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SOME NUMBER THEORETICAL PRODUCTS

by

Emil GROSSWALD

§1. Introduction. While a different topic was investigated,
it became necessary to know asymptotic values of products of
the form
~1
-ﬂ. (1‘P ) ’
p=a(mod m)

p <X
with co-prime integers m and a, and where p stands for ra-
tional primes.

The result

17 (1-p-1) = e_Y/log x (Y = Euler's constant)

ps X
is classical (see, e.g., [2]), but the asymptotic value of
the first mentioned products could not be located in the
literature. Here the symbol = stands for asymptotic equality.

Here is an account of the results obtained. The main

theorem is valid for all integers m, but at present the
methods used, all classical, are completely successful for
the numerical determination of some relevant constants only
for those moduli m all of whose characters are real, i.e.,
only for m|24. These methods are also effective in some re-
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lated problems. It is likely that the results can be extend-
ed to the general case without too much trouble. In what
follows, ¢(m) stands for Euler's ¢-function. For the values
of m under consideration, we recall that ¢(3) = ¢(4) =¢(6)
=2, ¢(8) = ¢(12) = 4, and ¢(24) = 8.

§2. Main Result. For integers a and m, with (a,m) = 1, the

following theorem holds.

n

THEOREM 1. T]  (1-p D)
p=a(mod m)
p< X
k, <4 a positive constant.

Proof. In this section all congruences are understood

modulo m, unless a different modulus is stated. We have

ka/(log x)1/¢(m), whenre

log TT (1-§) = [ log(1-p) =-TT $-U(x),
pza pza pza
p<Xx p<x p<x

where, for x > a,

—_

B B 1 1 Lo
0 < U(x) = pga o n AR AL PN 2 RE: LT

p<x

Also, U(x) increases monotonically with x, so that

0 < 1im U(x) = U < % and, for x -+ =,

X*oo
log TT(-D = - [ 5 -0 - o). ©

p=a p=a

p<Xx p<X
Next, let

1 if n=p = a(modm) ,
a) = 0 otherwise ,

and set A = ] a_  foru>a, Aj =0 foru < a. By par-

n<u ) o
tial summation with x « Z (this is done for simplicity of

presentation and leads to no loss of generality), we obtain
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! n An-An-1 , 1 1 Ay Ag-q
2 == 2 . iz — = A (—- + X _a )
pza P am«x " a\igx n ag%gx b wP YT T
p<x

Here A, 4 = 0 and, by the Siegel-Walfisz-Page theorem,

A = X X
x ¢(m)log x +0(10g2x)' (2)
It follows that, for x + =,
n+1 x+1 A
1 du u
I == 1 A J + o(1) = J — du + o(1).
pza P acn¢x uZ u?
p<Xx Tl a

Here the integral can be computed by use of (2):

n+1 X+1 X+1

Ay * 1 du Ay 1
J {Iz_du T o (m) J Glogu J ( u7—"¢zimiulogu)du
a- a a

n+1
= $T%T (log log x - log loga) + J h(u)du.
a

Here h(u) = O(EE%ETG)’ so that the integral converges to

a finite value, say B, as x + « and we obtain

=W%j-loglogx+B+o(1). (3)

We now substitute (3) in (1) and obtain

log TT(1-p M = -W%Tlogng-u-s- o(1¥,

p=a
p<X
so that
-U-B k
1 e (1+o(1)) . a
(1-2) = ~
;3; p) (log x)1/¢(m) (log x)1/¢(m)
pP<X

where ko -8 . The proof of the theorem is complete.



3. Determination of the constants k,. The computational
difficulties of the determination of the constants ka in-

creases with ¢(m). For simplicity of exposition we shall

consider for ¢(m) = 2 the case m = 4 in detail and indicate
the modifications needed for m = 6. For ¢(m) = 4, we shall
discuss m = 8, the case m = 12, is very similar. For m = 24

one can use the same method, but the computations become
cumbersome and are suppressed. Finally, we consider the
related problem to determine the constants k1 and k_1, for
which

( /T)]'] (1-p V) = k,//log x and ( JT 1(1-p‘1) k_,/vlog x
pm= =~

psX psx
holds.

