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Resumen. Aquellas entroptas H que se caracteriza por la
propiedad que H(P*Q) = H(P) S H(Q) para una operaciSn S de se-
migrupo arquimediano se expresaran como e~tropias aditivas.
Se considerara especialmente la familia con respecto a las
operaciones S~(x,y) = x+y+Axy. Casi todas las extropias cono-
cidas de la 11teratura resultan casos particulares. Se deriva
un teorema de codigo y se construye entropias condicionales.

Abstract. Those entropies H which are characterized by
the property that H(P-*Q) = H(P) S H(Q) for an Archimedean
semigroup operation S will be expressed by additive entro-
pies. The family with ,respect to the operations SA(x,y) =
x+y+ A xy will be considered. Almost all entropies known from
the literature become special cases. A coding theorem is de-
rived and conditional entropies are constructed.

Introduction. Hartley (1928) was the first to introduce a
measure of entropy. The generalization by Shannon (1948) is
the entropy most used in many applications. Both entropies
H are additive in the sense that
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H(P*Q) = H(P) + H(Q) ( 1 )

where P*Q is the product of the finite probability distri-
butions P and Q. Renyi (1961) introduced a family of addi-
tive entropies of ordera, including Shannon's and Hartlex's
entropies for a + 1 and a + 0 respectively~ Under addition-
al assumptions it was shown that Renyi's entropies are the
only additive ones, see e.g. Dar6czy (1964).

Later on other entropies have been suggested, e.g.by
Aczel and Dar6czy (1963), Kapur (1967), Havrda and Charvat
(1967), Dar6czy (1970), Arimoto (1971), Rathie (1971a),
Sharma and Mittal (1975), and Boekee and Van der Lubbe
(1980). All these entropies have on property in common,
namely

H(P"'Q) H ( P) S A H (Q) , (2)

where
(3 )

wi th the parameter A e:: JR depending on the entropy-parame-
ters.

The indices of diversity of Gini (1912), considered
also by Simpson (1949), and of Me Intosh (1967) have prop-
erty (2) also. Both are non additive.

Every SA is a strict Archimedean semigroup operation
on a certain interval [O,M] c [O,ooJ and therefore, see
Aczel (1949), additively generated, i.e.

(4)

It follows immediately that the compositions hAoH are ad-
ditive entropies.

This is the crucial step: reducing the entropies H
to additive entropie~ hAoH, we can obtain results concern-
ing H by means of the corresponding ones for hAoH. As an
example for this procedure, Campbell's (1965) coding theorem
can be rewritten. It is not necessary to give the proof for
each of the special entropies mentioned above, as has been
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done e.g. by Boekee and Van der Lubbe (1980) for one case.
We obatin the same result and more rapidly.

Also conditional entropies can be constructed using
the underlying structure of the unconditional measure given
by SA' This approach is quite different from the construc-
tion of conditional entropies which are based on some gen-
eralized mean value property known from the current lite-
rature. In a forthcoming paper the author will discuss and
compare these concepts. Some of these results were presented
in Weber (1985).

Tha aim of the present paper is not to enlarge the
number of "mostly formal generalizations ... popping up al-
most daily in the literature", as has been criticized by
Aczel (1984) in his survey. But in contrast to this I will
stress the common property (2) and show that it is suffi-
cient to consider only very few (classes of) entropies.

§1. SA-entropies. Considering entropies H for finite prob-
ability distributions

we will suppose as minimal conditions that

o , 1H (0,...,0,1,0 ,...,0) ~ H (P) ~ H (n' ... 'n) =: Hmax . (5)

Furthermore we suggest to look at entropies with the fol-
lowing property.

1.1. DEFINITION. A function H with property (5) will
be called an additive~y generated entropy or briefly S-en-

tropy iff for any product P*Q.:= (Pi qk)' i = 1,... ,n , k =
1,... ,m, of distributions P = (P1"" ,Pn) and Q. = (q1'''',qm)
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H ( P'"Q) = H ( P) S H ( Q) (6)

where S is a continuous binay operation on [O,M], which is
associative, (strictly) increasing in each argument, contin-
uos and has 0 as a unit, and where M has to be,chosen with

M ~ sup H(P)
P

The +-entropies are usua Lly called additive entropies.

The properties equired on S are more or less natural
except that of "increasing", but this, together with the
others, leads to the following representation, essentially
due to Acz§l (1949), in the modified form given by Ling
(1965).

1.2. THEOREM. A binary operation S on [O,M] has the

properties listed in 1.1. if and only if'there exists an

increasing and continuius function h: [O,M] + [0,00] with

h(O) = 0 and heM) = 00 so that

S(x,y) = h-1(h(x) +h(y)). (7)

Furthermore, h ~s unique up to a positive factor.

This last property justifies the notation "additively
generated entropy" used in the definition, where usually h
will be called "additive generator" of S.

1.3. EXAMPLE. For any A ~ (-1,00),

X+Y+AXY ( 3)

gives a binary operation SA on [O,M] with the properties
listed in 1.1 and where

"f if - 1 < A < 0

M
0:' if A ~ 0
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The additive generators h\ of S\ can be written e.g. in the
form

h (x) = c 10g(1+\x)
\ 10g(1+\) wi th any c > 0, (8 )

including by continuous extension

h (x) = C'x .o (9)

In the following we will use the symbol log always
for the logarithm to the base 2.

