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INTRINSIC STOCHASTIC PROCESSES

by

Sergio FAJARDO

In this paper we continue the study of stochastic proc-
esses which live on adapted probability spaces. We do it from
the point of view introduced by Hoover and Keisler in their
paper "Adapte.d PJtobabil-<:ty Vi).dJtibution-t," ([Hok]). We intro-
duce a new way of relating two stochastic processes which
are defined on the same adapted space. The new concept is that
of a process Y being intrinsic with respect to a process X
(see section III for details). Informall~ this means that
the process Y is "definable" from X by mean of the adapted
functions of Hoover and Keisler. This new notion is related
to that of intrinsic stochastic process, due to Hoover and
Keisler, but which has never been published before. In sec-
tion TIl we present all these new concepts and develop their
basic pruperties. As a main application of our study of in-
trinsic processes we can within this framework, analyze the
operation of stopping a stochastic process by mean of a stop-
ping (random) time. As it is well known (see [D~l1] and [D/vt2J)
this operation is fundamental in the general theory of sto-
chastic processes. We single out the class of intrinsic stop-
ping times and prove among other things that for these stop-
ping times the operation is preserved for processes with the



same distribution (see Theorem 111.10).
The contents of this paper are detailed as follows.

Section I is a brief introduction to adapted distributions.
The reader can find there the basic definitions and some of
the most important theorems. This section makes the paper
basically self-contained but nevertheless [HoK] is strong-
gly recommended. In section II we present some of the ideas
that have motivated the study carried out in this paper.
Section III contains the new reSUlts, develops some of the
questions posed in section II and finishes with examples,
comments and suggestions for further applications of the
concepts and results presented in this paper.

§l. Introduction. In the General Theory of Processes, sto-
chastic processes "live" on the so called adapted probabil-
ity spaces. These are structures that, intuitively, allow
us to model the evolution on time of a random phenomenen and
its relationship with the information, which increases with
time, about the world where the process takes place. Formal-
ly this is done as follows.

DEFINITION 1.1. (a) An Adapted P!tobab.i..LUIJ Spac.e. is a

structure of the form ~ = (A,(Ft) ,P), t ~ [0,1] where
(A,F1'P) a probability space and (Ft), t E: [0,1], is an in-
creasing family of a-algebras, called a Fiit!tation, satis-
fying the following (usual) conditions:

(i) Right continuity: For each t < 1, Ft
(ii) Completeness: Fa is P-complete.
(b) A Stoc.ha.6tic. Pltoc.e..6.6 on A is a collection X = (Xt),

t E [0,1] of random variables defined on A and taking values
in R. We say that X is Me.a.6ultabie. if viewed, in the natural
way, as a function X:Ax[O,l] + R it is measurable with re-
spect to F1xLeb([0, 1]), where Leb([O, 1]) is the Lebesgue
a-algebra on [0,1]. Observe that for simplicity we are

+using [0,1J as a time parameter set instead by R U {co} whi ch

n F s 's>t
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is more common, but there are no substa cial differences
(1 plays the role of 00).

Going back to the intuitive motivation given in the
first paragraph, we canthink of the a -algebra Ft as contain-
ning the information up to time t and the variable Xt as
telling us about the random phenomenon at that time. The
connection between the process and the filtration is made
through the conditional expectation operator. For example,
if the evolution of the process up to time t is known, in
our model this can be expressed by E [x, 1Ft] = Xt a.s ..
Processes which satisfy this condition for every t are cal-
led Adapted. Familiar concepts such us Markov processes and
martingales are among the many notions studied in the gener-
al theory of processes. A very comprehensive account of this
theory can be found in [m'Il], [mE] and [DM3].

Once we start working within this context a natural
question comes up: when do two processes living on adapted
spaces "share the same probabilistic properties"? Clearly
the old notion of finite dimensional distribution does not
work, since it does not take into account the role played by
the filtration. A new concept was needed and one was proposed
by Hoover and Keisler in [HoKl. In order to make this paper
as self-contained as possible we present it here. Before giv-
ing the definition let's fix some notation. When we consider
a process together with the adapted space where it is defined
we write (6,X) or X if there is no confusion about A.

