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PERIODIC SOLUTIONS OF PERIODICALLY HARVESTED
LOTKA-VOLTERRA SYSTEMS*

by

Alan R. HAUSRATH and Raul F. MANASEVICH

Abstract. We study a Lotka-Volterra system with periodic
harvesting, find sufficient conditions for the existence of
periodic solutions with the same period, and, under certain
conditions, count the number of such periodic solutions.

§l. Introd~ction. In this paper we study the Latka-Volterra
system with periodic harvesting

X I a * x - bxy - h* * (t) x

y' * d - k**(t)yc Y + xy
( 1 . 1)

* *where' denotes dldt, a ,b,c ,d are positive real numbers,
** ** **h (t), k (t) ~ 0 are twice differentiable, and h (t+p)

h**(t), k**(t+p) k**(t) for some p > O. In this model x
represents the biomass of the prey species, y the biomass of

*the predator species, a is the "natural" rate of increase

* This work was partially supported by the National Science Foundation
under contract INT 8602537 for the first author.
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of the predators in the absence of the prey. d and b are constants
which govern the flow of biomass from prey to predators due

. ** **to predatlon and h (t) and k (t) present the harvesting
effort applied to the prey and predator species respectively.

** ** ** **h (t), k (t) ~ ° indicatesharvesting whereash (t) or k (t)< 0
would mean a release of new individu~s into the population,
an occurrence which is not physically reasonable, although
it can be handled easily mathematically. The periodicity of

** **hand k might reflect, for example, the fact that hunt-
ing seasons frequently take place on an annual basis with
more or less the same number of permits issued each year.

** **The requirement that hand k be twice differentiable is
a mathematical requirement rather than a biological one.

In order to study (1.1) we make several changes of var-
iable. If f is continuous and p-periodic, define

P
[f] = I f(t)dt/p

o
( 1 . 2)

With this notation, let

a* - [h**], * [ * *]a = c = c + k , ( 1 .3)

* ** ** * ** [k**] .h (t) h (t)-[h ] and k (t) k (t)-

We require a > 0, that is that the hunting pressure on the
prey species does not on the average exceed its natural
growth rate. Then (1.1) becomes

x' *ax - bxy - h (t)x
(1 .4)

*y' -cy + dxy - k (t)y.

Now let

x = (a/d)w, y = (a/b)z ,
( 1 . 5)

t sla, and m cia.



Then we obtain

W w-wz-[h*(s/a)/a]w
( 1 . 6)

z *-mz + wz - [k (s/a) la] z

where· denotes d/ds. We shall require later the result that
the period of the periodic solutions of

w w - wz
( 1 . 7)

z = -mz + wz

is a monotone function of amplitude increasing to infinity,
see [2]. Finally, repace 5 by t and let

X
\01 = m e ( 1 . 8)

which restric~attention to the first quadrant in the (w,z)
plane, to obtain

X' 1 _ emy - h(t)
y' x-1 +e - k(t)

where
*h(t) h (t/a)/a

*k (t) k (t/a)/am.

( 1 . 9)

(1. 10)

Note that because of th change of variables (1.8), all solu-
tions of (1.9) correspond to positive, and hence physically
realistic, solutions of (1.1). We observe that h(t) and k(t)
are twice differentiable and T-periodic with T = ap. The
origin is a center of

x' 1 - emy
x-1 + e ,

(1. 11)
y'

the family of periodic solutions enclosing the origin fills
R 2, and, by the previous remark, the period of those periodic solutions
is a monotone function of amplitude increasing to infinity so that
the periods of the nontrivial periodic solutions lie in an inter al
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of the form (ZTI/liii,oo). We require that the forcing period
be the same as the period of one of the periodic solutions
of (1.11) and hence we shall assume that T > 2rr/liii. Since
some multiple of ap will always be greater than 2rrl/ffi, we
can take T to be one of those mUltiples if necessary. Fin-
ally we note that (1.11) has a first integral

v (x, y) = emy 1m - y + eX - x . (1. 12)

§2. Construction of periodic solutions. In this section, we
study the periodic solutions of

x' 1 - emy - h(t)
(1. 9)

y' -1 +ex - k(t).

(1.9) can be written as
z ' = fez) + F(t,z,e) ( 2 • 1 )

where z = (~), f:R2
-+ R is twice differentiable and is given

( 1 - emy)by f(z)= -1 +ex ,and e = (h(t),k(t)), is a parameter in
the Banach space B = C(T)xC(T) where C(T) {h:R -+ R I h is
continuous and T-periodic}. The equation

z' = fez) (2. 2)

possesses a T-periodic solution which we shall denote by
u = (UI). F:RxR2xB -+ R2 is T-periodic in its first variable

.u2 • _ -h(t) _and 1S gi ve n by F(t,z,e) - Lk(t)) - -e. F is twice dif-
ferentiable on its domain.

Finally, u is seen to be non-degenerate. That is, U
is a member of a one parameter family of periodic solutions
of (2.2) and the only T-periodic solutions of the linear
variational equation

w' (2. 3)

340



are multiples of u' (t). This can be proved based on the
properties of the period as a function of amplitude.

Equation (2.1), under less restrictive hypotheses
than those mentioned above, has been studied in [1]. In
order to state the result which we require in this article,
some terminology is necessary. For h e: cr rj , let I hiT de-
note the sup norm

IhlT = sup [h I t ) I
O<t<T

(2. 4)

and let

IleII = 11(h,kH = IhlT + IklT

Let v Cho,ko) = e/lei and define

T ul(t+s) mu (t+s)f {[e - l]ho(t)+ [e 2 -l]ko(t)}dt
o

L(v) (s)g(s)

T. ° I °f [llzet+s)h(t)- u,(t+s)k (t)]dt.
o

(Z. 5)

The simple roots of g indicate the existence of T-periodic
solutions of (1.9), and hence of (1.'). More precisely, ilie
following theorem is a summary of two results proved in
[ 1] .

