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MULTIPLICITY THEORY OF PROJECTIONS IN
ABELIAN VON NEUMANN ALGEBRAS

by

T.V. PANCHAPAGESAN*

Abstract. The spectral multiplicity theory is generalized
for projections in an arbitrary abelian von Neumann algebra.
The well known type I~ direct sum decomposition of a type I
von Neumann algebra follows as a consequence.

Resumen. La teorla de multiplicidad espectral se generali-
za para las proyecciones en un algebra conmutativa de von Neu-
mann. La bien conocida descomposici6n de un algebra de tipo I
de von Neumann en una suma directa de algebras de tipo I~ se
deduce como ~~a consecuencia.

§1. Introduction. Suppose (X,S) is a measure space with S a
a-algebra. If f(·) is a spectral measure on S with values in
proj ec.t i ons on a Hilbert space H, let W be the commutant of
the range of f(e) in B(H). Then W is a von Neumann algebra
on H with W', the commutant of W, being abelian. In [2] Hal-
mos develops a (spectral) multiplicity theory for projec-
tions in W' (§S4-64), making use of the countable additivity
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of E(')' In Section 6 we conclude the present article with
a discussion of the results of Halmos [2], in the set up of
the von Neumann algebra W.

By the results of Stone [5J the maximal ideal space M
of an abelian von Neumann algebra A on a Hilbert space H is
extremally disconnected. Thus, it is possible to construct
a spectral measure E (.) on the Borel subsets of M such that
the range of E(o) coincides with the Boolean algbera of all
projections in A (vide pp. 158 -160, [3J ). Consequently,by means
of E(·) thus constructed, the spectral multiplicity theory
developed in Halmos [2] can also be interpreted as a multi-
plicity theory for projections in A. The object of the pres-
ent work is to give a direct alternate method of study for
the multiplicity theory of projections in an arbitrary abe-
lian von Neumann algebra and thus deduce the results of Hal-
mos in §54-64 of [2] as a particular case. Besides, the pres-
ent study offers a new proof of the well known type In. direct
sum decomposition of a type I von Neumann algebra.

§2. Preli.inaries. This section is devoted to fix the termi-
nology and notation to be followed in the sequel, and to list
a few definitions and results from the theory of von Neumann

.algebras, which we repeatedly-use in the body of this arti-
cle.

H will denote a Hilbert space, W a von Neumann algebra
on H with abelian commutant W', R an arbitrary von Neumann
algebra on H with centre Z, and I the identity operator on H.
If M is a nonempty subset in H, [M] d eno-t-e s the closed linear
subspace spanned by M. If E is a projection, E is also de-
noted by its range and vice-versa. Thus for a vector x E H,
[Rx] is the projection with range given by [Tx:T E R], that
is, the cyclic projection generated by x under R. Clearly,
[Rx] e::: R' and [R' x] E R.

Let A e::: R. If

F = {Q e::: Z Q a projection, QA A},
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then CA = A{Q.: Q. e: F} belongs to Z and it is a proyection.
CA is called the central support of A. For CA it is true that
CAA = A.

PROPOSITION 2.1. If A is an operator in Rand Q. a cen-

tral projection of R, then CQ.A = Q.CA•

DEFINITION 2.2. For two projections E and F in R we
say E 'V F if there exists a partial isometry V in R such that
V*V = E and VV* = F. We say E~ F if there exists a subpro-
jection E1 of F in R such that E '" E1' and E ~ F if E~ F

and E "f F •

DEFINITION 2.3. A projection E in R is said to be fin-

ite if there exists no subprojection E1 in R of E such that
E '" E1 < E. Otherwise E is cal ed infinite.

DEFINITION 2.4. A projection E in R is said to be abe-

lian if ERE is an abelian algebra.

PROPOSITION 2.5. If E and F are projections in R, then

the following assertions hold:

(i) If E is finite and E '" F, then F is also finite.

(ii) E is abelian in R if and only if every subprojection F

of E in R 1-S of the form F = CFE.
(iii) If E and F are abelian in R an d CE = CF, then E '" f.
(iv) If E ~ F, then CE ~ C F; if E ~ F, then CE = CF·
(v) If E is abelian 1-n R, then E is finite.