DEFINITION 1.2. (a) The Class AF of Adap~ed Func~~on~
in R is defined inductively as follows:
(i) (Basis step) if ~:R + R is a bounded continuous function

and t £ [0,1], then the expression (t,t) belongs to AF.
(ii) (Composition step) if £" ... ,fn belong to AF and

0:Rn + R is bounded and continuous, then 0(f1,··· ,fn)
belongs to AF.

(iii) (Conditional Expectation step) if g belongs to AF and
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t e: [0,'] then the expression E ls I tJ belongs to AF.
(b) The Value fCX) of f is the random variable defined

inductively by:
i) C<P,t)(~) = <PCXt).
ii) 0(f" ... ,fn)(~) = 0(f,C~), ... ,fnC~)),
iii) E[g I tJ C~) = E[gC~) 1Ft].
Sometimes we write fbC~) when we want to emphasize the adapt-
ed structure A we are working with.

(e) The Rank on f is defined by:
i) Rank((<P,t)) = O.

ii) RankC0(f" ... ,fn)) = Max(Rank(f,), ... , Rank(fn))'
iii) Rank(E[g I tJ) = Rank(g) + 1.

(d) The class of adapted functions f with rank(f) ~ n
is denoted by AFn.

(e) Let X and Y be stochastic processes defined on
adapted structures~ and ~ = (B,(Gt),Q) respectively. ~ and
Y have the same Adapted Vi~t~bution if for every f e: AF
E(f(~)) = E(f(y)). In symbols we write ~ ~ y or (~,X)~ ro,~.

If for every f e: AFn we have E(f(~)) = E(f(y)) w;
say that X and Y have tha ~ame Adapted Vi~t~ibution up to- - n
Rank n and denote this relation by X ~ Y.

COMMENTS. (a) The concepts just introduced can be ex-
tended in a natural way to the setting where we are inter-
ested in studying more than one stochastic process at a time.
For example, let I s consider the case where X and X' are pro-
cesses defined on ~ and Y and Y' are processes defined on ~.
We say that (X,X') and (Y,Y') have the Same Adapted Vi~t~i-
bution and denote this relation by (~,~') ~ (y,y') if for
every f e: AF, E(f(~,~')) = ECfCY,Y')). The only thing new
is that we have to have clauses (a)-i) and (b)-i) for both
X and X', then when we iterate the other two rules we cap-
ture the interaction between X, X' and the filtration
(Ft). Formally this can be done as follows.
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Replace clause (a) .oi) by:
If ~:F~ R is a bounded continuous function and
t e: [0,1] then the expressions (<Pl,t) and (~2,t)
belong to AF.

Replace clause (b)-i) by:
(<Pl,t)(X,x') <P(Xt)·
(<PZ,t)(X,X') = ~(X~).

Another way of extending the definition to this case is to
2consider the pair (X,X') as an F -valued stochastic process.

This is the way it was done in [HoK] and [H1]. In thi s paper
we will follow the approached sketched above.

(b) In [HoK] after introducing the above concepts it
is argued that if ~ and yare processes such that ~ = y then
"they share almost the same probabilistic properties". Of
course this statement cannot be proved formally, but we can
look at particular cases and see if for those it is correct.
Many important cases were examined in [HoK] and several im-
portant related topics have been studied in [H1], [HZ], [K1J,
[KZJ, [K3J, [HP],[Fl], and [FZ].

(e) A crucial feature of the results obtained in the
mentioned articles has been a novel application of methods
and ideas coming from three different fields: Probability
theory, Nonstandard Analysis and Logic (through Model Theory).
A result that perfectly illustrates the interaction of these
three fields is the saturation theorem due Hoover and Keis-
ler ([HoKJ). We present it here as an example of the sort of
results which can be obtained along this new line of research.
We first need to introduce some notation. Let ~ be the usual
hyperfinite adapted space of Nonstandard Analysis (see for
example [AFHL], [SB] , [K4] or [C]). The reader who does not
know Nonstandard Analysis should not be worried since we will
not use this result in this paper.

