider the norm

$$\|(x_1, x_2, \dots, x_n)\|_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$$
 (1)

and the sphere S(n,p)

$$S(n,p) = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R}, \ 1 \le i \le n, \ \|(x_1, x_2, \dots, x_n)\|_p < 1\}. \tag{2}$$

DEFINITION 1. The random vector (X_1, X_2, \dots, X_n) is uniformly distributed over the domain $D \subset \mathbb{R}^n$, D bounded, of

nonzero volume (vol.(D) \neq 0) if it has the density function

$$g(x_{1},x_{2},...,x_{n}) = \begin{cases} 1/\text{vol}(D), & \text{for } (x_{1},x_{2},...,x_{n}) \in D; \\ 0, & \text{otherwise}; \end{cases}$$
 (3)

where

$$vol(D) = \int_{D} ... \int_{D} dt_{1}...dt_{n}.$$
 (4)

DEFINITION 2. The random variable E is EXPS(p)-distributed (p-th order symmetrical exponential distribution) if it has the following density function

$$f(x) = [1/(2.p^{1/p-1} \Gamma(1/p)] \exp(-|x|^p/p)$$
 (5)

where

$$\Gamma(a) = \int_{0}^{\infty} t^{a-1} \exp(-t) dt$$
; $a > 0$. (6)

DEFINITION 3. The random variable E is EXPN(p)-distributed (p-th order non symmetrical exponential distribution) if it has the following density function

$$f(x) = \begin{cases} [1/(p^{1/p-1}\Gamma(1/p)] \exp(-x^p/p), & \text{for } x > 0 \\ 0, & \text{otherwise.} \end{cases}$$
 (7)

DEFINITION 4. The random variable G is gamma distributed with shape parameter a, a>0 if it has the following density function

$$f(x) = \begin{cases} \left[x^{a-1}\exp(-x)\right]/\Gamma(a), & \text{for } x > 0; \\ 0, & \text{otherwise.} \end{cases}$$
 (8)

REMARK 1. Random variables having the normal distribution with mean 0 and variance 1 are EXPS(2)-random variables. The exponential random variables may be regarded as EXPN(1)-random variables or as gamma random variables with shape parameter 1.

We shall formulate an algorithm for generating uniformly distributed points over the domain S(n,p).

§2. Theoretical results.

THEOREM 1. If $Y_1,Y_2,\ldots,Y_n,Y_{n+1}$ are independent random variables, Y_1,Y_2,\ldots,Y_n have EXPS(p) distribution, Y_{n+1} has the density function

$$f_{n+1}(y) = \begin{cases} y^{p-1} \exp(-y^p/p), & \text{if } y > 0 \\ 0, & \text{if } y \le 0 \end{cases}$$
 (9)

and

$$X_{i} = Y_{i}/(|Y_{1}|^{p} + |Y_{2}|^{p} + \dots + |Y_{n}|^{p} + Y_{n+1}^{p})^{1/p}; \quad 1 \le i \le n,$$
 (10)

then the random vector $(X_1, X_2, ..., X_n)$ is uniformly distributed over the domain S(n,p).

Proof. For any $y_{n+1} > 0$ $(y_{n+1} \in R_+)$, the transformation

$$\begin{aligned} x_{j} &= y_{j} / (|y_{1}|^{p} + |y_{2}|^{p} + \ldots + |y_{n}|^{p} + y_{n+1}^{p})^{1/p}, & 1 \leq j \leq n, \\ x_{n+1} &= (|y_{1}|^{p} + |y_{2}|^{p} + \ldots + |y_{n}|^{p} + y_{n+1}^{p})^{1/p} \end{aligned} \tag{11}$$

is one to one between $R^n \times R_+$ and $S(n,p) \times R_+$. From (11), we obtain

$$y_{i} = x_{i}x_{n+1}, \quad 1 \le i \le n$$

$$y_{n+1} = x_{n+1}(1 - |x_{1}|^{p} - |x_{2}|^{p} - \dots - |x_{n}|^{p})^{1/p}.$$
(12)

