
Rev..w.ta. Colomb -taM de Mat e.mit-<:c: CL6

Vol. XXI (1987), pag~. 301-316

ON THE ORTHOGONALITY MEASURE
OF THE

Cl-POLLACZEK POLYNOMIALS

by

Jairo A. CHARRIS and LUIS A.GOMEZ(I)

Abstract. The q-Pollaczek polynomials F ,(x) depend on
four parameters u,v,L'l,q and are given by the recurrence re-
lation (1-qo+l)Fn+1(x) = 2[(1-uL'lqn)x+vqn]Fn(x)-
(l._L'l2qn-l)Fn-l (x), n ~ 1, and the initial cond i t ions Fo(x)=l
F 1(x) = 2 [(l-u6.)x+v J /l-q. The measure wi th r spect to which
the Fn(x)'s are orthogonal is determined when the parameters
are subject to the constraints O<u<L'l< 1, 6(l-u) >±v, O<q
< 1. This measure turns out to be absolutelv continuous with
respect to Lebesgue's measure.

§l. Introduction. The q-Rogers poly'umials (Rogers [23J,
[24]), also called continuous q-ul pasph2riccl polynomials.

are given by the recurrence relation
n n+ 1 . I2x(1-l3q )Cn(x;slq) = (l-q )Cn+1(X;13 q)

2 n-1
+ (1 -13 P ) Cn _1 (x ; 131 q) , n > 0

(1.1 )

(1) This paper cont a ins developments of partial results of L.A. Gomez's
M.S. dissertation at the National University of Colombia. The thesis
advisor was J.A. Charris.
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and the initial conditions

(co(x;slq) = 1, C1(x;S/q) 2x(1-S) l(l-q). • (1. 2)

They depend on' the two parameters S, q, and for appropriate
values of the parameters they form a system of'orthogonal
polynomials. The q-Rogers polynomials were used by Rogers
in the proof of the celebrated Rogers-Ramanujan identities
of the theory of partitions; details can be found in [2],
[ 3 J .

The q-Rogers polynomials generalize the ultraspherical

polinomials in the sense that

(1.3)

where C~(x) is the nth-ultraspherical po lynomi a.Iof order A

(Rainville [19J, Szego [25J).
AI-Salam, Allaway and Askey [1J set

q (1. 4)

c (x;8/q)n I

(q;q)n C (x;S!q)
(82 ;q)n n

(1. 5)

and
C~(x;k) lim cn(x;Slq),

s+l
(1.6)

They notked that {cn(x;k)/n ~ O} is a set of orthogonal pol-
ynomials and refer~ rothem as sieved ultraspherical polyno-

mials. As it turns out, the sieving process of Al-SalJ.m and
Askey has a wide scope. Many systems of orthogonal polyno-
mials have been discovered this way. Recent work of Ismail
[12], [13], [141. Charris and Ismail [8], [9], Askey and
Shukla [6] are a sample of the activity in the field of
sieved orthogonal polynomials. Further research of Geronimo
and Van Assche [11] has greatly contributed to shed ligth
on the underlying mathematical structure.
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Only recently the orthogonalIty measure of the q-Ro-
gel's polynomials has been determined by Askey and Wilson
[7J and Askey and Ismail [4].

Systems of polynomials related to the q-Rogers polyno-
mials have been introduced by Ismail [12] and Charris and
Ismail [9]. Their purpose was to obtain sieved analogues of
the Pollaczek polynomials. The q-Pollaczek polynomial~ of
Charris and Ismail depend on four parameters u,v,6,q. Denot-
ed w i t h F (x;u,v,6;q). or F (x) for short, they satisfy then n
recurrence relation

(1. 7)

and the in i t i a I conditions

F (x)o 1, (1.8)

The po lynom t a Ls F (x) generalize the Po Ll ac zek polynomialsn
in the sense that

p~(x;a,b) " lim Fn(x;qa,l-qb,q\;q)
q->-1-0

(1. 9)

IS the nth Pollaczek polynomial (Pollaczek [20], Szego [2Sj).
The purpose of this paper is to determine the orthogo-

nality measure of the q-Pollaczek polynomials under appro-'
priale restrictions on the parameters. These constraints are
different from those suggested in [9] and allow very neatly
for the us' of a theorem of Nevai [16], [17J. Even under
th~se conditions we have not been able to determine the mea-
sure solely on the basis of Markoff's theorem and the Stiel-
jes inversion formula, two powerful tools whIch have proved
succesful in many other instances. A deeper knowledgeth~ our~
of the He ine- Ramanujan q-functions and their transformation
seems neccesary for this purpose. This we se. as a proof of
the depth and power of Nevai's result.



