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PERIODIC SOLUTIONS OF PERIODICALLY HARVESTED

LOTKA-VOLTERRA SYSTEMS

by

Alan R. HAUSRATH and Raul F. MANASEVICH

Abstract. We study a Lotka-Volterra system with periodic
harvesting, find sufficient conditions for the existence of
periodic solutions with the same period, and, under certain
conditions, count the number of such periodic solutions.

§1. Introduction. In this paper we study the Lotka-Volterra
system with periodic harvesting

X! a’x - bxy -h**(t)x

y' = ¢ty +dxy -k (t)y Gl

where ' denotes d/dt, a*,b,c*,d are positive real numbers,
*

h**(t), k**(t) > 0 are twice differentiable, and h*(tﬂn =

h**(t), k**(t+p) = k**(t) for some p > 0. In this model x

represents the biomass of the prey species, y the biomass of

LI ;
the predator species, a 1is the "natural” rate of increase
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of the predators in the absence of the prey. d and b are constants
which govern the flow of biomass from prey to predators due
to predation and h**(t) and k**(t) present the harvesting
effort applied to the prey and predator species respectively.
h**(t), kK™ (t)> 0 indicates harvesting whereas h**(t) or k" (t)<0
would mean a release of new individuals into the population,
an occurrence which is not physically reasonable, although
it can be handled easily mathematically. The periodicity of
h** and k** might reflect, for example, the fact that hunt-
ing seasons frequently take place on an annual basis with
more or less the same number of permits issued each year.
The requirement that h** and k** be twice differentiable is

a mathematical requirement rather than a biological one.

In order to study (1.1) we make several changes of var-

jable. If f is continuous and p-periodic, define

P
[£] = [ £(t)at/p (1.2)
o

With this notation, let
* % *
a=a -[h"], c=c +[k ], (1.3)
h*(t) = k() - [h¥*], and k*(t) = K*F(o) - kM.
We require a > 0, that is that the hunting pressure on the

prey species does not on the average exceed its natural

growth rate. Then (1.1) becomes

x' = ax - bxy -h*(t)x
(1.4)
y' = -cy+dxy - K" (t)y.
Now let
x = (a/d)w, vy = (a/b)z ,
(1.5)

t =s/a, and m = c/a.
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Then we obtain

W - Wz —[h*(s/a)/a]w

s
it

(1.6)
-mz + Wz -[k*(s/a)/a]z

Ne
#

where * denctes d/ds. We shall require later the result that

the period of the periodic solutions of

W = W-WZ

(1.7)

Z = -mz + Wz
is a monotone function of amplitude increasing to infinity,
see [2]. Finally, repace s by t and let

w = meX 5 2z = ™ (1.8)

which restricts attention to the first quadrant in the (w,z

plane, to obtain

x' =1 - - n(t) (1.9)
y' o= -1 +e® - k(t)

where
h(t) = h™(t/a)/a (1.10)

k(t) = k" (t/a)/am.

Note that because of the change of variables (1.8), all solu-
tions of (1.9) correspond to positive, and hence physically
realistic, solutions of (1.1). We observe that h(t) and k(t)
are twice differentiable and T-periodic with T = ap. The

origin is a center of

x' =1-¢eW

Y' = -1 +exy

(1.11)

the family of periodic solutions enhlosing the origin fills
Rz, and, by the previous remark, the period of those periodic solutions
is a monotone function of amplitude increasing to infinity so that
the periods of the nontrivial periodic solutions lie in an interval
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of the form (2n//m,~ ). We require that the forcing period
be the same as the period of one of the periodic solutions
of (1.11) and hence we shall assume that T > 2w//m. Since

some multiple of ap will always be greater than 2n/¥m, we
can take T to be one of those multiples if necessary. Fin-
ally we note that (1.11) has a first integral

Vix,y) = e™/m - y+e*-x . (1.12)

§2. Construction of periodic solutions. In this section, we

study the periodic solutions of

x' =1 -¢e" - h(t)

(1.9
y' = -1+e* - k(t).
(1.9) can be written as
z' = f(z) + F(t,z,e) (2.1)

where z = (;), £:R? » R is twice differentiable and is given
S |

by ﬂz)=f_: +:xy), and e = (h(t),k(t)), is a parameter in

the Banach space B = C(T)xC(T) where C(T) = {h:R > R |h is

continuous and T-periodic}. The equation
z' = f(z2) (2.2)

possesses a T-periodic solution which we shall denote by

u = (31). F:RxR®xB + R% is T-periodic in its first variable
2 =

and is given by F(t,z,e) = _EE:%) = -e. F is twice dif-

ferentiable on its domain.

Finally, u is seen to be non-degenerate. That is, u
is a member of a one parameter family of periodic solutions
of (2.2) and the only T-pericdic solutions of the linear

variational equation
w' = fz(u(t))w (2.3)
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are multiples of u'(t). This can be proved based on the

properties of the period as a function of amplitude.

