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ON THE ORTHOGONALITY MEASURE
OF THE
d-POLLACZEK POLYNOMIALS

by

Jairo A. CHARRIS and LUIS A.goMez(")

Abstract. The q-Pollaczek polynomials F (x) depend on
four parameters u,v,8,q and are given by the recurrence re-
lation (1—qn+1)Fn+l(x) = 2[(1—qun)x+vqn}F; (x)-
(1-82q"1)F 1 (x), n > 1, and the initial conditions F,(x)=l
Fp(x) =2£(l—uA)x+v]/l—q. The measure with respect to which
the Fn(x)'s are orthogonal is determined when the parameters
are subject to the constraints O0<u<A<1i, A(l-u) >*v, 0<gq
< 1. This measure turns out to be absolutelv continuous with

respect to Lebesgue's measure.

O

§1. Introduction. The q-Rogers p:

lynomials (Rogers [23],

_
7

[24]), also called continuous q-ultraspherical polynomials,
are given by the recurrence relation

n+l

ZX(l-Bqn)Cn(x;BIq) = {1=q (x;81q) (1.1

+ (1-8

)Cn*1
2 n-1
p- )C  ;(x58la), n>0

(1) This paper contains developments of partial results of L.A. Gomez's
M.S. dissertation at the National University of Colombia. The thesis
advisor was J.A. Charris.
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measure, generating, functions, continued fractions.



and the 1initial conditions
L ]
(Co(x;8lq) = 1, Ci(x;8la) = 2x(1-8) [(1-q). (1.2)

They depend on the two parameters R, q, and for appropriate
values of the parameters they form a system oflorthogonal
polynomials. The q-Rogers polynomials were used by Rogers
in the proof of the celebrated Rogers-Ramanujan identities
of the theory of partitions; details can be found in [Z],
[3].

The gq-Rogers polynomials generalize the ultraspherical

polinomials in the sense that

lim C (x3q lq) = C (%) (1.3)
q+1-

where Cg(x) is the nth—ultraspherical polynomial of order A
(Rainville [19], Szego [25]).
Al-Salam, Allaway and Askey [1] set

k 1
q = sw, B* shK, W = exp[ég—), (1.4)
Cn(x;B]q) = B__ﬂln C (x glq) (1.5)
(B“’Q)n
and
cé(x;k) = lim ¢ (x;8]q9)- (1.6)
s+1

They noticed that {cn(x;k)/n > 0} is a set of orthogonal pol
ynomials and refered tothem as sieved wultraspherical polyno-
mials. As it turns out, the sieving process of Al-Salam and
Askey has a wide scope. Many systems of orthogonal polyno-
mials have been discovered this way. Recent work of Ismail
(12], [13], [14], Charris and Ismail [8], [9], Askey and
Shukla [6] are a sample of the activity in the field of
sieved orthogonal polynomials. Further research of Geronimo
and Van Assche [11] has greatly contributed to shed ligth

on the underlying mathematical structure.
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Only recently the orthogonality measure of the q-Ro-
gers polynomials has been determined by Askey and Wilson
[7] and Askey and Ismail [4],

Systems of polynomials related to the q-Rogers polyno-
mials have been introduced by Ismail [12] and Charris and
Ismail [9]. Their purpose was to obtain sieved analogues of
the Pollaczek polynomials. The ¢-Pcllaczeh polynomiatls of
Charris and Ismail depend on four parameters u,v,A,q. Denot-
ed with Fn(x;u,v,A;q), or Fn(x) for short, they satisfy the

recurrence relation

NFELs e , T n gy 2 n-1,. -
(-9 E ,,(x) = (-wag ) x+ g an(x) (1-8°q" )F (%) (1.7
and the initial conditions
e ~ Loy 21 -ua)yx+v]
}O\x) =1, Pl\x) —-WF:F«~MW . (1.8)

The polynomials lq(x) generalize the Pollaczek polynomials
1n the sense that
B

p;(x;a,b) = 1lim Fn(x;qa,l~qb,q 2 q) (1.9)
q>1-0

th

1s the n°" Pollaczek polynomial (Pollaczek [20], Szegd [25]).
5~

The purpose of this paper is to determine the orthog
nality measure of the g-Pollaczek polynomials under appro-
priate restrictions on the parameters. These constraints are
different from those suggested in [9] and allow very neatly
for the use of a theorem of Nevai [16], [17]. Even under
thece conditions we have not been able to determine the mea-
sure solely on the basis of Markoff's theorem and the Stiel-
jes inversion formula, two powerful tools which have proved
succesful in many other instances. A deeper knowledge than ours
of the Heine- Ramanujan g-functions and their transformations
seems neccesary for this purpose. This we see as a proof of

the depth and power of Nevai's result.