§2. Orthogonal polynomials. If a sequence of polynomials
(Pn(x)} satisfies a three terms recurrence relation

and the initial conditions

(2.2)

then, provided that

C /A A 1> 0, n > 0,n n n- (2.3)

(Pn(X)} is a system of orthogonal polynomials with re pect
to a positive measure ~ such that

+00 A n

J p (x)p (x)d~(x) = {AO IT Ck}8. (2.4)n m n k= 1 mn
-00

This is known as Favard's Theorem (Szego [25]). In gener 1,
there are several measures for which (2.4) holds true. How-
ever, in view of the Weiers~rass approximation theorem, con-
ditions securing compact support are sufficient for unique-
ness. Such is the case if for some constant M > 0

n >-- o. (2.5)

Then, the support of ~, also called the spectrum of (Pn(x)},
can be shown to be contained in [-M,M] (Chihara [10]).

*The system (Pn(x)} of polynomials satisfying (2.1)
and the initial conditions

*P 1 (x) (2.6)

is called the system of polynomials of the second kind. It
is useful in computing the measure ~. For example, under
conditions (2.5), it can be shown (Chihara [10J) that
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* 1-00

X (z ) : =' lim Pn (z) f dll(t) z .t [-M,MJ, (2. 7)
Pn (z) z-tn+oo -00

i. e. ,
X (z) -211i0(z) , (2.8)

where +00
G (z )

1 J~ (2.9)2ni t-z

is the Cau c h u s S't i e lj estransform of the measure u , The Stiel-

Jes inversion formula (Lang [15J) then applies to give
+00 +00

f ¢dlJ lim 2~i f {X(x-iC:)-X(x+iE)}¢(x)dxE+O+
(2.10)

-00 -00
for any continuous function ¢ on JR, so that !I can be reco rv -
ered from X(z).

The function X(z), called the continued fraction, can
be frecuently determined by means of Darboux's asymptotic

method. This is based on the following theorem (Olver [18]),
a consecuence of the Riemann-Lebesgue Lemma:

00 n
THEOREM2.1. Le-t fez) = La z be anaiyLtcin [z ] < r

n='o n
w.Uh 6ini-teiy many ~ingu.ea-t.i-tie~ on I z ] = r , AMwne atM -that:
the~e. i~ a compa~i~on 6unc-tion g(z) = r b zn 6uch -tha-t

n=o n
g(z) i.'~ anaLyLic in izl < r alld f Iz ) - g(z) i,~ continuou.~ on

I z: 1 ~ r . TIt ell

a n
-nbn + ot r )

Under appropriate assumptions, such as for example that
i6 i 8h(8) = f(re )-g(re ) be COO for 0 ~ 8 ~ 2n, Theorem 2.1 al-

lows to conclude that

n + 00

e , if

1). The appropriate conditions being grant-



p(Z,t)
'/<

P (Z,t)
00

'I '/< n
L p (z)t ,n=o n

z ¢ [-M,M]

(2. 13)

are generating functions for the systems {p '(x)} and
'/< n

p (x ) , and ifn

p(z,t) = - '/<
P (z,t)

00

I p'/«z)tn
n=o

(2.14)

are respective comparison functions, then

(2. 15)

and x(z) can be obtained as

x (z)
-'/<
Pn (z)

lim ---
n-+oo Pn (z)

(2. 16)

Usually ~(z,t) and ~'/«z,t) can be so chosen that the limit
in (2.16) is more easily determined than that in (2.7),

The success of Darboux's method depends on the choice
of the comparison functions (2.14). A more direct aproach
that is sometimes applicable is provided by the following
theorem of Nevai [17] ,~18]:

THEOREM 2.2. 16 :the. .6e.'t i e..6

00

{ I Bn I I(-~)~I + - 1-1 }n=o An AnAn+1

i.6 conve.ftgen:t 60ft .60me. y > 0, then

(2.17)

dll '" q,dx + d1jJ, (2, 18)

whe.fte ¢ vani.6he..6 out.6ide [-y,y] and i.6 p06itive and CO/'lt~n-
UOU.6 in (-y,y), and 1jJi6 a jump 6unction which i.6 con6tQnt
~/'l (-y,y) and it.6 jump.6 out.6ide. thi.6 ~nte/tval Q/te locate.d
at the. poin,t.6 x E: lR s u eh: tha,t

.jO(j



< +00 , (2. 19)

Fu.theltmolte
2/27 p ( )lim supf~(x)/yL-x~ -f---}

n+oo n
2/T1 (2.20)

hot d s 6 a It a till O.6.t a tt x .(n [- y , yJ .

§3. The q-Pollaczek polynomials_ Now we turn back our at-
tention to the polynomials defined by (1.7) and the initial
conditions (1.8). We shall require the parameter- 6,u, ,q
to s at i sf y

O<u<ll<l,O< < 1, ll(l-v).> ±v. (3. 1)

The Lollowing notations wi I be used

{

1, n = 0,

n k- 11T ( 1 - aq ),
k=l

(3.2)

l~n<oo,

lim(a;q)n
n+oo

•

(3.3)

Let

A = 2 (1-ullqn)
n 1 n+ 1-q

B = 2vqn
n 1 n+ 1 '-q

1_1I2qn- 1
C = n- 1 'n l-q

n. ~ O· (3.4)

Then, (Fn(x)} satisfies the recurrence relation (2.1) and
the initial conditions (2.2). Also

Cn+ 1. A
n n+1

(3. S)

and the positivy condition (2.3) holds. A s'mple calculation
shows that



Ao nn
A ck

n k=l
(l···ui1) ~~

( 1- uaqn) (q; q) n
n ~ O. (3.6)

Hence

n -+- 00 (3. 7)

Straightfonv'ard calculations also show that

(3.8)

Notice that Bn/An = 0 if v O. If v r 0, we still have

n·+oo~ (3.9)

From (3.5) it follows that
1

C fA A 1 ,\, -4' n .....00n n n+ (3.10)

which suggest Y = in (2.17). Then

n
'V s.; [i1(uq-i1) + utl-q] , (3. 11)

.Since i1uq + tlu< q + /:,2 follows
ensure that, with A , B , Cn n n
(2.17) is convergent if y = 1.

•from (3.1), (3.9) and (3.11)
given by (3.4), the series in

In order to determine the functions ep and ijJ in (2.18),
knowledge is needed of the asymptotic behaviour of Fn(x) as
n .....00. This can be obtained from the generating function

00

F(x;t) = I Fn(x)tn
n=o

(3.12)

via Darboux's method. To compute (3.12) we need to introdu-
ce some special functions (Charris and Ismail [9J). Let
J08



If+Z be the branch of the square root of l+z which is ana-

lytic on ([-(-00,-1) and positive on (-1,+'»). Also, let ~

be analytic in ([-(-00,1] and positive on (l,+oo).Itiseasily

verified that

(3. 13)

is analytic in c- [-1,1]. Futhermore

z > 1

-1 < z ~ (3.14)

z < -1.

Then

a(z) = z +~, 8(z) = z-~ (3.15)

arc the roots of t2-2zt+1 = 0 which are analytic in [-[-1,1]

and satisfy la(z) I = 18(z) I if and only if -1 ~ z ~ 1 and

i 6(z) I < lo(z) I if Z E: c- [-1,1]. Also notice that 6(x) is
decreasing in (-00,-1] and [1,+00). Observe that

a(z) + 6(z) 2z, a(z)6(z) 1. (3.16)

If

Uz) 1 v·
~S(uz - ~). (3.17)

Then
2( v~ (z) + I::(z) = "E uz - "E)' ~ (z) I::(z) (3.18)

Hence, ~(z), I::(z) are analytic selections of the roots of

o. (3.19)

Note that I~(z) I ~ !I::(z) I and observe that the conditions

on the parameters guaranty thot

- 1 < ux - ~ < 1 1· f 1 / X / 1!J. ' - '>" '> • (3.20)

(*) Observe the difference between the notat ions V an.i r .