Equation (2.1), under less restrictive hypotheses
than those mentioned above, has been studied in [1]. In

order to state the result which we require in this article,
some terminology is necessary. For h «C(T), let IhiT de-
note the sup norm

|h|. = sup |h(t)| 2.4)
T 0<t<T (

and let

bel = 1(n, 0 = Ihlg + [kl

Let v = (ho,ko) = e/|e| and define

T t+
g(s) = L(V)(s) _ I {[eU]( 5)

(o]

o 8 G . (2.5)
= [ [y (t+s)h°(t) - uy (t+s)k° (1) dt.

o

t+s
- 1]h0(t)4-[emu2( )-1}k°(t)}dt

The simple roots of g indicate the existence of T-periodic
solutions of (1.9), and hence of (1.1). More precisely, the
following theorem is a summary of two results proved in

(1].
THEOREM 2.1. let v = (h°,k%) and s be such that
L(v )(sy) =0 and L(vo)'(so) 4 0. (2.6)

Then thenre exist €,,e,) > 0, a continuously d(ﬁgenintéabie
function s*:{v [ fv-v ] < e} » [0,T] such that s (0) = s_,
and functions z:Rx{v IHV—VOH < El} + R® and r:Rx{v Iﬂv-voﬂ
< []}‘('52,82) + RZ with the §olLowing properties:

1) z (4 continuously differentiable (n £ts first argument
and continuous {n {ts second argument;

2) lim |r(t,v,B)|/8 = 0, undigoumly <n t;
R0



3) z(t+T,v) = z(t,v) and r(t+T,v,B) = r(t,v,B); and
4) < 0 < |e] < e, and le/lel - vl < e, then

x(t,e) = u(t+s*(e/ﬂeﬂ)) +lelz(t,e/]e]) + x(t,ele],le]) 2.7
{4 a T-peniodic so0lution of (1.9).

Hence, it is necessary to analyze g(s) in order to

obtain information about T-periodic solutions of (1.9).

§3. Analysis of g and the number of periodic solutions. In
this section, we study the function
T '
g(s) = [ [uz(t+5)h(t)-ul(t+5)k(t)]dt (3.1)
o

where |h|T + |k|p = 1. We have immediately

PROPOSITION 3.1. g(s) = 0 always possesses at fLeast

two noots. T
Proof. By direct calculation, [ g(s)ds = 0. Hence g

cannot have only one sign. But sinceog(O) = g(T), it must

have at least two roots. A

Let n be a real number. It can be shown that g satis-

fies the second order differential equation

g"(s) +n2g(5) = P(s;n) (3.2)

where

T
P(s;n) = [ {u)(t+s) [h"(t) +n’h(t)]
° (3.3)

- u)(t+s) [k (t) +n’k(t)] }dt.

If P were zero, g(s) would take the form

g(s) = Acosn(s-a) (3.4)



where a 1s an appropriate phase angle and A2 = gunz+[g'ﬂ0/n];
In this case, we would be able to count the number of solu-
tions of g(s) = 0 and all roots would be simple. If P is
small, g(s) = 0 has the same number of roots as when P = 0
and they are still simple. One can estimate

Pl < Kp[]h" +nh|p+ [k" +nK|T] (3.5)
where

| '
Kp = T[lu,ylp + luilgd- (3.6)

By the variation of constants formula,

T

g(s) = Acos n(s—ah—% [ P(t;n)sinn(s-t) dt
)
and " (3.7)
g'(s) =-Ansinn(s-a)+ [ P(t;n)cos n(s-t) dt
0

where a and A are above.
By direct calculation using (3.7),

T

2 ' 2 _ 2,2 . ;
[ng(s)]“+ g'(s)” = n“A" - 2An [ P(t;n)sinn(t-a)dt
¥ (3.8)
T o . :
+ [f P(t;n)sinn(s-t)dt]“+[[ P(t;n)cos n(s-t)dt]
) )
or
. 2,2 x
b\g(s)]2+g (s)2 > n“A°-2An [ P(t;n)sinn(t-a)dt, (3.9)

[¢]

or, using (3.5),

o

' 2 2 1" 2 a2
h}g(s)]2+g (s)° > nZA“-ZAnTKP[Ih +n h‘T+!k +n k!T]. (3.10)

\s long as [ng(s)]2 +g'(5): > 0, all roots of g(s) = 0 are

simple and there are as many when P = 0; i.e. when g(s) =

A cosn(s-a). We summarize the above discussion 1n



THEOREM 3.1. Let nT/2m be an integen greaten than on
equal to 1 and suppose that A% = g(0)2+|g'(0)/nl2 > 0. I

b +n?hlp + [kt +n’k| < nAZ2TK, . (3.01)

then the equation g(s) = 0 possesses nT/m so0lutions and,

moneoven, at each Asuch soflution g'(s) # 0.

Finally, we interpret Ths. 2.1 and 3.1 as they apply
to (1.9).

THEOREM 3.2. Suppose the folLlowing hypotheses:

1) nT/2m is an Linteger greater than or equal to 1;

2) AZ = g(0)% + [g'(0)/n]% > 0 ;

3) |h" +nZh|p + K" +n%k|p < nA/2TKp 3

4) |h|p + |kl <8 sufficiently small; and

5) (h,k)/[Ih|p + |k|q] 44 sufficiently close to (h,k).
Then (1.9) with (h,k) neplaced by (h,k), has nT/m

T-perniodic s0lutions branching from translates of u.

Returning to (1.1), Th. 3.2 says that if the devia-
tions of h** and k** from their mean values are sufficient-
ly small and if the parts of h** and kx** with mean value
zero form an element of C(T)xC(T) sufficiently close to
certain preferred directions there, then (1.1) possesses
T-periodic solutions branching from translates of u and,
moreover, the number of such T-periodic solutions can be

obtained.
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