§2. Orthogonal polynomials. If a sequence of polynomials
{pn(x)} satisfies a three terms recurrence relation

Pneq(X) = (A x+B )p (x)-C p, 4(x), n >0, (z.m
and the initial conditions
Po(x) =1, p(x) = Ax+B, , (2.2)

then, provided that

Cn/AnAn-l > 0, n >0, (2.3)

{pn(x)} is a system of orthogonal polynomials with respect

to a positive measure p such that

+ o n
= AO ] - 4
ENCINOIHOREE Ry, (2.4)
This is known as Favard's Theorem ( Szegd [25]). In general,
there are several measures for which (2.4) holds true. How-
ever, in view of the Weierstrass approximation theorem, con-
ditions securing compact support are sufficient for unique-

ness. Such is the case if for some constant M > 0

M/3 / M/3 . 2y
‘/Cn+l7xnxn+1 < M/3, IBn,AnI < M/3, n >0 (2, 5)

Then, the support of u, also called the spectrum of {pn(x)L
can be shown to be contained in {»M,M] (Chihara [10]).
The system {p:(x)} of polynomials satisfying (2.1)

and the initial conditions
* 0 B A 2.6
Po(x) = 0, pj(x) = A, (2.6)
is called the system of polynomials of the second kind. It
is useful in computing the measure u. For example, under

conditions (2.5), it can be shown (Chihara [10]) that
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* + @
X(z):= lim ‘l&(_f.)_ = J dult) = ;@ [-M,M], 2.7)

ey By 2 o z-t
i.e.,
x(2) = -2wifi(z), (2.8)
where +o0
i) = ooy | 2D (2.9)

is the Cauchy-Stieljes transform of the measure n. The Stiel-

Jjes inversion formula (Lang [15]) then applies to give

+00

f ¢pdy = lim =——- J {x(x-1¢e)-x(x+ie) }¢ (x)dx (2.10)

-

for any continuous function ¢ on R, so that 1 can be recorv-
ered from x(z).

The function x(z), called the continued rfraction, can
be frecuently determined by means of Darboux's asymptotic
method. This 1s based on the following theorem (Olver [18]),

a consecuence of the Riemann-Lebesgue Lemma:

THEOREM 2.1. Let f(z) = nZoan:n be analytee <n |z| < T
with §initely many singulatities on |z| =1. Assume alsc that
there (8 a comparison gfunction g(z) = f bnzn such that
g(z) 8 analytic in |z! < r and f(z) -né%:) (8 continuous on

[z] € r. Then

- -n 2
a, = bn +o(r ) (2.11)

Under appropriate assumptions, such as for example that
h(g) = f(re19)~g(rele) be C* for 0 < 8 < 27, Theorem 2.1 al-

lows to conclude that

(ive., lim an/bn = 1). The appropriate conditions being grant-
Nn->oo
AR 16



p(z,t) = ] p (2)t", p (z,t) = ] pr(2)t", ze&[MM]
n=o n=o

(2.13)
are generating functions for the systems {pﬁ(x)} and
p:(x) , and if
- v - no ook < =% n
p(z,t) = ] p (2)t7, p (z,t) = ] p (2)t (2.14)
n=o0 n=o
are respective comparison functions, then
7 = - *' - % e
p,(2) ~ p,(2z), p,(z) vp,(2), N> (2.15)
and x(z) can be obtained as
— %
z
X(z) = 1lim gﬂL—l . (2.10)
n+ p.(z)

Usually p(z,t) and p*(z,t) can be so chosen that the limit
in (2.16) is more easily determined than that 1in (2.7).

The success of Darboux's method depends on the choice
of the comparison functions (2.14). A more direct aproach
that is sometimes applicable is provided by the following
theorem of Nevai [17],4f18]:

THEOREM 2.2. 14 the sendes

B[ + [ - ¥} (2.17)
nZO {IAn[ lLAnAn+]} 7
L8 conveagent for some Y > 0, then
du = ¢dx + dy , (2.18)

whene ¢ vandshes outsdde ['Y.Y] and 45 positive and contin-
wous <n (-v,Y), and ¥ &5 a fump function which <8 constant
in (-v,y) and its fumps outside this (nterval are Located

at the points xe R such that



SRR )
AN

40 A=A /A C,... C_. (2.19)
e Xn n (o A c [ | n
Futheamone 2
— (x)
1im sup{¢(x)/&2 x? Rﬂ——'—-} = 2/m 2.20)

An

>

hotds forn atmost all x in [-v,Y].