1.4. EXAMPLES. The fol lowing are al I additive
entropies.

a) HoCP) := log n
gives Hartley's (1928) entropy Ho'

n
b) H1CP) := - L p. logp.

i=l 1 1

gives Shannon's (1948) entropy HI'
1 n

c) H (P) := T="N.log I pa, a" 1,a a i=l 1

define the family of Renyi's (1961) entropies Ha of order
a, including Ho and, by continuous extension, H1.

(10)

( 11)

(12)

_1_.1001-C1. '"
ail, ( 13)

define a family of
Dar6czy (1963) and
family generalizes

n
t p.p

i=l 1

entropies H 8' introduced by Aczel anda,
also considered by Kapur (1967). This
Renyi's family, i.e.

H = Ha, 1 a

and includes by conti~uous extension
n p

-tp··logp.
i= 1 1 1

E p.8i"=1 1

(14)
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The representation theorem 1.2 leads immediately to
the following characterizacion of all S-entropies.

1.5. THEOREM. Every S-entropy can be written as func-

tion

of an additive entropy H, where h &8 some additive genera-

tor of s.

Applying this characterization theorem to 1.4 we ob-
tain the following.

the

1.6. EXAMPLES. Let hA and SA as in example 1.3.

following are all SA-entropies:

a) hAlcHa.,S(p)) = + .f(l,P::s-t )~n~~)A)
E PI

i=l

Then

-} (16 )

including by continuous extension the cases a = 1 or A = a
respectively. Setting in (a) B = 1 we obtain the entropies:

b)
1 {( n a) ~(r~~)>')- . r p.
>. i=l I

( 17)

introduced by Sharma and Mittal (1975), including

{
IIp· logp.

=:t. (1+>') -ci=l 1 1 -j ( 18)

On the other hand, setting in (a) and (b) respectively
A = 21-a._ 1, c = 1, we are led to the entropies:

[ rra>S-t

- 1 )
A 1 i=l 1 (19)c) Ha.,S(P) - 21-a._1 • ~ p.S

i=l 1
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in t. rod u c e d by fLi t h i e (I () 7 1J l , all J. res pee t 1 ely

d)
~
H (P)a

( ZO)

introduced by Havrda and Charvat (1967) and also considered
by Da r o c zy (1970).

Both families contain by continuous extension the cor-
responding additive entropies, i.e.

HI,S HI, S

Furthermore, setting in (b) C( > 0, :.\
obtain the entropies

LJd.
2 a - 1 , C

e) H (r)c

1

r( n u\a'1 L P I, '" I 1 /
1 I

(2 I)

conSIdered by Arimoto (1971) and Bockee and Van del' Lubhe
( 198 0), Ivhie h inc l ude 5

1 h - f i d '" . I· E 1, d fn t ell' papers we . In no, w r tn a actor --,--::ex in s t ea 0:
1 l -o -a.~---- which corresponds to the choice of :.\'"a' c> l-alogr,:

rc/J. - 1
It is interesting to note that, except for po s i t i ve constants,
A

~12 is the index of Gini (1912)/Simpson (1949) a nd HZ is the
index of Nc Ln t o sh (1967), both have been applied :15 indices
of diversity of populations.

1.7. COUNTEREXAMPLE. The modi tied v ers ion of (14),
namely - ~ p_ B log PI" for S I 1, introduced by Rathiei;;;lI
(1971b), is not additively generated.

I will finish this paraqraph with a remark of caution.
In their original paper, Sharma and Mittal presented their
entropies in another form than (17), nam ely



1 {( n ). . L p.a
21-Y-l i=11

II
l-a (22)

For c = 1, the transformation A = 21-Y_ 1 shows the equiva-
lence between (17) and (22). Sometimes one can find still
another form, see Aczel (1978):

26(1-a) -1
(23)

We can see that, for c = 1, formulae (17) and (23) are no
equivalent, any more, if we include the entropies for A 0= 0,

6 = 0, a = 1 by continuous extension, as we have always
done in this pap~r. The reason for this is that the appli-
cation:

:R2 ~RX(I-,oo)

(a,6) ~ (a,A) ,

given by A 20(I-a)' _ 1, is not a biyection. More precisely,

(1,6) ~ (1,0) for all 6.

In terms of entropies this means that for a -+ 1: (17) re-
- 1duces to hA (H1(P), but (23) reduces to H1(P) for all o.