Let $J = D(y_1, y_2, \dots, y_n, y_{n+1})/D(x_1, x_2, \dots, x_n, x_{n+1})$ be the determinant of the matrix $(\partial y_i/\partial x_i)_{1 \le i, j \le n+1}$

189

$$J = \det((\partial y_i / \partial x_j)_{1 \le i, j \le n+1})$$
 (13)

From (12), we obtain

$$J = (-x_{n+1}^{n}/r_{x}^{p-1})F(n,x_{1},x_{2},...,x_{n},-r_{x}^{p},p)$$
 (14)

where

$$r_x = (1-|x_1|^p - |x_2|^p - ... - |x_n|^p)^{1/p}$$

$$F(n,x_{1},x_{2},...,x_{n},w,p) = \det \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & x_{1} \\ 0 & 1 & 0 & \dots & 0 & x_{2} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & x_{n} \\ d_{1} & d_{2} & d_{3} & \dots & d_{n} & w \end{pmatrix}$$
(15)

and $d_i = \text{sign}(x_i) |x_i|^{p-1}$, $1 \le i \le n$, sign(x) being the sign of the real number x. Expanding the determinant (15) by the first column we obtain the following recurrence relationship

$$F(x_1, x_2, ..., x_n, w, p) = F(n-1, x_2, x_3, ..., x_n, w, p) + (-1)^{n+2} sign(x_1) |x_1|^{p-1} det(A)$$
(16)

where A is the matrix

$$A = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 & \mathbf{x}_1 \\ 1 & 0 & 0 & \dots & 0 & 0 & \mathbf{x}_2 \\ 0 & 1 & 0 & \dots & 0 & 0 & \mathbf{x}_3 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & 0 & \mathbf{x}_{n-1} \\ 0 & 0 & 0 & \dots & 0 & 1 & \mathbf{x}_n \end{pmatrix} . \tag{17}$$

From the matrix A one can obtain a diagonal matrix by moving the first row to the last place. Therefore

$$\det(A) = (-1)^{n-1} x_1 \tag{18}$$

and hence the relation (16) may be written in the form

$$F(n,x_1,x_2,x_3,...,x_n,w,p) = F(n-1,x_2,x_3,...,x_n,w,p) - |x_1|^p.$$
 (19)

By n sequencial applications of equality (19) and from (14) and (15) we obtain

$$J = x_{n+1}^{n} (1 - |x_1|^{p} - |x_2|^{p} - \dots - |x_n|^{p})^{1/p-1}.$$
 (20)

The random variables $Y_1, Y_2, \ldots, Y_n, Y_{n+1}$ being independent, it follows that the random vector $(Y_1, Y_2, \ldots, Y_n, Y_{n+1})$ has the density function

$$g_{y}(y_{1},y_{2},...,y_{n},y_{n+1}) = \begin{cases} y_{n+1}^{p-1} \left[\prod_{j=1}^{n+1} \exp(-y_{j}^{p}/p) \right] / \left[2p^{1/p-1} \Gamma(1/p) \right]^{n}, & \text{if } y_{n+1} > 0; \\ 0, & \text{if } y_{n+1} \leq 0. \end{cases}$$
 (21)

Let $(X_1, X_2, \ldots, X_n, X_{n+1})$ be the random vector obtained from the random vector $(Y_1, Y_2, \ldots, Y_n, Y_{n+1})$ by the transformation (11). If $g_X(x_1, x_2, \ldots, x_n, x_{n+1})$ is the density function of the random vector $(X_1, X_2, \ldots, X_n, X_{n+1})$, then

$$g_{\chi}(x_1, \dots, x_n, x_{n+1}) = |J| g_{\gamma}(y_1(x_1, \dots, x_{n+1}), \dots, y_{n+1}(x_1, \dots, x_{n+1}))$$
(22)

where the Jacobian J of the transformation (11) is given by (20). Now from (12) it follows that

$$g_{X}(x_{1},...,x_{n},x_{n+1}) = \begin{cases} \left[x_{n+1}^{n+p-1}\exp(-x_{n+1}^{p}/p)/\left[2p^{1/p-1}\Gamma(1/p)\right]^{n} \\ \text{if } x_{n+1} > 0, (x_{1},x_{2},...,x_{n}) \in S(n,p) ; \\ 0, \text{ otherwise.} \end{cases}$$
(23)