§3. The gq-Pollaczek polynomials. Now we turn back our at-
tention to the polvnomials defined by (1.7) and the initial
conditions (1.8). We shall require the parameters A,u,v,q

to satisfy
0 <cu<Ac<1, 0<q<1, A(1-v) > #v. (3.1)

The following notations will be used

1 n =0,
(a5q) = ) (3.2)
TT(l-qu ]), lsn<eo,
k=1
(a;q), = lim(a;q) = 'ﬁ'(l-aqk). (3.3)
) neo k=0
Let
_ n I 1| S AZ2sn =1
A =2l1-U8g7) 5 2VE . ¢ LR inin B [394)
n 1_qn+1 n 1_qn+1 n ]_qn+1

Then, {Fn(x)} satisfies the recurrence relation (2.1) and

the 1nitial conditions (2.2). Also

Cne1 _ 1 (1-a%qM0-q™h

e P o(1-uaq™(1-u qn+])

> 0, (3.5)

and the positivy condition (2.3) holds. A simple calculation

shows that



n 2
Ao _ (1-ur) (A“;q)n
TT = : o N30, (3.6)
*n K; k=1 K (1-uaq™) (a:d)y
Hence
A2, ,
An v (1-ua) q;&) n +» o . (3.7)

Straightforward calculations also show that

n
= W & (3.8)
n 1-uAq

Notice that Bn/An =0 if v = 0. If v # 0, we still have

B, /A, v vq" , n o> ow- (3.9)

From (3.5) it follows that

1 :
C/AA 1 vF» D> e, (3.10)

which suggest Yy = 1 in (2.17). Then

2 1
Cntl g 1 _ q"[8% (@™ '-1) + uaq(1-uag™) + uA-q]

Rdm? 2 J-uaq™ (1-uag™ ) [/01-8%™) (1-g™ D +/(1-uaq™) (1-usq
N %; [A(uq-8) + ua-q], n > o . (3.11)

5 .
-Since Auq +Au<q + A~ follows from (3.1), (3.9) and (3.11)
ensure that, with An’ Bn’ Cn given by (3.4), the series in
(2.17) is convergent if v = 1.

In order to determine the functions ¢ and ¢ in (2.18),

knowledge is needed of the asymptotic behaviour of Fn(x) as

n » <. This can be obtained from the generating function

F(x;t) = [ F ()th (3.12)
n=o

via Darboux's method. To compute (3.12) we need to introdu-

ce some special functions (Charris and Ismail [9]). Let
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/T+z be the branch of the square root of 1+z which is ana-
lytic on C-(-=,-1) and positive on (-1,+=). Also, let Vz-1
be analytic in C-(-,1] and positive on (1,+=).It iseasily
verified that

*

NZZ - 1= /23T /Z5T {3.13)

is analytic in €-[-1,1]. Futhermore

Vz2-1 5 z > 1

A2 =% 1/1-22, M<zgt, (3.14)
- zz—l, z < -1
Then
a(z) = z +V22-1, B8(z) = z -Vz?-1 (3.15)
are the roots of t°-2zt+1 = 0 which are analytic in C-[-1,1]

and satisfy |a(z)]| |B(z)| if and only if -1 ¢ z < 1 and
[8(z)| < |a(z)| if z & €-[-1,1]. Also notice that B(x) is
decreasing in (-=,-1] and [1,+e). Observe that

a(z) +B8(z) = 2z, a(z)B(z) = 1. (3.16)
If
£(2) = gauz - ), 2(2) = p8uz - 5. (3.17)
Then
E(z) +2(z) = 2(uz - Yy, £(2)z(2) = —. (3.18)
A A A2

Hence, £(z), z(z) are analytic selections of the roots of

a2¢? - 2(uaz -v)t+1 = 0. (3.19)

Note that |£(z)| > |z(z)] and observe that the conditions

on the parameters guaranty that

-|<ux-3A’-<1, if -1 ¢ x g 1. (3.20)

\ St A o
(*) Observe the difference between the notationsN and v



Hence £(x) and ¢{x) are non-real and £(x) = r(x) for -1 <x
< 1. This also makes it impossible to have

C(X)=qk8(x), k=0,1,2,..., -1 < x <1,

as then, from (3.16) and (3.17), we could derive Aqu =|D(-%,

T, T A 6 AL
/1- (ux -KJ = Aqk/1-x-, so that 1 = A7 7k a contradiction.
Furthermore

LEMMA 3.1. 1§ x R and |x| > 1 then

¢ # 8qK, k=0,1,2,...

