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Resumen. Aquellas entropias H que se caracteriza por la
propiedad que H(P*Q) = H(P) SH(Q) para una operacidén S de se-
migrupo arquimediano se expresardn como entropias aditivas.
Se considerar3d especialmente la familia con respecto a las
operaciones S, (x,y) = x+y+Axy. Casi todas las extropias cono-
cidas de la literatura resultan casos particulares. Se deriva
un teorema de cddigo y se construye entropias condicionales.

Abstract. Those entropies H which are characterized by
the property that H(P*Q) = H(P) SH(Q) for an Archimedean
semigroup operation S will be expressed by additive entro-
pies. The family with respect to the operations Sx(x,y) =
x+y+ A xy will be considered. Almost all entropies known from
the literature become special cases. A coding theorem is de-
rived and conditional entropies are constructed.

Introduction. Hartley (1928) was the first to introduce a
measure of entropy. The generalization by Shannon (1948) 1is
the entropy most used in many applications. Both entropies

H are additive in the sense that



H(P*Q) = H(P) + H(Q) (1

where P*Q is the product of the finite probability distri-
butions P and Q. Rényi (1961) introduced a family of addi-
tive entropies of ordera, including Shannon's and Hartley's
entropies for o - 1 and o ~ 0 respectively. Under addition-
al assumptions it was shown that Rényi's entropies are the
only additive ones, see e.g. Dardczy (1964).

Later on other entropies have been suggested, e.g.by
Aczé&l and Daréczy (1963), Kapur (1967), Havrda and Charvit
(1967), Dardczy (1970), Arimoto (1971), Rathie (1971a),
Sharma and Mittal (1975), and Boekee and Van der Lubbe
(1980). All these entropies have on property in common,

namely
H(P*Q) = H(P)S, H(Q), (2)

where
Sy (x,y) = x+y+ixy (3)

with the parameter e R depending on the entropy-parame-
ters.

The indices of diversity of Gini (1912), considered
also by Simpson (1949), and of Mc Intosh (1967) have prop-
erty (2) also. Both are non additive.

Every SA is a strict Archimedean semigroup operation
on a certain interval [0,M] = [0,«] and therefore, see

Aczél (1949), additively generated, i.e.
3 gearhye +h 4
A(Xp)’) ray A ( )‘(x) x()’))- ( )

It follows immediately that the compositions hAoH are ad-
ditive entropies.

This is the crucial step: reducing the entropies H
to additive entropies hXoH, we can obtain results concern-
ing H by means of the corresponding ones for h,oH. As an
example for this procedure, Campbell's (1965) coding theorem
can be rewritten. It is not necessary to give the proof for
each of the special entropies mentioned above, as has been
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done e.g. by Boekee and Van der Lubbe (1980) for one case.
We obatin the same result and more rapidly.

Also conditional entropies can be constructed using
the underlying structure of the unconditional measure given
by SA‘ This approach is quite different from the construc-
tion of conditional entropies which are based on some gen-
eralized mean value property known from the current lite-
rature. In a forthcoming paper the author will discuss and
compare these concepts. Some of these results were presented
in Weber (1985).

Tha aim of the present paper is not to enlarge the
number of "mostly formal generalizations... popping up al-
most daily in the literature'", as has been criticized by
Acz€él (1984) in his survey. But in contrast to this I will
stress the common property (2) and show that it is suffi-
cient to consider only very few (classes of) entropies.

§1. Sx-entropies. Considering entropies H for finite prob-
ability distributions

P=(Pys---5p)

we will suppose as minimal conditions that

0 = H(O0,..,0,1,0,...,0) < H(P) ¢ H(=,.. =:H : (5)
Furthermore we suggest to look at entropies with the fol-
lowing property.

1.1. DEFINITION. A function H with property (5) will
be called an additively generated entropy or briefly S-en-
tropy iff for any product P*Q:= (p.1 qk), i=1,...,n , k =
1,...,m, of distributions P = (p1,...,pn) and Q = (q1,.",qm)



H(P*Q) = H(P) SH(Q) (6)

where S is a continuous binay operation on [0,M], which is
associative, (strictly) increasing in each argument, contin-
uos and has 0 as a unit, and where M has to be chosen with

M > sup H(P)
P
The +-entropies are usuvally called additive entropies.

The properties equired on S are more or less natural
except that of "increasing'", but this, together with the
others, leads to the following representation, essentially
due to Aczél (1949), in the modified form given by Ling
(1965).

1.2. THEOREM. A binary operation S on [0,M] has the
properties listed in 1.1. if and only if there exists an
inereasing and continuius function h:[0,M] » [0,=] with

h(0) = 0 and h(M) = = so that

S(x,y) = h™'(h(x) +h(y)). (7)

Furthermore, h is unique up to a positive factor.

This last property justifies the notation '"'additively
generated entropy'" used in the definition, where usually h
will be called '"additive generator'" of S.