Hence E;:(x) and I',;(x) are non-real and Ux) = sex) for ··1 < x

< 1. This also makes it impossible to have

k=0,1,2, ... , -l<x<l,

as then, from

/ v 21 - (ux - T:)

Furthermore

(3.16) and (3.17), we could derive .6qkx=ux-K,

.6qk/i7, so that 1 = .62q2k a contradiction.

LEMMA 3.1. 16 x E ffi and Ixl > 1 then

ks t Bq , k=0,1,2, ...

Proof. Assume sex) = B(x)qk. Since B(x)qk is real also

I',;(x) is real and therefore Jux-v/.61 ~ 1. If x > 1, it fol-

lows from (3.1) that .6(l-u)x > -v , so that x > ux-v/.6. Since

also ux-v/6 ~ 1 and S is decreasing in [1,+00) then

.6-1S(ux-v/.6) > Sex) > 0, and therefore Ir,:(x) [ > Is(x) I. It

is shown in the same manner that if x < -1 then x < ux-v/.6
- 1~ -1, and therefore.6 S(ux-v/.6) < sex) < O. Hence, also

II',;(x) I > I S (x) I, and the assertion follows. !

COROLLARY. 16 x e: R and I x I > then

kE;: t Sq , k=0,1,2, ...

Proof. In fact, 1E;:(x) I ~ JI',;(x)! > [S(x)l. !

To determine F(x,t) multiply both sides of (1.7) by

tn+1, n= 1,2, ... , and add, to obtain

Hence

. - (1-tl°t1-t/l',;) .F (x ; t) - ( 1 _Va.) 1 _ t 7 B) F (x ; q t) . (3.21 )

nTaking into account that F(x;q r) + Fo(x)

iteration of (3.21) readily gives

1 as n + 00
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F(x;t) (t/~;q)oo(t/s;q)oo
(t/o.;q)oo(t/S;q)oo (3.22)

If x 1= [- 1,1] then IS (x) I < Ia (x) I, and therefore

k = 1,2, ...

Hence F(x;t) is analytic for It I < IB(x)l. A comparison
functions is

F (x; t ) Ilim(l-t/S)F(x;t) I (1-t/6)-1
t+S

(S/Cq)oo(S/s;q~oo (l-tlS) -1.(S7o.;q)00(q;q 00

(3.23)

Darboux's method readily gives

na . (3.24)

From (3.7) it follows that

2 2
__ ----"-(.:::....6 1:....;~p;c...::.Iq.L.)=00..>..:(6::..:.1..2~~; ..::>..q L..;) 00,;---- 2 na
( 1 - u6) (62 ; q ) 00( S 1('( ; q ) 2 ( q ; q )

(3.25)

and Lemma 3.1 and its corollary ensure that the coefficient

of o.2n on the rigth hand side term never vanishes. Since

10.1 > 1 then

L F~(x) +00 X e::R-[-l,lJ
n=o An

and the function 1jJ has no jumps on R- [ - 1 ,1] .

(3.26)

Now let -1 < x < 1. Then Io.(x) I = Is(x) I and both

and S are algebraic branch singularities of F(x;t). Recall

that in such case arxT = Sex) and, since ux-v/6 e;:(-1,l),

also TIXT = s(x). Darboux's method gives

7 • ,
..;1_



Hence E;(x) and ?:(x) are non-real and t;(x) = dx) for ·-1< x
< 1. This also makes it impossible to have

kI;(x) = q sex), k=0,1,2, ... , -1<x<1,

as then, from
/

"Ii 21 - (ux - 7S:)
Furthermore

(3.16) and (3.17), we could derive ~qkx = ux-~,

t.qk,li7, so that 1 = t.2q2k a contradiction.

LEMMA 3.1. 16 x E ffi and Ixl > 1 then

kr;; -f Bq , k~0,1,2, ...

k kProof. Assume l;(x) = S(x)q . Since S(x)q is real also
r;;(x) is real and therefore lux-v/t.1 ~ 1. If x > 1, it fol-
lows from (3.1) that t.(1-u)x > -v, so that x > ux-v/6. Since
also ux-v/6 ~ 1 and S is decreasing in [1,+00) then
6-1S(ux-v/6) > Sex) > 0, and therefore Iz;(x)[ > [s(x)l. It

is shown in the same manner that if x < -1 then x < ux-v/6
- 1~ -1, and therefore 6 S(ux-v/6) < Sex) < O. Hence, also

I I; (x) I > I e (x) I, and the assertion follows. A

COROLLARY. 16 x e:: R and I x I >

kt; F Bq ,

then

k=0,1,2, ...