If $g(x_1, x_2, ..., x_n)$ is the density function of the random vector $(X_1, X_2, ..., X_n)$ given by (10), then

$$g(x_1, x_2, ..., x_n) = \int_0^\infty g_{\chi}(x_1, x_2, ..., x_n, x_{n+1}) dx_{n+1} = constant$$
 (24)

which proves the theorem.

REMARK 2. Making the substitution $t = x_{n+1}^p/p$ in the integral (24) we obtain

$$g(x_1,...,x_n) = [p^n \Gamma(n/p+1)]/[2\Gamma(1/p)]^n = 1/vol(S(n,p)).$$

COROLLARY 1. (Stefănescu [12]). If $Z_1,Z_2,\ldots,Z_n,Z_{n+1}$ are independent random variables, Z_i , $1\leqslant i\leqslant n$, having a normal distribution with mean 0 and variance 1, and Z_{n+1} having the density function

$$f(z) = \begin{cases} z \exp(-z^2/2), & \text{if } z > 0; \\ \\ 0, & \text{if } z < 0; \end{cases}$$

and

$$X_i = Z_i/(Z_1^2 + Z_2^2 + ... + Z_n^2 + Z_{n+1}^2)^{1/2}, \quad 1 \le i \le n,$$

then the random vector $(X_1, X_2, ..., X_n)$ is uniformly distributed in the sphere S(n,2) (of Euclidean norm).

The proof of this statement results from Remark 1 and Theorem 1 for p = 2.

§3. Generating algorithm. Since the density function (5) is obtained by symmetry from the density function (7), we have:

PROPOSITION 1. If W is a discrete random variable that may take the values -1 and 1 each with probability 1/2 and E is a EXPN(p)-distributed random variable then W.E is a EXPS(p) distributed random variable.

REMARK 3. This proposition can be used for computer generation of EXPS(p) random variables starting from EXPN(p) random variables. Stefănescu and Vaduva [13] (extending the method suggest by Kinderman and Monahan [5], [6]) indicate efficient algorithms for generating EXPN(p) random variables.

The EXPN(p) random variables may be generated using:

PROPOSITION 2. If G is a gamma random variable with shape parameter 1/p then the random variable $(p.G)^{1/p}$ is EXPN(p) distributed.

PROPOSITION 3. If U is a uniform random variable on the interval (0,1), then the random variable $(-p \cdot \ln(U))^{1/p}$ has the density function given by formula (9).

Proof. The random variable Z with density function (9), has for $z \geqslant 0$, the distribution function

$$F(z) = \int_{0}^{z} t^{p-1} \exp(-t^{p}/p) dt = 1 - \exp(-z^{p}/p).$$

Since for a random variable U uniformly distributed on (0,1), the random variable $F^{-1}(1-U)$ has the distribution function F, the proposition is established.

THEOREM 2. If $W_1, W_2, \dots, W_n, G_1, G_2, \dots, G_n, U$ are independent random variables, W_1, W_2, \dots, W_n discrete random variables that may take only the values -1 and 1 each with probability 1/2, G_1, G_2, \dots, G_n random variables gamma distributed with shape parameter 1/p, U uniformly distributed on (0,1), and

$$X_{i} = (W_{i}G_{i}^{1/p})/(G_{1}+G_{2}+...+G_{n}-ln(U))^{1/p}, 1 \le i \le n,$$

then the random vector (X_1,X_2,X_3,\ldots,X_n) is uniformly distributed on the domain S(n,p).

The proof of Theorem 2 results from Theorem 1 and Proposition 1, 2 and 3.

The Theorem 2 leads to the UNIFS generating algorithm of points $P(x_1, x_2, ..., x_n)$ uniformly distributed on the domain S(n,p).

Algorithm UNIFS (UNIFormly distribited points inside the Sphere S(n,p)).