SATURATION THEOREM. Let A be an a~b~t~a~y adapted
6pace. SUPPo6e X and Y a~e 6tocha6t~c p~oce66e6 de6~ned on
L and ~ ~e6pect~vely and ~ = y. 16 Z ~6 anothe~ p~oce66 on
.<\ then the~e ~6 a p~Oc.eM W de6~ned OH ~ 6uch th.a:

l~,~,) - (y,~).



COROLLARY. (Universality Theorem). L~t ~ and L b~ a~
~n th~ abov~ th~o~~m. 16 X ~~ a p~oc~~~ d~6~n~d on A th~n
W~ can 6~nd a p~oc~~~ Y on L ~uch that X - Y.

The saturation property should look familiar to Logi-
cians. As a matter of fact, there is a logic, called Adapt-
~d P~obab~t~ty Log~c which is adequate for the study of
stochastic processes. Its models are precisley the adapted
spaces and the relation:: is its elementary eqmvalence re-
lation. Purely model theoretic aspects of this logic have
been recently studied. For references see [FZJ and the sur-
vey article [Kl] of Keisler (the father of this newly born
area of research). An important observation has to be made.
All these model theoretic results can be phrased and proved
in a way that makes perfect sense to Probabilists (see for
example [HoK]) and therefore can be understood by all those
who study stochastic processes. We believe this is a good
example of a new trend in logic where ideas that used to be
exclusive of this subject are now made available to other
branches of mathematics.

The implications of the saturation theorem have been
striking. In particular it allows us to say: "whatever hap-
pens in an arbitrary adapted space, can be replicated inside
a hyperfinite adapted space, at least for those properties
that 'are capturated under :::".Therefore, the more properties
we can handle with =. the stronger the above claim is. In
this paper we are going to explore some ideas that grew out
of the previous observations. We assume the reader has some
familiartity with the basic concepts of the theory of sto-
chastic processes, but not very much is needed (see the
first chapters of [EJ).

§2. Some natural questions. One of the most important oper-
ations usually carried out within the general theory 6f sto-
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cha tIC processes is that of stopping a stuchastic process-
es with a stopping time. The details are as follows.

DEFINITION 2.1. (a) Let ~ be an adapted space. An
6-S-topp-il1i].U.me is a function S:A ...[0,1J such that for every
t E: [0,1],

{w ~ A: Sew) ~ t} EFt'

(b) Let X be a process defined on ~, S an ~-stopping time.
The Stochaat-ic P~ocea6 X atopped at S is the new stochastic
process X d ef i ned by XS(w,t) = X(w,S(w) fI t ) (Here, Sew) fI t
is the minimum between Sew} and t).

Concepts such as Local Martingale, Optional and Pre-
dictable projections, Class (D) process, Semimartingale and
many others have the above operation involved in their def-
ini tions (see [DMZ]). If we want to lend support to the claim
that the relation ~ in fact captures the probabilistic prop-
erties shared by two equivalent stochastic processes living
on adapted spaces, then the following question seems natural
to ask:

QUESTION 1. Let X and Y be stochastic processes defined
on adapted spaces ~ and ~ respectively. Suppose 0 ~ y Md
S is an A-stopping time. Does there exist a ~-stopping time
T such that (X,XS) = (y,yT)?

Now let's move in another direction. Recently we are
becoming more familiar with the type of results that can be
obtained in stochastic analys is using nonsr.andardanalysis methods.
Starting with the work of Anderson and Keisler, the use of
hyperfinite adapted spaces has shown how useful these new
techniques can be in providing new simpler and more natural
proofs of known results and also as powerful tools in order
to obtain new standard results. This situation has prompted
the following question:



QUESTION 2. How can we use the properties of hyperfi-
nitespaces within the general theory of stochastic processes?
The saturation property tells us that at least under the
relation = we loose nothing by working with these sapces;
even more, some results suggest that there is a lot to be
gained (see the recent article [HeKJ).

But suppose that we are interested in solving a prob-
lem in a specific adapted space which is not hyperfinite.
Is there any use for hyperfinite adapted spaces in this case?
One obvious answer is that if we show that the problem can-
not be solved within the hyperfinite space then it cannotbe
solved in the original space. But, what if it can be sol~d?
It may be that we are making essential use of the saturation
property and according to Henson and Keisler's article this
could mean that the result cannot be proved in the original
space. Given this situation we would like to identify those
problems for which the following informal method works:
"Take your problem, translate it to a hyperfinite adapted
space making use of the saturation property, solve it inside
this space using its nice combinatorial properties and then
go back to your original space where you have a solution".
We call this the "Come-Back problem".