Proof. In fact, I E;(x)I ~ I r;; (x) I > I S (x) I. A

To determine F(x,t) multiply both sides of (1.7) by
n+1t , n = 1,2, ... , and add, to obtain

Hence
F(x; t) ~t/O(l-t/r;;) )

( 1 - t/a)( 1 - t 7 S) F (x; qt. (3.21)

Taking into account that F(x;qnr) + F (x)a
iteration of (3.21) readily gives

1 as n + 00
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F(x;t) (3.22)

If x 1= [- 1, 1J then Ie (x) I < Ia (x) I, and therefore

k = 1, Z , .••

Hence F(x;t) is analytic for It I < IS(x)l. A comparison
functions is

F(x;t) Ilim(l-t/S)F(x;t) I (l-t/S)-l
t ....S

(6/';;q)00(6/1;;q)00 (l-t/S) -1.
CS/a;q)oo(q;q)oo

(3.23)

Darboux's method readily gives

nex • (3.24)

From (3.7) it follows that

F~ (x)__ 'V

An
(3.25)

and Lemma 3.1 and its corollary ensure that the coefficient

of aZn on the r i g t h hand side term never vanishes. Since

10.1 > 1 then

00

F~ (x)L +00 x E:R-[-l,lJ (3.26)
n=o An

and the function !J! has no jumps onlR-[-l,lJ.

Now let -1 < x < 1. Then [o f x) I = IS(x) I and both

and B are algebraic branch singularities of F(x;t). Recall

that in such case arxr = Sex) and, since ux-v/!1 E: (-1,1),

also TIXT = 1;(x). Darboux' s method gives

,31 '



Notice that both the coeficients of an and Sn are non-van-
ishg. If we write

(S/s;q)oo(s/l;;q)oo
(S!a;q)oo(q;q)oo A(x)eiHx) (3.28)

where A(x) is the absolute value of left hand side and ¢(x)
is the argument, then

F (x) ~ Aei¢ lain einS + conjugate,
n

where Sex) arga(x). Since la/ = 1 it follows that

(3.29)

Hence

and, since lim sup co s t na e e ) = 1, (2.20) gives
Fl-e-oo

(3.30)

for x E (-1,1). This determines the absolutely continuous
part of the measure.

As for ~, we already know from Nevai's theorem that
it is constant in (-00,1), (-1,1) and (1,+00). The jumps, if
any, are then located in {-1,1}. However,

00
(3.31)~n=o

In fact, from (3.22) with x
S(±l) = ±1, it follows that

±1, and noticing that a(±l)

F(±l,t) (t/s;q)oo(t/r;;q)oo
(±t;4)~

(3.32)
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A comparison function is

F(±l,t) = (l/s;q)oo(l/~;q)oo __ 1__ ~
(±q;q)oo (lit)2 '

(3.33)

and Darboux's method gives

(3.34)

kSince-l < u-v t t: < 1, S and ~ are non-real, so that s.~i q ,
k=O,1,2, ... Hence

2 2
(1/s;q)00(1/c;;q)00(q;q)OO(n+l)2 = C(n+1)2

( 1 - uz ) (± q ; q ) ~ ( I':,
2 ; q ) 00

(3.35)

where C., O. This proves (3.31). Thus 1J! is constant onJR and
d;jJ = O.

Summing up:

THEOREM 3.1. The p-Pottaczek poty»om~al~ a~e, when

o < u < I':, < 1, I':, ( 1 - u) > ± v, 0 < q < l , a. ~ tj ~ t em 0 6 0 !t-th 0 -

90nal potynom-<.at~ w~th !te~peQt t:o the a.b~otLlte.tlj QOlt-ti.nuOLl~

mea~Ll~e

2 . Z
duf x) = X (x) (1-u/':,)(1':, ;q)oo(q;q)oo I (~/a;q)oo. I dx, (3.36)

(-1,1) n/l-xZ (S!Cq)oo(S!Cl_j)oo

whe~e x( -1,1) ~~ rh e. ehaltaQ-te.,~.i.~-t~Q 6LlnQt~on a 6 rhe .i.n-te~l.!a.t

(-1.1).
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