1.3. EXAMPLE. For any X = (-1,%),
S, (x,y) := x+y+ixy (3)

gives a binary operation §, on [0,M] with the properties

listed in 1.1 and where
L if -c1<ac<o
-A
0 if A >0
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The additive generators h, of S, can be written e.g. in the
form

log(1+Xx .
h = log(1+Ax)
A(x) c Tog (1o1) with any ¢ > 0, (8)

including by continuous extension

h (x) = cx . (9)

In the following we will use the symbol log always
for the logarithm to the base 2.

1.4. EXAMPLES. The following are all additive
entropies.
a) HO(P) := logn (10)
gives Hartley's (1928) entropy HO.

n
b) H,(P) := - _X‘pi log p; (1
1:

gives Shannon's (1948) entropy H‘.

n
c) H (P) := %-logj]pz , o # 1, (12)
: L

define the family of Rényi's (1961) entropies H of order
o, including HO and, by continuous extension, H1.

0 a+g-1

L Pj

dog Bl 4y, (13)

5 p.P
i=1p1

1
T-a

d) H o(P) :=

define a family of entropies HOl g’ introduced by Aczé€l and
Dardczy (1963) and also considered by Kapur (1967). This

family generalizes Rényi's family, i.e.

H = Hecl
and includes by continuous extension
n
B

n
LN
1i=1

(14)

By,8(P)



The representation theorem 1.2 leads immediately to

the following characterizacion of all S-entropies.

1.5. THEOREM. Every S-entropy can be written as func-

tion
h™ o (15)
of an additive entropy H, where h is some additive genera-

tor of S.

Applying this characterization theorem to 1.4 we ob-

tain the following.

1.6. EXAMPLES. Let hA and S, as in ezample 1.3. Then

the following are all Sx-entpopies:

log (1+1)
n a+8-1 c(1-a
Lp;
=] _ 1 i=1 1
a) hy '(H, .(P) =1 A [—m—s— (16)
A S o,B A B
L Py
i=1
including by continuous extension the cases o = 1 or A = 0
respectively. Setting in (a) B = 1 we obtain the entropies:
log(1+1)
Y 1 n ,\cU-a) i
b) hEE) = x| e S YY)

introduced by Sharma and Mittal (1975), including

n
_%_ Z]P-l log b; ]

h;‘1(H1(P)) 2 % 7 il at 18 (18)

On the other hand, setting in (a) and (b) respectively
A= 2170 1, ¢ = 1, we are led to the entropies:

n

.a+8—1
- 1 i=1 1 .
C) H(l B(P) e —176—-— L B 1 (]9)
’ 2 -1 E pi

1=1
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introduced by Rathie (1971a), and respectively

£ )
~ o !

d) H(l(p) = —ffl—a——* 8 1 ) [)ja ~1 b (20)
2 -1 1=1 J

introduced by Havrda and Charvat (1967) and also considered
by Dardczy (1970).
Both families contain by continuocus extension the cor-

responding additive entropies, i.e.

Hl,S = H],5 . H‘ = H1.
1-«
Farthermore, setting in (b) « > 0, A = 2 % -1, ¢ =1, we
obtain the entropies:
1 N
. 1 ( n )a |
e) H (P) 1= ———— 3 ¥ p. 7| 18, (21)
* 1-a T t

considered by Arimoto (1971) and Boekee and Van der Lubbe

(19803, which includes

In their papers we find H, with a factor T;; instead of

1 . . : 1-¢ -0
T which corresponds to the choice of A Z'G%’ c=T%;h@~g
=

[t is interesting to note that, except for positive constants,
ﬁ, is the index of Gini (1912)/Simpson (1949) and H, 1s the

index of McIntosh (1967), both have been applied as indices

of diversity of populations.

1.7.nCOUNTEREXAMPLE. The modified version of (14),
namely - Z1pj8 log p; for 8 # 1, 1introduced by Rathie
l=

(1971b), is not additively generated.

I will finish this paragraph with a remark of caution.
In their original paper, Sharma and Mittal presented their

entropies in another form than (17), namely



n ‘l_
1 a
YL AR (IR ok & -l 1 (22)
211Y . 3 (i=l 1

For ¢ = 1, the transformation A = 21‘Y- 1 shows the equiva-
lence between (17) and (22). Sometimes one can find still

another form, see Aczé&l (1978):

( §
n
;ﬂ%)_—l‘{(iz,m“) e (23)

We can see that, for ¢ = 1, formulae (17) and (23) are no
equivalent, any more, if we include the entropies for X =0,
§ = 0, o = 1 by continuous extension, as we have always
done in this paper. The reason for this is that the appli-

cation:

2

R° —> RX*(1-,%)

(¢,8) +—> (a,)) ,

- \
given by A = 26(1 a) -1, is not a biyection. More precisely,
(1,8) —> (1,0) for all 6.

In terms of entropies this means that for a > 1: (17) re-
duces to hi1(H1(P), but (23) reduces to H‘(P) for all §.

§2. A coding theorem for S,-entropies. Suppose that we have
n message letters x; with probability P; = P{xi} which
start a memoryless source and are encoded, for simplicity,
by 2 symbols. Let us denote the resulting codeword length
by n,. Then we can use the caracterization theorem 1.5 to
obtain coding theorems for a whole family of entropies pro-
vided that we have a coding theorem for one member of that
family. As an example for this procedure we look at the
special case 1.6 (b) which leads to the following.