In the following section we present some results
which· can be seen as first steps in answering the questions
just posed.

§). Intri nsi c processes. In a prel iminary version of "Adapt-
ed Distributions", Hoover and Keisler introduced the con-
cepts of intrinsic filtration and intrinsic stochastic proc-
ess and proved some basic results about these notions. In
the fi~al version of their paper they never included that
material because it was unrelated to the main thrust of the
article. We are going to present some natural extensions of
their ideas and use them in order to deal with the observa-
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tions made in the previous section. Their results are includ-
ed here with their kind permission.

DEFINITION 3.1. Let A and X be fixed.
(a) Let n ~~. The n-in~~in~ie a-algeb~a I~ of X isn -

the a-algebra generated by N (the set of P-null sets) and
the random variables feX) where f ~ Apn. The oo-in~~in6ie
a-algeb~a is the a-algebra generated by N and the random
variables f(~) where f cAP.

(b) Let n e: N U {oo}. The n-'.t.n~~in~ie mea.6u~e. algeb~a
06 ~ is the measure algebra (A,rg,p)/N.

(e) The n-~n~~~n.6~c adap~ed ~paee 06 X is the struc-
ture (A,(I~ n Ft) ,P). We denote it by A~.n -n

(d) X is said to be n-in~~in~ic wi~h ~e.6pee~ ~o A if
A A~.

-n

We can now present some elementary properties. Hoover
and Keisler only considered the oo-case, but the generaliza-
tion to n L ~ is straightforward.

n X
PROPOSITION 3.2. (a) Le~ n ~ ~ U {oo}-then (A,X):: (A-,X).

X X' - -n(b) 16 X' ~.6 a ve~.6ion 06 X ~hen I~ = I~ and (~,X) :: (~,X').
(e) FM all t e: [0,1] and n ~ 1, I~ n Pt Ls ~he a-algeb~a gen-
e~a~ed by N and ~he ~andom va~~able6 f(~) whe~e f ~6 06 ~he
6Mm E[g I tJ w~th rank(g) ~ n-l.
(d) T6 X i6 Ma~kov then I~ i6 the a-algeb~a gene~ated
by N ,and t.lleva~~ab.te.6 Xs with s L [0, 1] • I~ n F t i6 t.he
a-algeb~a gene.~a:ted by N and X with u ~ t., u n ....

Proof. (a) We show that for every f e: AF , 5 ~ [O,lJ

X
f~ii(~) (s) a. s . (*)

This is done by induction on the complexity of f. It is tri-
vial for the basis and compo si t-i.o n steps. Let f be of the
form E[g I t] with rank(g) ~ n-l and assume (*) holds for g.
f{\(X)(s,t) = E[gt.(~)(s) I Pt] and
AX ~ AX ~ X A ~f-n(~)(s,t) = E[g-n(~)(s) I Inn Ft]. Observe that f-(~)(s,t)
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is I~ n Ft-measurable by the defini tion of I~. Then we have:

f~(~)(;,t) E[t~(~)(s)I I~nFt] E[E[g~(~(s) I Ft] I I~nFt]
X X

E[t~(~) I I~ nFt] = E[g~(~) I I~n Ft] fA;;(~).

(b) and (c) are left as exercises.
(d) Follows from [HoK] (theorem 2.8) and (b) .

NOTE. Parts (a), (b) and (c) of the above proposition
can be extended in a natural way to the case where there is
more than one stochastic process in the adapted structures.

The original motivation Hoover and Keisler had when
they introduced the above notions was to give a character-
ization of = in terms of a measure algebra isomorphism. We
can now present their result in a form that covers the more
general case we introduced before. A definition is first
needed.