§4. The Case m = 4. In this section all congruence are un-

derstood modulo 4. From

k k
2 . T G-DTTa-h-25 TTap=Ls
Ylogx vlogx P" p=3 -5 psx log x
psx psx

it follows that it is sufficient to determine, say, k1 as

then k:,> = Ze_y/k1 Let X (n) be the principal character
‘modulo 4 and X (n) the non principal character. The corre-
sponding D1rchlet L-series are L(s,X ) = niod TT(1 p %) -1

o -s p>3
and L(s,X,) = L X,(n)n 7 = Z(]—Xz(p)p‘s)“1, both valid for
n=1 p

Re s > 1. L(S,XZ) can be continued as an entire function

into the whole complex plane (see [5]) and L(1,x5) = 1 - %
+ % -... =mn/4, 1t follows that
-sy-2 -2s4 -1
L(S,X1)L(S,X2) = -rr(1'p ) TT("p )
p=1 p=3
and
-2s -5, -2
L(s,Xq)/L(s,X;) = .TE(1'P Jel=p ) o
p:
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if we divide these two equations we ohtain

]
4

L2(s, ) = TLO-p 25 2 TTp 5/ TT 0-p 9t
p=3 p=3 p=1

so that
T C(-p7%)
Pi:_’_—___= L(s,X )TTU'P»:D-)-
TT (1-p™%) 27 p=3

p=1

For s » 17 the right hand side has the limit
L(1,X,) TT.(1-p° %) = (n/4)C ,
p=3
say. It follows that the left hand side has the same limit
and we shall show that this limit equals k3/k1. The proof
can be modeled on that in [2], pp.351-353. Here we give only

a short sketch. For § > 0, set

F(&) = TTC-p "/ TT 9770
pz3 pz1

then

-2-26

F(8) ).

L(1+6,X,) TT (1-p
p=3

As § - 0, the right hand side approaches the finite constant

(v/4)C. Also, the function is continuous for § = 0 and the

convergence of F(8) to F(0) is uniform; hance, F(0)=1im F(¢)
'l

= (m/4)C. But we also have

vin{ T C1-p )/ TT-p D!
XF® p=3 p=1
p<x p<X

F(0) =

On the other hand, by Theorem 1, the last limit equals -
asymptotically K3/7l0g x Eé, as claimed. From k k;=2e
k1//1og x 1

and k k; = 2e Y and ky/k, = (7/4)C immediately follows that

k% = 8e Y/nC and k% = nCe Y/2.

The constant C occurs in some work of Landau (see [4]);

ol
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its value 1s about .856.

§5. The Case m = 6. In this section all congruence are un-
derstood modulo 6. By Theorem 1 we have, for. appropriate

constants k‘ and kq

kq

I ~
TTO-2) = —4— and JT(1-1) & —2
p=1 P /log x p=5 P log x
p<X p<x
Also,
.
1 1 1 3
— — T‘ (1.6) ~ I_E__
-3 1% psx og x
so that k,k = 5e '. To obtain the ratio k./k,, we consider

the two Dirichlet series formed with the principal and the

non-principal characthers modulo 6, respectively:

L(s,x) = TT(-p™)"! i

and  L(s,xp) = TT0-p %) " TT (1op )
p25 p=1 p=5

It follows as before that
L(s,xL(s,x,) = TT(-p %) 2 T (1-p 2% !
p=1 P=5

and
| TS  TT0-p %%
L(s,X7) _ p=5 _ P=5 !
L(s,x,) TTQ-p % TT(-p 5?2
- p=5 pP=5

From these two relations it follows that

TI'SU-p'S)

B2 . L(s,x,) TT(1-p°29).
TT](I-p'S) . pTETS fa
p.-__

If we let s » 1° and denote the product TT'(1-p'2) by Ce,
p=5
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then the second member becomes L(I,XZ) TT(l-p’

g
=8
For s = 1% the first member has the limit ks/k1. The two
equations kqikg = §e-Y and kg/kq = K%g C5 now yield the
values k2 = 91}—9;1 and k¢ = /3 e_Y'"C No closed for
1 mCs 5 z s ! orm

expression for CS seems to be known; 1its value 1s about

:93. ..