Proof. Assume Z(x) = B(x)qk. Since B(x)qk 1s real also
t(x) is real and therefore |ux-v/A| > 1. If x > 1, it fol-
lows from (3.1) that A(1-u)x > -v, so that x > ux-v/A. Since
also ux-v/A > 1 and B is decreasing 1in [1,+w) then
A"1B(ux~v/A) > 8(x) > 0, and therefore |z(x)| > [B(x)]|. It
is shown in the same manner that if x < -1 then x < ux-v/A
< -1, and therefore A'1B(ux-v/A) < B(x) < 0. Hence, also
lz(x)] > |B8(x)|, and the assertion follows. A

COROLLARY. 1§ X «R and [x| > 1 then

£ #-Bg5 0k = 051,20
Proof. In fact, [€(x)] > |z(x)] > [B8(x)].

To determine F(x,t) multiply both sides of (1.7) by

tn+1, n=1,2,..., and add, to obtain

(t2-2xt+1)F(x;t) = [8°t?-2(ubx-v)+1]F(x;qt).
Hence

F(x:t) = (}1"{8838 F(x;qt). (3.21)
Taking into account that F(x;an) -+ Fo(x) = 1 as n + =,

iteration of (3.21) readily gives
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: . (t/8;9)w(t/239)w ;
Flaged » (t7/03;9)(t/B3q)w (3.22)

If x ¢ [-1,1] then |B(x)] < |a(x)]|, and therefore

-k
l

[B] < |8q , kimi1,2;.

Hence F(x;t) is analytic for |[t| < |B(x)]|. A comparison
functions is

-1

F(x;t) = |1im(1-t/B)F(x;t) | (1-t/RB)
t+B (3.23)
- (B/859)0(B/259)e (1. -1
(B/030)%(4959) LI=RIE] "

Darboux's method readily gives

(B/&;9)w(B/T; Do
Fal) v g7t alaial s : (3.24)

From (3.7) it follows that

F%(x) N (B/E;q)i(S/C;Q)é o én (3.25)
e (1-ua) (8%;4) w(B/a3q) * (q39)

and Lemma 3.1 and its corollary ensure that the coefficient

5
of a

la] > 1 then

on the rigth hand side term never vanishes. Since

2
Fn(¥) = 4o, x eR-[-1,1] (3.26)
o0 Ap

e~ 8

n

and the function ¢ has no jumps on R-[-1,1].

Now let -1 < x < 1. Then |a(x)] = |g(x)| and both
and 8 are algebraic branch singularities of F(x;t). Recall
that in such case a(x) = B(x) and, since ux-v/A  (-1,1),

also £(x) = r(x). Darboux's method gives

LB/E;q)m(B/:;q)wan , (a/830)0(a/25q) e
(B7239)»(q:9) w (/850 = (d; q)m

ln(x) N



Hence £(x) and z{x) are non-real and §(x) = z(x) for -1<x
< 1. This also makes it impossible to have

£(x) = q¥B(x), k=0,1,2,..., -1<x<1,

as then, from (3.16) and (3.17), we could derive Aqu= w(-%,
o~y /—‘2' Lk
Y (ux-—K) = Aqk so that 1 = AZqZR, a contradiction.

Furthermore

LEMMA 3.1. I§ x « R and |x| > 1 then

¢ # 8qX, k

=0,1,2,.
Proof. Assume Z(x) = S(X)qk. Since 8(x)qk 1s real also

t(x) is real and therefore |ux-v/A| > 1. If x > 1, it fol-
lows from (3.1) that A(1-u)x > -v, so that x > ux-v/A. Since
also ux-v/A > 1 and B is decreasing 1in [1,+w) then

1B(UX—V/A) > B(x) > 0, and therefore |z(x)| > |B(x)]. It
is shown in the same manner that if x < -1 then x < ux-v/A
< -1, and therefore A-1B(ux-v/A) < B(x) < 0. Hence, also
lz(x)| > |8(x)]|, and the assertion follows. A

COROLLARY. 1§ x =R and |x| > 1 then

£ #8q%, k=0,1,2,...
Proof. In fact, |&(x)] > |zg(x)| > |8(x)].