DEFINITION 3.3. Let X and X' (Y and Y') be stochastic
I

processes defined on ~ (l?). A function h: (~,X,X')/\) .... (~,Y,Y')/N

is an n-adapted mea~uhe i~omohphi6m from (~,X,XI) to l~,Y,Y')
if it satisfies the following conditions:
(i) h is a measure algebra isomorphism from CA, I;S~',P) INYY' - nonto (~,I-- ,Q)/N• XX' YY'
(i i) For all t, h map s (I~ - n Ft) I N on to (I~ - n G t) IN'
(iii) For all t,r € Rand 0:R ....R bounded and continuous:

a) h({0(Xt)} r}/N) {0(Yt)} diN and
b) h({0(X~) ~ r}/N) {0CY~) ~ diN'

Observe that this last definition is given for the
case where we consider two stochastic processes at a time.
The other possible situations are treated similarly.

Here is the characterization of equivalence up to r~
n by means of n-adapted measure isomorphism. The proof is
the original of Hoover and Keisler, we just extended it ln
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the obvious way to n E Nand 0 the cas- where there is more
than one stochastic process considered for structure.

THEOREM 3.4. Le.t X and X' (Y and )') be. s t o eho s c cc
pJr.oce..6,6e..6de.6-tne.d on ~ (~) 1te..6 ped:-tve..f..y, the.n: (X ,X') R (Y, Y')
-t6 and only -t6 thelte. e.x-t.6t.6 a un-tque. n-adapted me.a.6ulte. -t.60-
moJr.ph-t.6m h 6Jr.om (~,X,X') to (~,Y,Y').

The crucial part of the proof is <ontained in the fol-
lowing result.

LEMMA 3.5. Suppo.6e h -t.6 an n-adapted mea.6uJr.e -t.6omoJr.-
ph-t.6m 6Jr.om (~,X,X') to (~,Y,Y'). Then 6cJr. e.ach f E AFn,
~
s E [O,lJ and re: R:

(*)

Proof. The proof is by induction on the complexity of
f. The basis case is given in the definition of n-adapted
measure isomorphism. Let 0:Rn ~ R be continuous and bounded.
On any compact subset of Rn, 0 may be uniformly approximated
by a linear combination of functions of the form 0' (xl'" .,
xn) = u,(x,) ....un(Xu) , where each ui E C(Rn,R). Using this
fact, together with the induction hypothesis the composition
case follows.

Now suppose f is of
~ n-l and the lemma holds
for each set U E I~X' n F

n t

the form E[g(s) I tJ with rank(g)
for g. Since h preserves measure,
we have

f g(X,X')(s)dP = f g(Y,Y')(s)dQ
U h(U)

( 1 )

where h(U) is a representative of h(U/N), so that h(U) E

IXY' n Bt. We claim that for each T,

h((E[g(X,X')(s) I Ft]> diN) = (E[g(Y,Y')(S)IGt]> r}/N. (2)

Suppose (2) fails. By 3.2.c). E[g(X,X')(s) I FtJ is I~X'nFt-
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measurable and E ls (Y, Y') (5) ! Gt] is I YY' n G -rne a s ur ab Le .n t
Let Z be a representative of nHE[g(X,X')(s) IF] >r}/N).

YY' t
Then Z e:: In - 0 Gt, and one of the sets

Z-{E[g(Y,Y')(s) I Gt] > r ) V,

{E[g(Y,Y') (5) I Gt] > r}-Z W

has posItIve measure, say V. We have V e:: IYY'nG and V/N=
XX' n t

h(U/N) for some U..:Iii.- OFt' SinceVe::Z, then

Ue:: {E[g(X,X')(s) 1Ft] > r }; a.s. Also, P(U) = Q(V) > O.

Therefore

However V e:: {E[g(Y,Y')(5) I Gt] < r l , so

Jvg(y,y') (5)dQ = JVE[g(y,y') (5) I Gt]dQ < rQ(V) rP(U).

Then

J g(X,X')(5)dP=j g(Y,Y')(5)dQ
U V(U)

and this a contradiction to (2).

Proof of Theorem 3.4. Assume (X,X') :: (Y,Y'). Then for
n ..... -each ~ e:: AF , sand r we have P{f(X,X')(s) > r} =

Q{f(Y,Y') (5) > r}. Since adapted functions are closed under

composition, then there is a measure algebra isomorphism
such that h({f(X,X')(s) > diN) = {f(Y,Y') 5) > r}/N. In par-

ticular,

h({E[f(X,X')(5) 1Ft] > diN) = {E[f(Y,Y')(s) I Gt]}/N.