§6. The Case m = 8. In this section, congruences are under-
stood modulo 8. This case is more difficult, because now

$(8) = 4. By Theorem 1,

TT (-p ) =k (log 07" (a=1,3,5,7)
pza
p<Xx
Also, 1T k. = 2e '. To obtain the ratios of the k.'s,
- a J
a=1,3,5,7

we consider the four characters modulo 8 and the correspond-

ing L-series. In all cases X(n) 0 for even n.

X1(n) = 1 for all oddn

and
L(s,xp) = TTLO-p™9H 1 = (1-27%)2(s) 5
p>3
1 for n = 1,5
X,(n) =
-1 for n = 3,7
1 for n = *1
Xz (n)
-1 for n = £3 ,
and

-
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It follows that for Res> 1,

L(s,xq)L(s,x5) =TT (-p$H 2 T (-p 257"
y xj(P)=1 xj (p)=-1
and
(1-p™%) )
L(S,X‘) =-1 p . -I-T (]_p 5)2 :

-

- xi(p)

Lesxp o TD. ) Xj(p)=-1 (1-p~%%)
j

We multiply these equations and obtain

L2, =TT (™72 17 -p2% 17T 0.
X; (p)=1 X; (p)=-1 X; (p)=-1

For j = 2 in particular, we obtain

T 0™ TT 00757 = Lis,x) TT.0-p 297 T 07205
p=3,7 p=1,5 pz3 p=7

If we pass to the limit for s - 1" as before and set Cj =

TI(1-p_2), we obtain
P=)

L(1,X )C3C7 (4)

and similarly

L(1,X3)C5C3 (4")

and

o = LO,x,)c,Ce (4")

For brevity we set C;CcC; = D and multiply (4), (4'), and
(4'"); we obtain

4
-3 2
k;"kzkck, = D ;EEL(],Xj) (5)

If we multiply (5) successively by (4), (4') and (4") the
result is
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4
2 .
(_kT) =D JUZLU,XJ)L(LXA)CS(W

or
2,2 _ . 4.2.2
k7 = kqD°LEL(1,X,)C4€, (6)

4
where L% = TT‘L(],Xj), and similarly

j=2
2,2 _ 4.2 2 . ,
k5k3 = k1D L L(1,X3)C5L3 (6")
and
2.2 v 1. 842 2 i
k7k5 = k1D L L(1,X4)C7C5. (6'")

By dividing successively each of the equations (4), (4'),

and (4") by the succeeding one, we obtain the desired ratios

_](_7)2 = L(1,X2) C_7 (7)
ks L(T,x5) Cs

K3 afu L1,%3). €5

® e o o
ke & L(1, C

{ng) = _£__§41 ) (7
3 Cs3

We now multuply (6) by (7'), (6') by (7"), (6'") by (7) and
iy 4 _ 422 2 2 2 _ .2

obtain k3 = k1D L (1,XZ)L (1,X3)C3, or k3 = k1DL(1,X2L

L(1,X3)C3 and similarly for kg and k%. So we have proved

the relations

k3 = k§DL(1,X,)L(1,X5)Cy
k2 = kK2 DL(1,X)L(1,X,)C (8)
5 | »X3)L(1,X,)C
K2 = k2DL(1,X,)L(1,X,)C.
7 * 2 Xy »X2)Cq
We now recall that (k1k3k5k7)2 = 4e-2Y, substitute the val-

ues of the kj's from (8) in its first member and solve for



k2. This leads to ki = v/(2¢"Y)/DL. If we use this value in
(8), we obtain explicit expressions for all kj,s, namely

k2 = v(zeTV)/nL
- Y
k3 = V(2e V)LC/L(1,Xy)
ke = /(2 ")LC/L(1,X,)
2 5 =Y,
k3 = (2e”")LC,/L(1,x5).