- Step 0. Read n,p.
- Step 1. Generate U_1, U_2, \dots, U_n, U independent random variables uniformly distributed on (0,1).
- Step 2. Generate G_1, G_2, \ldots, G_n independent random variables having a gamma distribution with shape parameter 1/p.
- Step 3. $S \leftarrow (G_1 + G_2 + ... + G_n \ell n(U))^{1/p}$.
- Step 4. If $U_i < 1/2$ then $W_i \leftarrow -1$; else $W_i \leftarrow 1$; (for i = 1, 2, 3, 4, ..., n).
- Step 5. $x_i \leftarrow W_i G_i^{1/p}/S; 1 \le i \le n$.
- Step 6. Write the point $P(x_1, x_2, x_3, ..., x_n)$. STOP.

REMARK 4. The UNIFS algorithm is very fast. Comparing the results obtained by Deák [3] and Stefanescu [12], the UNIFS algorithm (the case p=2) is proved to be the fastest algorithm for generating uniformly distributed points inside the sphere of Euclidean norm.

For computer generating gamma and uniformly distributted random variables, a subroutine library is used, the RAVAGE (Văduva [16]). It may be consulted the references [7],[9], [10],[11] or more precisely [1],[2],[5],[6],[14].

§4. Other domains. Further we shall generate sequences of uniformly distributed points on other bounded domains D,

 $D \subset \mathbb{R}^n$. Let:

$$\begin{split} &S_{+}(n,p) = \{(x_{1},x_{2},...,x_{n}) \mid (x_{1},x_{2},...,x_{n}) \in S(n,p), \ x_{i} > 0, \ 1 \leqslant i \leqslant n \} \\ &S_{o}(n,p,h,\bar{c},\bar{b}) = \{(x_{1},x_{2},...,x_{n}) \in \mathbb{R}^{n} | \| (x_{1}-b_{1},...,x_{n}-b_{n}) \|_{p}^{(\bar{c})} < h \} \\ &S_{o+}(n,p,h,\bar{c},\bar{b}) = \{(x_{1},x_{2},...,x_{n}) \in S_{o}(n,p,h,\bar{c},\bar{b}) \mid x_{i} > b_{i}, \ 1 \leqslant i \leqslant n \} \\ &SS(n) = \{(x_{1},x_{2},...,x_{n}) \in \mathbb{R}^{n} \mid x_{1}^{2} + x_{2}^{2} + ... + x_{n}^{2} = 1 \} \end{split}$$

where $\bar{c} = (c_1, c_2, \dots, c_n)$, $\bar{b} = (b_1, b_2, \dots, b_n)$ with $c_i > 0$, $b_i \in \mathbb{R}$, $1 \le i \le n$, h > 0, and for $(y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ we have

$$\|(y_1,y_2,...,y_n)\|_p^{(\tilde{c})} = (c_1|x_1|^p + c_2|x_2|^p + ... + c_n|x_n|^p)^{1/p}.$$

4.1. Uniformly distributed random points on $S_+(n,p)$. The proof of the following theorem is similar to that of Theorem 1.

THEOREM 3. If $Y_1, Y_2, \ldots, Y_n, Y_{n+1}$ are independent random variables, Y_1, Y_2, \ldots, Y_n have EXPN(p) distribution, Y_{n+1} has the density function (9), and

$$X_{i} = Y_{i}/(Y_{1}^{p} + Y_{2}^{p} + ... + Y_{n}^{p} + Y_{n+1}^{p})^{1/p}, \quad 1 \leq i \leq n,$$

then the random vector (X_1, X_2, \dots, X_n) is uniformly distributed on the domain $S_1(n,p)$.

From Theorem 3, for p = 1, we obtain

COROLLARY 2. (Feller [4], p.76). If E_i , $1 \le i \le n+1$, are independent exponential random variables and

$$X_{i} = E_{i}/(E_{1} + E_{2} + ... + E_{n} + E_{n+1}), \quad 1 \le i \le n,$$

then the random vector $(X_1, X_2, ..., X_n)$ is uniformly distributed in the "unity" n-simplex $S_{\perp}(n,1)$.