XX' YY'Then by 3.3.c), h maps Iii.- n Ft onto Iii.- n Gt. This shows

that h is an adapted isomorphism. Uniqueness follows easily

from the previous lemma. Now assume h is an n-adapted iso-

morphism from (~,X,X') to (~,Y,Y'). Then by the lemma we

have
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p {f (x , x ' ) (5) > r l
5 and r.

Q f(Y,Y')(s) >r} for each f E: AFn,

Therefore E[f(X,X')(s)]
n(X,X') == (Y,Y').

E [f (Y ,Y')(5)], and so

Now we introduce a concept that will playa fundamen-
tal role in what follows.

DEFINITION 3.6. Let X and X' be stochastic processes
defined on the same adapted structure A·X' is n-~n~~~n~~e
w~~h Jte.¢pe.e.t ~o X if Ir SOI~ .

Again, this notion can be extended to the cases where
there are several processes involved wit lout any difficul-
ties. Observe that if X is n-intrinsic with respecto to ~
then any other stochastic process we define on ~ becomes
n-intrinsic with respecto to ~.

A very important source of examples of i~trinsic no-
tions is the class of hitting times of a stochastic process.
Those readers familiar with the general theory of processes
now that these are precisely the most important examples of
stopping times. The definition is as follows.

DEFINITION 3.7. Let X be a progresively measurable
(see [DM1J) stochastic process defined on A. If B is a Borel
subset of :R then

SB(w) = Inf{t E: [0,1) :X(w,t) E: B}

is called 6~~¢~h~~~~ng ~~me. 06 B.

It is well known (see [DM1]) that SB is an ~-stopping
time.

PROPOSITION 3.8. SB ~¢ 1-~n~Jt~n6ie wi~h Jte.¢pe.e~oto X.
Proof. We leave it to the reader. Just look at the

proof that hitting times are stopping times.

029



We are now ready to state and prove our main theorem.

THEOREM 3.9. Let X and Y be ~toeha~t~e p~oee~~e~ de-
n

6~ned on ~ and ~ ~e~peet~vely. I6 ~ ~ y and Z i~ a'p~oee6~
de6~ned on ~ wh~eh i~ n-int~in~~e w~th ~e6peet to X then
the~e ex~~t~ a p~oee~~ W de6(ned on ~ ~ueh that:

(i) W ~~ n-int~in6~e w~th ~e~peet to Y.
n

(ii) (~,X,Z) ~ (~.Y,W).

Proof. Let's assume Z is r.c.1.1. (i.e. for each w

and t E:: [0, 1] Z (w) = lim Z (w) and lim Z (w) always exi sts).
t s~t s stt s

Let h be the unique n-adapted isomorphism between (~,X) and

(~,Y) given by theorem 3.4. For each tEi: [0,1], let mt be

the least s e:: [0,1] such that Z is 10 n F -measurable. Ob-
X s n s

serve that {Sli: [O,l]:Zs is 1nnFs-measurable}is~0 since

Zt is 1~-measurable and by hypothesis I~ E:: 10 , we then haven n n
that Z is I~-measurable and recall that by definition

1~ c Fl' This fact together with the right continuity of the

filtration (1~ Ft) gives us the existence of mt.

Fix q e: Q n [0,1]. Zq is Ign Fmq-measurable. Then, as
it is well known from elementary measure theory, there exists

a sequence (S(q)) me:::N of I~ n Fm -simple functions suchm n q
that

lim s~q)(W) = Zq(w). a.s.
m-+oo

Dq .
For each m , write seq) L s,XA' where A. = {w e:: A:S(q\\,,) =s.}

X m i= 1 1 11m 1
= In n Fmq Clearly the Ai'S partition A. For each Ai'

let A. E: I~ n Gm be such that h(A·/N) = A./N. By the defi-
1 n q 1 1 .

ni tion of h , the A. 's parti tion B (modulo a null set) and
1 ~

for each i, P(A.) ,; Q(A.). Now for each m, let Sm(q) =l:sXA
A

.:

1 1 ._ 1 1
Define W as follows: 1-1

If qe:: Qn[O,lJ,

W (w)
q {

Lim s~q) (w) if it
m-+oo

a otherwise.

exists
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If t e:: [0,1]

{

lim
q.;.t
o

if it exists

otherwise.

nWe now claim that (~,X,Z) _ (~,Y,W). We use theorem 3.4
again. Observe the following facts:
(1') I~~ = I~. 51' nce I; c:: 1X_ bo serve that the genetarorsn xz n n - n'

of In- belong to 1~.
(ii) By the way we defined W it is clear that IY~ c:: IYn - n

(i.e. W is n-intrinsic with respect to Y) and as in
(i) Iy\~ = IY

n n'

With the above conditions, our original h can be seen as a
XZ YWmapping from (A,In-, P)/N to (B,In-, Q)/N. It satisfies all

the conditions required for it to be an n-adapted measure
isomorphism. We just verify the third condition, the others
follow inmediately from the way W was defined from Z and the
properties of h as an n-adapted measure isomorphism from
U\, X) to (!?, Y). We have to show for each t e: [0,1J, 0 e: C(R,R)
and r E: R that

h({0(Zt) > r}/N) = {0(Wt) > r}/N.
By right continuity of Z and 0, it is enough to check this
for Zq wi th q e:. Q n [0,1J. By the continuity of 0 and the fact
that 5m(q) • Z lt is enough to see that h({0(S(q)) > r}/N) =

" q m{0(S(q)) > r}/N and this is inmediate given the way we de-m
fined W from Z. The case of Z arbitrary we leave it to the
reader (Hint: use Proposi tion 2.24 in [HoKJ).

The following result is an important example that shows
some of the possible uses of the above theorem. In fact, we
were interested first in the study of stopping times and after
obtaining this theorem we were lead to the more general re-
sult obtained in theorem 3.9. Observe that ~he key point in
the above proof is the fact that once the process Z is n-in-
trinsic with respect to X then we can use the same adapted



nisomorphism that characterized X _ Y. We can think of the
notion of intrinsic process as a kind of probabilistic way
of "definable". Notice that in general if we are given a
structure (~,X), an ~-stopping time may have nothing to do
with the stochastic process X and consequently with I~.n

THEOREM 3.10. Le~ X and Y be ~~gh~ (ie6~) ~on~~nuou~
~~o~ha~~~~ p~o~e~~e~de6ined on ~ and ~ ~e~pe~~iveiy. 16 S
~~ an n-~n~~~n~~c ~-~~opping ~~me w~~h ~e~pee~ to ~ then
the~e ex~~t~ a B-~~opp~ng ~ime T n-int~in~ie w~~h ~e~pe~~

- S n T
to y ~ueh ~ha~ (X,X ) = (Y,Y ).

Proof. We just indicate the steps needed in the demos-
tration.

a) First show the following:
If S is a simple stopping time then there exists a simple

nn-intrinsic stopping time T such that (X,S) = (Y,T). The ar-
gument is similar to the treatment of simple functions inthe
proof of the above theorem.

b) With Sand T as in (a) prove that
If (X,S) = (Y,T) then (X,XS) = (y,yT). For this case observe
that if S is n-intrinsic with respect to X then xS is n-in-
trinsic with respect to X .

. c) Given S arbitrary then proceed as follows:
First choose a decreasing sequence (S ) of simple A-stoppingm -
times n-intrinsic with respect to X, such that lim S = S a.s.m+oo m
The fact that the sequence (Sm) can be chosen n-intrin-
sic with respect to X follows from the way it is defined
fromS(see [DlvllJ).

For each Sm of the sequence find a Tn-intrinsic with
m S nrespect to Y as indicated in (a). We then have (X,X m) _

T(Y,Y m). Using the right continuity of X and Y and the fact
~ is preserved under pointwise convergence we have:

S n T
(X, lim X m) = (Y, lim y m) and XSm -_XS.lim
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Let T be lim T and our theorem follows.
m-HO m

The following example of Hoover shows that the condi-
tions of the above theorem cannot be relaxed.

EXAMPLE 3.11. Let A = B ~ [0,1J, for every t, Ft F1
Borel subsets of [0,1J and P = Lebesgue ([0,1)).