Classical methods (see, e.g., [3],[4], or [1]) permit us to

obtain the values of L(l,xj) in _closed form, namely L(1,X,)

= 7n/4 = ,785398...; L(1,X3) =-%; log(3+2v2) = .6232252...;
2
L(1,x4) = nv/2/4 = 1.110720..., which lead to L = T'g’(log-

(3+2/2))% = .73734... Also, /(2e Y) = 1.059678709... On

the other hand, apparently no closed formulae are known for

C3, CS’ or C,. Their approximate vales are C3= v 8IT wensy
Cc. = .951..., and C7 = ,975..., which lead to D =~ .81...

5
This completes the discussion of the case m = 8.

§7. A special result. Previous results hold only for moduli
m with m|24. In applications we sometimes need the products

1T (1 —lJ and - - l),
(By=1 P ) P

Py=_1
m
pP<X pP<X

for m not necessarily a divisor of 24. If m|24, then these
products can be obtained from Theorem 1, but they can be

determined directly for arbitrary integer m.

THEOREM 2. Fon arbitranry integer m and X,

1, . Kq 1 k_q
RTL(’ P T Vogx 4 L TT (-9 = Jegw (9)
) (B =1
p<X psx
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whene

P
—_
"
=
~
o)
~—

p|m (By=-1
2 _ =Ly =i =25 oY 3
k; = Y p °) TT (1-p" e 'L(1,X);
plm (Py=-1
m
hene X(n) = () and L(1,x) = § X(n)n"® «s the correspond-

ing L-senies and Y stands fon the Eulern-Mascherond constant.

COROLLARY. T (%) = 1, then é{T (1-p’1) = 2k,//log x
(=1

3¢pgx
and 4§ (%) = -1, then (QJT (1-p°H) = 2k _/Y1log x .
m=-
3<psx

Proof. The corollary follows immediately from Theorem

2 and it 1is sufficient to prove the theorem. We consider

again L(s,X,) = ég&(1-p's)_], where X_(n) is the principal

character modulo m and

GnS = T - T !

L(s,X) =
1 x(p)=1 X(p)=-1

n

N~ 8

Then formulae (9) are proved exactly as in Theorem 1. Also,
for x » « (hence, x > m), we have

o f

1 1 1 e
(1-3) (12 T e ,
(%H1 P (%)IT1 P plm p log x
p<x p<X
so that k,k_, = e'Y11_(1—p'])-1. Next
p|m
L!X!X! - TT (]'[)-S’Z

LX) x(p)=-1(1-p %%
and

L(s,X)L(s,x) = JT (-p™7%  I7T a-p?57".
X(p)=1 X(p)=-1



From here the proof continues exactly like the correspondin.

one in Section 2 and leads to

lim ( TT (-p %/ TT O-p Db =1Ls,0 TT O e I
s+17 X(p)=-1 X(p)=1 X(p)=-1

whence

lim{ TT (1v-p"')/ TT (-p ')} = k_,/ky = L(1,X) TT (1-p'2)-

x+o X(p)=-1 X(p)=1 X(p)=-1
p<x psXx
- - - =
From kyk_, = e ' TT (1-p 1y and k_ kg = L) T (079
p|m x(p)=-1

2
the indicated values of k and kj1 immediately follow.

BIBLIOGRAPHY

[1] Berndt, B.C., The vafuation of character sums by contour
Lntegnatcon Publkac1je Elektrotehnickog Fakulteta,
Serija Matematika i Fizika, N° 381-409, 25-29

[2] Hardy, G.H. and Wright, E.M., An Intrnoduction to the
Theony of Numbens, 3-nd ed. The Clarendon Press,
Oxford, 1954.

[3] Hecke, E., Von[eéungen uben die Theorie den akgebraischen
Zahlen, Chelsea Publishing Co., New York, 1948.

[4] Landau, E., Aandbuch den Lehre von dex Vente(ﬁung der
Primzahlen, 2-nd ed. Chelsea Publishing Co., New

) York, 1953.

[5] Prachar, K., Primzahlventeifung, Die Grundlehren der
Mathematischen Wissenschafte, Vol.91 Springer-Ver-
lag, Berlin, 1957.

Department of Mathematics
College of Arts and Sciences
Temple University,

Philadelphia, Pennsylvania 19122
u. s. A.

(Recibido en diciembre de 1986).

242