4.2. Uniformly distributed random points on $S_o(n,p,h,\bar{c},\bar{b})$ and $S_{o+}(n,p,h,\bar{c},\bar{b})$. Starting from the points $P(x_1,x_2,...,x_n)$, uniformly distributed on the domain S(n,p), the following theorem enables the generation of points $Q(y_1,y_2,...,y_n)$ uniformly distributed inside the sphere $S_o(n,p,h,\bar{c},\bar{b})$.

THEOREM 4. If the random vector (X_1,X_2,\ldots,X_n) is uniformly distributed on the domain S(n,p) and

$$Y_{i} = (h X_{i}) / c_{i} + b_{i}, \quad 1 \le i \le n,$$

then the random vector (Y_1,Y_2,\ldots,Y_n) is uniformly distributed on the domain $S_0(n,p,h,\bar{c},\bar{b})$.

The proof follows from Definition 1 and using the transformation $\ensuremath{\mathsf{I}}$

$$y_i = (h x_i) / c_i + b_i, \quad 1 \le i \le n,$$
 (25)

that is one to one between S(n,p) and $S_0(n,p,h,c,b)$ and whose Jacobian is constant:

$$J = D(y_1, y_2, ..., y_n)/D(x_1, x_2, ..., x_n) = h^n/(c_1, c_2, c_3, ..., c_n).$$

REMARK 5. One can obtain a similar result for domains $S_{0+}(n,p,h,\bar{c},\bar{b})$ considering the transformation (25) with $(x_1,x_2,\ldots,x_n) \in S_+(n,p)$.

4.3. Uniformly distributed random points on a bounded domain. For generating uniformly distributed random points on a bounded domain D, D \subset Rⁿ, vol(D) \neq 0, we can use a composition-rejection procedure.

We consider a partition $\{D_j\}_{1\leqslant j\leqslant m}$ of the domain D:

$$\mathbf{D} = \mathbf{D_1} \cup \mathbf{D_2} \cup \ldots \cup \mathbf{D_m}, \quad \mathbf{D_i} \cap \mathbf{D_j} = \emptyset, \quad \text{vol}(\mathbf{D_j}) \neq 0, \qquad 1 \leqslant i < j \leqslant m.$$

In this case the generation of a uniformly random point

 $P(x_1,x_2,\ldots,x_n)$ in the domain D can be made by a random choice of a domain D_j , $1\leqslant j\leqslant m$ (depending on $vol(D_j)$), and then generating the uniformly distributed point on D_j .

We can obtain uniformly distributed points on the domain $\boldsymbol{D}_{\boldsymbol{j}}$ by a rejection procedure:

- find a domain $S_0(n,p,h,\bar{c},\bar{b})$ (or $S_{0+}(n,p,h,\bar{c},\bar{b})$) that includes the domain D_i ;
- generate uniformly distributed points $P(x_1, x_2, ..., x_n)$ on the domain $S_0(n, p, h, \bar{c}, \bar{b})$ (Theorem 4 and Algorithm UNIFS);
- reject these points $P(x_1,x_2,...,x_n)$ such that $P \neq D_j$.

The accepting probability $\mathbf{P}_{\textbf{ac}}$ of points into the domain $\mathbf{D}_{\hat{1}}$ is equal to

$$P_{ac} = vol(D_j)/vol(S_o(n,p,h,c,b)) \le 1.$$

We can increase the accepting probability value P_{ac} (accelerating the speed of rejection procedure) by finding the values $p_o,h_o,\bar{c}_o,\bar{b}_o$ of the parameters p,h,\bar{c},\bar{b} so that $S_o(n,p_o,h_o,\bar{c}_o,\bar{b}_o)$, with $S_o(n,p_o,h_o,\bar{c}_o,\bar{b}_o) \supseteq D_j$, will have the minimum volume.