DXL
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A -1 %
2.1. THEOREM. For eacn entropy H1 A hx °H (7n (17))
i C 04
of a source there exists an uniquely decipherable code such

that:
H <L ( o )<(1+\) 1 ﬂfum } (24)

with equality at the lejft side 1f and only

rii a . oaviz
2 = p; /(k21pk ) for all 1,
mnd where
log(1+1)
ten; T
L{t,») := )'\— ( Z Ly < 1 (25)
1-1

18 an average codeword length.
Proof. Campbell (1965) proved the corresponding result:

H o< L (%58 0,8 i (26)
a (s B o

for Rényi's entropies H, in (12) and the average codeword
length:

n
L(t) := —-log( Z Py ). 27

Applying hi] from (8) to (26) and using (25) and (27) we are
led to

A 1-a PR DY
H < L(——&—,)\) < hy (hy(H) + 1).

The rest follows by (8).

2.2. COROLLARY. For the entropies (20) and (21) res-

rectively we obtain the results corresponding to (24):

1= .
n 5 1 «
e (Z]pl - h‘ ]—a ~
a) Ho gt < 2 H_+1 (28)
a -y a ’ !



b) i< i=1 T < 2 H +1 . (29)

The latter formula is essentially theorem 11 of Boe-
kee and Van der Lubbe (1980) except that their entropy dif-

fers from ﬁa by a factor as explained in 1.6.

Let us remark that the average codeword lengths from

(25) are strictly monotone and continuous functions of:

n
K(t) := Z1pi 2 (30)

which can be interpreted as aveirage exponential coding cost.

More precisely:

L(t,\) = hi1 (lS&ZELEl) , (31)
including by continuous extension:
-1 n
L(0,\) = h, (izlpi'ni) (32)

which is a function of the average f£inear coding cost

§3. Conditional entropies. The defining property (6) for
S-entropies can be rewritten as

H(P,Q) = H(P) SH(Q) for independent P, Q. (34)

If we want to preserve this structure for the general sit-
uation, we are led to the following construction of a con-

ditional entropy I am proposing in this paper.
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3.1. DEFINITION. Let H be a S-entropy in the sense
of 1.1. Then we define a conditional entropy H(Q/P) as so-

lution of:

n

H(P,Q) = H(P) SH(Q/P). (35)

The representation theorem 1.2 leads immediately to

3.2. THEOREM. For all P with H(P) < M, the condition-

al entropy H(Q/P) is uniquely determined by:

it

H(Q/P) = h™ (hoH(P,0) - heH(P)) , (36)

where h s any additive generator of S. Furthermore:

(2]

H(Q/P)

H(Q) for independent P, Q. (

Using the usual notation
(PvQ) = (plk) = (pl QR/l)' 131,.,»,1'1; k=1)-"ym »
for the joint distribution, we obtain by 1.4 and 1.6 the
corresponding special cases. We will point out only a few

cases.

3.3. EXAMPLES.

a) For Rényi's (additive) entropies Ha from (12) we

obtain —
i iik Pi ak/i
. > s B
H,(2/P) -5 log a (38)
j j

This formula (38) appears in Rényi (1960, formula (35)). But
in general it is used there as conditional entropy an expre
ssion where the weights p?/(z p?) in (38) are replaced by
p;,» see Rényi (1960, formu1a3(24)).

b) For the entropies ﬁq from (20) we obtain



e o
1 il Pit%/i

H (0/P) = : -1 39
plQP) X T , (39)
L7

This formula (39) differs from that obtained by the con-
struction given by Dardczy (1970, formula (5.4)), which can

be written as

f, (2/P) } Pj -

c) For the entropies Hy from (21) we obtain

/ a a \ 4+
N .kai Ae/i\*
A (/p) = e § [

1-a - 7 p® =1 cael
* -1 ;NI

The formula (40) is different from the two proposed by Boe-
kee and Van der Lubbe (1980) and denoted by

& 1
Loy (f a)® -

'H_(Q/P) = 3 41
«(2/P) - (41
a
e
(g Pi % ag/i) " -1
"H, (Q/P) = o . (42)
ML

The essential difference is not in the factor, but in the

different manner in which the pis are used as weights.

Concluding remark. In the present paper the author consid-
ered additively generated entropies, i.e. those which have
(6) as a basic property. This is reasonable because a 1lot
of entropies is of that type. In view of this property, the
proposed definition of a conditional entropy (35) seems to
be quite natural, especially since this construction en-
sures the important property that

-

H(Q|P) = H(Q) for independent P, Q. (37N



For many situations another property is also important,

namely:
H(Q|P) < H(Q) for all P, Q. (43)

This is equivalent to the property

hoH(P,Q) < hoH(P) + heH(Q) for all P, Q. (44)

For the entropies H in (17) the composed entropies hoH = H,
belong to Rényi's family, for which it is known that (44)
holds only for a = 1.

On the other hand, other constructions for condi-
tional entropies do not fulfill the fir.: important proper-
ty (37). This dilemma will be discussed ‘n authors forth-
coming paper mentioned in the introduct on, using several

mean value properties.
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