§2. A coding theore. for SA-entropies. Suppose that we have
n message letters x . with probability p. := P{x.} which

1. 1 1

start a memoryless source and are encoded. for simplicity,
by 2 symbols. Let us denote the resulting codeword length
by ni. Then we can use the caracterization theorem 1.5 to
obtain coding theorems for a whole family of entropies pro-
vided that we have a coding theorem for one member of that
family. As an example for this procedure we look at the
special case 1.6 (b) which leads to the following.
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A ··12.1. THEOREM. For each entropy Ha . '" h\ oHa (in (17))

of a source there exists an uniquely decipher bZe code Juah

tha t:

1+_.
,\ (24)

with equality at the Z~J~t side if and only iJ"

- n·2 1
n

P CI./( \" P Cl) .,'"orall i ,iLk J

k= 1

J.nd where

(25)

~s an average codeword len~th

Proof. Campbell (1965) proved the corresponding result:

(._1 -_a)H ~ L ,a a < H + 1 (26)

for R6nyi's entropies Ha in (12) and the average codeword

length:

L (t)
1 n t.ni
_olog( I p. 2 ).
t i > 1 1

(27)

- 1
I pplying h\ from (8) to (26) and using (25) and (27) we a re

1ed to

The rest follows by (8).

2.2. COROLLARY. For the entropies (20) ana (21) res-

pectively we obtain the results corresponding to (24):
I'-a. n .

n ..,cr- 1 a
(l.~/i c )-1

a ) H ~ < 21 - a H + 1 , ( ;: 8 )
a 21-a _ 1 a



b) -H ~
Ct

< (29)

The latter formula is essentially theorem 11 of Boe-
kee and Van der Lubbe (1980) except that their entropy dif-

-fers from Ha by a factor as explained in 1.6.

Let us remark that the average codeword lengths from
(25) are strictly monotone and continuous functions of:

n t v n,
K(t) := L p. 2 1

i= 1 1
(30)

which can be interpreted as ave~age exponential coding C06t.
More precisely:

L(t A) = h-1 rlog K(t)), At' (31 )

including by continuous extension:

L(O,A) -1 n
h, ( L p. 0 n-)

A i=l 1 1
(32)

which is a function of the ave~age linea~ coding cOot

n
L

i=l
p - on. .
1 1

(33)

§3. Conditional entropies. The defining property (6) for
S-entropies can be rewritten as

H(P ,Q) = H(P) S H(Q) for independentP, Q. (34)

If we want to preserve this structure for the general sit-
uation, we are led to the following construction of a con-
ditional entropy I am proposing in this paper.
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3.1. DEFINITION. Let H be a S-entropy in the ense
of 1.1. Then we define a conditional entropy H(Q/P) as so-
lution of:

H (P , Q) H (P) S H (Q/ P) . (35)

The representation theorem 1.2 leads immediately to

3.2. THEOREM. For all P with H(P) < M, the cond~tion-

al entropy H(Q/P) is uniquely determined by:

H(Q/P) = h-1(hoH(P,Q) - hoH(P» , (36)

where h is any additive generator of S. Furthermore:

H(Q/P) = H(Q) for i.ndecendeni: P, Q. (37)

Using the usual notation

i=l, ... ,n; k=l, ... ,m,

for the joint distribution, we obtain by 1.4 and 1.6 the
corresponding special cases. We will point out only a few
cases.

3.3. EXAMPLES.

a) For Renyi's (additive) entropies H from (12) wea
obtain

H (Q/ P)a
1T="Ct log

a~ p .
. Lk 1
1,

I p<:t. ]
]

(38)

This formula (38) appears in Reny i (1960, formula (35)). But
in general it is used there as conditional entropy an expre-
ssion where the weights p~/(E p~) in (38) are replaced by

1 J ]
Pi' see Renyi (1960, formula (24». .

Ab) For the entropies H from (20) we obtain
0.



{

a aE Pi'qk/iH (Q/P) = 1 • ~iu,kL-__ ~_
a 21 - a_ 1 \ al p.

J J

(39)

This formula (39) differs from that obtained by the con-
struction given by Daroczy (1970, formula (5.4)), which can
be written as

c) For the entropies Ha from (21) we obtain

(40)

The formula (40) is different from the two proposed by Boe-
kee and Van der Lubbe (1980) and denoted by

L CI. 1
Pi (k qkli)IT - 1

= i
1-a
a

1

n Pi ~ q~/d a - 1
1

l-a
--cr-

(41)

"H (Q/P)a
.

C 42)

The essential difference is not in the factor, but in the
different manner in which the p~s are used as weights.

1

Concluding remark. In the present paper the author consid-
ered additively generated entropies, i.e. those which have
(6) as a basic property. This is reasonable because a lot
of entropies is of that type. In view of this property, the
proposed definition of a conditional entropy (35) seems to
be quite natural, especially since this construction en-
sures the important property that

HCQI P) = H(Q) for independent P, Q. (37)

296



For many situations another property is also important,
namely:

H(Qlp)'~ H(Q) for all r , Q. (43)

This is equivalent to the property
I' t

hoH(P.Q) ~ hoH(P) + hoH(Q) for all p. Q. (44)

For the entropies H in (17) the compose' entropies h e H = Ha
belong to Renyi's family, for which it is known that (44)
holds only for a = 1.

On the other hand, other construc~ions for condi-
tional entropies do not fulfill the fir_t important proper-
ty (37). This dilemma will be discussed ~n authors forth-
coming paper mentioned in the introducto)n, using several
mean value properties.

Actnowledgement. The author likes to th,nk the referee for
some useful comments.
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