4.4. Uniformly distributed points on SS(n). The following result is well known

PROPOSITION 4. (Deák [3], Knuth [7]). If the random vector $(X_1, X_2, ..., X_n)$ is uniformly distributed on the domain $S(n,2)-\{0\}$,

$$Y_i = X_i / (X_1^2 + X_2^2 + X_3^2 + ... + X_n^2)^{1/2}, \quad 1 \le i \le n,$$

then the random vector (Y_1,Y_2,\ldots,Y_n) is uniformly distributed on the domain SS(n).

Using Proposition 4 and Corollary 1, one obtains Muller's result.

COROLLARY 3. (Muller [8]). If $Z_1, Z_2, Z_3, \ldots, Z_n$ are independent random variables, normally distributed with mean 0 and variance 1, and

$$Y_i = Z_i/(Z_1^2 + Z_2^2 + ... + Z_{n-1}^2 + Z_n^2)^{1/2}, \quad 1 \le i \le n,$$

then the random vector (Y_1,Y_2,\ldots,Y_n) is uniformly distributed on the domain SS(n).

REMARK 6. In the case of uniformly distributed random points $Q(y_1, y_2, ..., y_n)$ on SS(n), the Definition 1 is not used (since vol(SS(n)) = 0).

REFERENCES

[1] Ahrens, J.H., Dieter, U., Generating gamma variates by a modified rejection technique. Comm. ACM, 25, 1 (1982), 47-54.

[2] Ahrens, J.H., Kohrt, K.D., Dieter, U., Algorithm 599, sampling from gamma and Poisson distributions. ACM Transactions on Mathematical Software, 9, 2 (june 1983), 255-257.

[3] Deák, I., Comparison of methods for generating uniformly distributed random points in and on a hypersphere. Problems of Control and Information Theory, 8, 2 (1979), 105-113.

[4] Feller, William., An introduction to probability theory and its applications. John Wiley and Sons, New York, 1971 (vol.2).

York, 1971 (vol.2).
[5] Kinderman, A.J., Monahan, J.F., Computer generation of random variables using the ratio of uniform deviates. ACM Transactions of Mathematical Software, 3, 3 (sept. 1977), 257-260.
[6] Kinderman, A.J., Monahan, J.F., New methods for gene-

[6] Kinderman, A.J., Monahan, J.F., New methods for generating Student's t and gamma variables. Computing 25 (1980), 369-377.

[7] Knuth, Donald E., The art of computer programming, Seminumerical algorithms. Addison-Wesley, London, 1981 (vol.2). [8] Muller, M.E., A note of method for generating points uniformly on n-dimensional spheres. Comm. ACM., 2 (april 1959), 19-20.

[9] Nance, R.E., Overstreet Jr., C.L., A bibliography on random number generation. Computing Reviews, 13

(1972), 495-508.

[10] Sahai, Hardeo., A supplement to Sowey's bibliography on random number generation and related topics.

J. Statist. Comput. Simul. 10 (1979), 31-52.
[11] Sowey, E.R., A cronological and classified bibliography on random number generation and testing. Int. Statist. Rev., 40 (1972), 355-371.
[12] Stefanescu, Stefan Corneliu., A new method for gener-

ating uniformly distributed random points in a hypersphere. (in Romanian) Studii și Cercetări

Matematice, 39, 1 (1987), 71-78.
[13] Stefanescu, Stefan Corneliu., Văduva, Ion., On Computer generation of random vectors by transformations of uniformly distributed vectors. (to appear in Computing).

[14] Tadikamalla, Pandu R., Computer generation of gamma random variables, I, II. Comm. ACM, 21, 5 (may.

1978), 419-422; (november 1978), 925-928.

[15] Văduva, Ion., On computer generation of gamma random variables by rejection and composition procedures. Oper. forschung und Stat., Ser. Stat., 4 (1977),

545-576. [16] Văduva, Ion., RAVAGE, a subroutine library for computer generation of random numbers, random variables and stochastic processes. GMD-Mitteilungen, Nº 39, Gesellschaft für mathematik und datenverarbeitung, MBH Bonn, 1977.

University of Bucharest Computing Center Bucharest, Rumania

University of Bucharest Faculty of Mathematics Bucharest, Rumania

(Recibido en octubre de 1986).