To determine F(x,t) multiply both sides of (1.7) by
tn*l, n=1,2,..., and add, to obtain

(t2-2xt+1)E(x;t) = [8%t%-2(usx-v)+1]F(x;qt).
Hence

F(x;t) = (};fégggljﬁjgg F(x;qt). (3.21)
Taking into account that F(x;an) > Fo(x) =1 as n » =,

iteration of (3.21) readily gives
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y . (t/8;9)0(t/2;9)
F(Gt) = (t7ara)o(t/esa)e (3.22)

If x ¢ [-1,1] then |B(x)| < |a(x)|, and therefore
vk | TR TR B £

8] < |Bq < |aq

Hence F(x;t) is analytic for |[t| < |8(x)|. A comparison
functions is

F(x;t) = |1im(1-t/8)F(x;t) | (1-t/8) "
t+B (3.23)
- (B/8;9)0(B/2;9)w ) -1
CrrRiiaige oo
Darboux's method readily gives
(B/8:9)w(B/2;q)w N
A VO R CHC) P (8
From (3.7) it follows that
F%(x) N (B/E;q)i(ﬁ/i;q)i o én (3.25)

‘n (1-us) (8%;0) 0 (8/a59) *(q3Q)

and Lemma 3.1 and its corollary ensure that the coeffic¢ient

2n

of a on the rigth hand side term never vanishes. Since

la] > 1 then

FE(X) - 4w
0 Ap

, x <R-[-1,1] (3.26)

e~ 8

n

and the function ¢ has no jumps on R-[-1,1].

Now let -1 < x < 1. Then |a(x)]| = |8(x)| and both
and B are algebraic branch singularities of F(x;t). Recall
that in such case a(x) = B(x) and, since ux-v/A e« (-1,1),
also E(x) = ¢(x). Darboux's method gives

(B/8;)w(B/259) 0 N (a/€;9)u(a/T;59) epn
MG N C T8 =4 9) w B

F (x) ~

n



(B/E3Q)(B/23Q) e .
(B72;q)e(q; q)m + conjugate.

Notice that both the coeficients of o™ and Bn are non-van-

ishg. If we write

(B/8;9)w(B/0;q) o _ i¢(x)
(B @)wlaia)e - AVE s 280

where A(x) is the absolute value of left hand side and ¢(x)

is the argument, then

F(x) & Ae'?® Mk L conjugate,
where 8(x) = arga(x). Since |a] = 1 it follows that

Fn(x) n 2A cos(nd +4). (3.29)

Hence

ST RO a/1oxE (s/a;q)w(e/c;q)mlz (69 cos2(no+o)

)\n 1-ulA (S/a,q)m(q’q)m (A ;q)oo
and, since lim sup cos(nf+¢) = 1, (2.20) gives
N>
(1-u8) (82;9)e |(93Q)=(B/0; e ‘2
‘( 1D w(B/2;0) e £3:300

¢(x) =
21/1-x2(959) w

for x « (-1,1). This determines the absolutely continuous

part of the measure.
As for y, we already know from Nevai's theorem that

it is constant in (-»,1), (-1,1) and (1,+«). The jumps, if

any, are then located in {-1,1}. However,

] Bt - vw, (3.31)
In fact, from (3.22) with x = #1, and noticing that a(+x1) =
8(+1) = +1, it follows that

(t/8;9)w (t/c Qe (3.32)
(£t; q)m

F(+1,t)



A comparison function is

Ec+ - (1/8;9)0(1/859)e 1
F(t1,t) = (3a39) . Fugee I (3.33)

and Darboux's method gives

+ (1/8:9)e(1/25q) e, 1y Ny s
F (1) GT ). (£1) " (n+1). (3.34)

Since -1 < u-v/A < 1, £ and ¢ are non-real, so that £,z #qk,
k=0,1,2,... Hence

Fa(+1)
no -, (/8 ‘U“(”"’q) {95Q)e (4 1)2 = c(n+1)? (3.35)
*n (1-ud) (+q;0)&(8%5q) e

where C # 0. This proves (3.31). Thus ¥y is constant on R and
dv = 0.
Summing up:

THEOREM 3.1. The p-Pollaczek polynomials anre, when
0 <u< A< 1, AC(T-u) > v, 0 < q < 1, a system of ortho-
gonal polynomials with respect to the absolutely continuous

measure
2
" (1-un) (2 (4759)=(q:9)= (B/2;q)w " dx.  (3.36
.okt SARLES D Ll e e .G/60. X (-39
whene X(-1 1 (5 the characiten(stic function of the Linterval

-1,1).
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