Xt(w) Yt(w) ° if t < w ,

Xt(w) 2 if t w,
Xt(w) if t > W,

Yt(w) if t ~ w.

Since Xt = Yt a.s. for every t, X = Y, but S is the stop-
ping time Sew) = w, and clearly there is no stopping time
T such that (X,XS) = (y,yT).

COMMENT. Before the beginning of the general theory of
processes, for many probabilistic problems it was common to
say "the finite dimensional distributions of a stochastic
process is all what matters". If for our pourposes the adapt-
ed distribution is all what matters, then with the above re-
sults we have a very satisfactory answer to the first ques-
tion we posed in §2. This is because proposition 3.2.a) tells

h
. nus that with respect to t e relatIon = we can restrict our-

selves to the study of n-intrinsic processes, and we remark-
ed before that if X isn-ntrinsic in A then any stopping time
defined on A is n-intrinsic with respect to X and therefore,
theorem 3.10 applies. If for some reason we cannot assume
that the process X is n-intrinsic then, for example proposi-
tion 3.8, still provides us with a very important source of
applications for the above theorem.

Another type of situation where our results may be use-
ful is in the study oi preservation of properties under the
relations ~. The general form of the problem is as follows:

n
Suppose X and Yare stochastic processes such that X :::Y and
P is a property of stochastic processes (for example, to be



a local martingale). Suppose X has property P, does Y have
it?

The answer depends, obvioulsy, in the nature of the
property P. The first study along this lines was done by
Aldous [AJ who introduced the synonimi ty relation 'between

1stochastic processes (in our notation::) and proved that
some basic properties, like the martingale property are

1preserved under ::. Later Hoover and Keisler [HoK] studied
extensively the relation:: and making use of the saturation
property of the hyperfinite spaces proved the preservation
of some properties under ::which were then used to study
properties of solutions of stochastic integral equations.
In [F1] we can also find results of this nature. Hoover in
[H1] and [HZ] has done very interesting work in this direc-
tion. We can use one of his results in [H1], which viewed
under our theorem, illustrates a new approach to the pre-
servation problem.

EXAMPLE 3.12. Suppose X ~ Y and X is a local martin-
gale. Then Y is also a local martingale.

Proposition 3.Z.a) allows us to draw the following
picture:

(~, X) (l},Y)
1 III 1111

X 1
(~1 ,X)

It is easy to show, using Theorem 3.10, that if (~f,X) is a
local martingale and (~f,X) ~ (l}f,Y) then (~f,y) is also a
local martingale. Therefore, if we go back to the above pic-
ture, we can conclude that in order to prove that the prop-

1erty of being a local martingale is preserved under :: it is
enough to show that it is preserved in the particular case
(~,X) ~ (~f,X). In principle this should be easier given
the way these two structures are losely related. In a sense
this is what Hoover did in his proof.

An observation that can be useful in finding "Come

304



back" problems as defined in §2, is the similarity that
exists between theorem 3.9 and the Saturarion Theorem in
§2. Theorem 3.9 basically tells us that with respect to in-
trinsic notions adapted structures are saturated for the

nrelations =. With this observation in mind one can do things
like the following. Suppose that you want to prove a Skoro-
hod Embedding type of result (for a very simple example, see
[BJ). Do it first for Anderson's Brownian motion (see [AFHL]
or [SBJ) using the nice combinatorial properties of the
hyperfini te setting and observe that the stopping times that
you obtain are intrinsic. Once you have this, then you have
a proof that is valid for all Brownian motions. This is be-
cause by the saturation property of the hyperfinite spaces
every Brownian motion is = equivalent to Anderson's Brow-
nian motion (see [K4]) and this fact can be put together
with teorem 3.10. We believe that ideas like this one can
be used in handling problems along the lines of [BC] and more
general Skorohod type of problems. This project would require
to continue the development of the Nonstandard theory of the
general theory of processes (see [SJ), adapted probability
distributions and finding more intrinsic notions.

One more idea coming out of these results and proper-
ties of model theory has lead us to develop a notion of game
relations between adapted structures. These results will be
presented elsewhere (see [F3J).
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