THEOREM 2.1. Let v = (ho,ko) and s be ~uch thato 0

L(v ) (s ) = a
° °

and (2.6)

Then the~e exi6t E"E2 > 0, a continuou6ly di66e~entiable
* *6uYLction s .I v I ~v-v I < E,} ..... [O,T] ,~uch that s (0) = so'

° 2altd 6unct-LOM z::Rx{v I ~v-voll < E1} ..... Rand r::Rx{v Illv-voll
< E1}X(-E2,EZ) .....R2 w~th the 6ollowing p~ore~tie~:
1) z i~ eontinuou6ly di66e~entiable in it~ 6i~6t a~gument
and contintLou,~ in it6 ~ ecol1d a~gwne'ltj
2 ) Li III Ire t , v ,S) I / s = 0, u n l6 0 lHl e. U i.Yl t :

B-> 0
3-d 1



3) z(t+T,v) = z(t,v) and r(t+T,v,B) r(t,v,S); and
4) -<'6 0 < lei < E2 and lellell - vol < E1, then

*x(t,e) = u(t+s (e/] eO) + leiz(t,e/leD + r(t,ele] ,Ie] ) (2.7)

-<.~ a T-pe~-<.od-<.e~otut-<.on 06 (1.9).

Hence, it is necessary to analyze g(s) in order to
obtain information about T-periodic solutions of (1.9).

§3. Analysis of 9 and the number of periodic solutions. In
this section, we study the function

T ,
g(s} = f [ui(t+s)h(t)-u1(t+s}k(t}]dt

o
(3.1)

where IhlT + IklT = 1. We have immediately

PROPOSITION 3.1. g(s) = 0 atway~ po~~e~~e~ at lea~t

two ~oot~. T
Proof. By direct calculation, f g(s)ds = O.

cannot have only one sign. But sinceOg(O) = g(T),
have at least two roots. !

Hence g
it must

. Let n be a real number. It can be shown that g satis-
fies the second order differential equation

gil (s) + n 2g(s) = pes ;n) (3. 2)

where

P(s;n)
T

f {u;(t+s) [h"(t) + n2h(tn
o (3.3)

If P were zero, g(s) would take the form

g ( s ) = A co s n (S> a) ( 3. 4)
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where a is an appropriate phase angle and A2 '" g(0)2+[gl(0)/n]Z.

In this case, we would be able to count the number of solu-

tions of g(s) '" 0 and all roots would be simple. If P is

small, g(s) = 0 has the same number of roots as when P = 0

and they are still simple. One can estimate

(3. 5)

where

(3.6)

By the variation of constants formula,

1 T
g(s) = Acosn(s-a)+- f P(t;n)sinn(s-t) dtn o

and T
g' (s) = -A n sin n(s-a) + f P(t;n)cos n(s-t) dt

o

(3. i)

where a and A are above.
By direct calculation using (3.7),

T
n2A2 - ZAn f P(t;n)sin n(t-a)dt

o
(3.8)

+
l' T

[f P(t;n)sin n(s-t)dt]2+[J P(t;n)cos n(s-t)dt]2
o 0

or

2 ' 2 22fT ()d[ng(s)] +g (s) ~ n A -ZAn P(t;n)sinn t-a t,
o

(3. 9)

or, using (3,5),

2 I 2 2 2 [" Z I I" 2kl J[n g I s ) ] +g (s) >,.. n A -2AnTKp [h + n h T+ k -n T' (3.10)

As long as [ng(s)] 2 + s ' (s)2 > 0, all roots of g(s) = 0 are

simple and there are as many when P = 0; i.e. when g(s) '"

A cos n(s-a). We s ummar i z e the above discussion in
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THEOREM 3.1. Let nT/2n be an ~ntege~ g~eate~ than o~
equal to 1 and ~uppo~e that A2 = g(0)2+lg'(0)/nI2 > o. 16

(3.11)

then the equation g(s) = 0 p066e66e6 nT/n 6otut~on6 and,
mo~eove~, at each 6uch 6otut~on g' (5) i o.

Finally, we interpret Ths. 2.1 and 3.1 as they apply
to (1.9).

THEOREM 3.2. Supp06e the 6otlow~ng hypothe6e~:
1) nT/2n ~6 an ~ntege~ g~eate~ than o~ equal to 1;
2) A2 = g(0)2 + [g'(0)/n]2 > 0
3) Ih" +n2hlr + Ikl!+n2klT < nA/2TKp ;

4) IhlT + IklT ~6 6u6Mc.~entty 6matt; and
5) (h,k)/[lhIT + IkIT] i6 6u66ic.~ently c.t06e to (h,k).

Then (1.9) w~th (h,k) ~eptaced by (h,k), ha6 nT/n
T-pe~~od~c 60tut~on6 b~anc.hing 6~om t~an6tate~ 06 u.

Returning to (1.1), Th. 3.2 says that if the devia-
tions of h** and k** from their mean values are sufficient-
ly small and if the parts of h** and k** with mean value
zero form an element of C(I)xC(I) sufficiently close to
certain preferred directions there, then (1.1) possesses
I-periodic solutions branching from translates of u and,
moreover, the number of such I-periodic solutions can be
obtained.
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