Proof. (i) Trivial.
(i.i)Use the observation that E is abelian in R if and

only if ERE = ZE.
(iii) An immediate consequence of Lemma 1, §3, Chapter

III of Dixmier lll
(iv) Vide Corollary 1 to Proposition 7,§1, Chapter I

and Proposition 1,§1, Chapter III of Dixmier [1J.
(v) If E '" E1 < E, with E1 a projective in R, then by

(iv), CE = CE1' But, on the other hand, by (ii), E1 =CE1E=E.
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This is a contradiction; hence, E is finite.

PROPOSITION 2.6. (i) If {Ea} is an o r t ho qo nc.L family

of pY'ojections (respectively, (ii) abelian pY'ojections) in

R, with the p rop er t u that {CEa} is an o r t.hoq ona L family, and

if E = LEa' then CE = LCta (Y'espectively, and E is abelian

in R).
Proof. I~ Q = CEa, then Q is a central projection of

Rand Q ~ CE ~ E for all a. Thus Q ~ E and hence, Q ~ CEoa a
Since CE ? E ~ Ea, CE ? CEa for all a and hence CE ~ Q. TIlliS

Q = CEo In consequence,

If each Ea is abelian, then ERE is abelian and hence E is
abelian. (Vide 2, § 2, Chapter I of Dixmier [1J, where TI is
used instead of I~).

THEOREM 2.7. Suppose E,F aY'e non-zeY'o pY'ojections in

R, F being finite. If (Fa)aEA and (GS)SEB aY'e two maximaZ
oY'thogonal families of pY'ojections in R such that F ~ F ~ Ea
and F ~ GS~ E [o r all ae::A and S e::A, then Card.A = Card.B.

Proof. Vide Ringrose [41 where this theorem is known
as theorem of generalized invariance of dimension.

§3. Some lemmas. As mentioned in §2, W will denote a von Neu-
mann algebra on H with abelian commutant W'. In this section
we shall give two lemmas which generalize, respectively, §60
Theorem 2, §61 Theorem 3, of Halmos [2] for projections in W.

LEMMA 3.1. FoY' each vectoY' x in H the cyclic pY'ojec-

tion E = [W'x] is abelian in W.
Proof. Suppose x is a non-zero vector in H. If E =

[W' x], then W' E is an abelian von Neumann algebra on E(H)
and has a generating vector x. Then from Corollary 2 to Prop-
osition 4, 86, Chapter I, of Dixmier [1], it follows that
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(W'E)' = W' E and hence (W'E) I is abelian. But by Proposition
1(i), §2, Chapter I of [1], (W' E) I = EWE, so that EWE is
abelian and hence E is abelian in W.

LEMMA 3.2. Given a projection E in W, there exists
an abeZian projection F ~ E in W such that CF = CEo

Proof. Let E be a non-zero projection in W. By lemma
3.1 and Zorn's lemma there exists a maximal orthogonal fam-
ily {Ea} of non-zero abelian subprojections of E in W such
that {CEa} is an orthogonal family. Then E ~ ICEa' On the
contrary, ther-ewould exist a non-zero vector x in the range
of E such that CE x = 0 for all a, then for T' L W' and for

a
all a, CE T'x = T'CE x = 0 and hence CE [W'x] = 0; by Prop-a a a
osition 2.1, C[W'xJCEa = C[W'X]CEa = 0 for all Q. As [W'x]
is abelian in W by Lemma 3.1, this would contradict the max-
imality of {E }. As E ~ E, then CE ~ CE for all a and thusa a a
CE = LCEa· If F = LEa' then by Proposition 2.6(ii), F is
abelian in W, and CF = LCEa = CEo

§4. Multiplicity of projections. Making use of the lemmas in
§3 and Theorem 2.7, we shall associate with each projection
E' in W' a well defined cardinal number u(E') called the

muZtiplicity of E', and prove that u(VEj) = min{u(Ej)}, when-
ever {E~} is an orthogonal family of non-zero projections in

j
W' •

LEMMA 4.1. Let E' be a projection in W'. Then there

exists a maximal orthogonal family {Ea} of abelian projec-

tions in W such that CEa ~ E' for all a.
Proof. Suppose E' is a non-zero projection in W'. By

Lemma 3.2 there exists an abelian projection F in W such that
CF = E'. Then the collection of all orthogonal families of
abelian projections in W, such that each of their members
has central support E', is a non-empty partially ordered set
under set inclusion, and every linearly ordered set in this
collection has an upper bound which corresponds to the lliiion
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of all the members of the family. Appealing-to Zorn's lemma
we obtain the result.

PROPOSITION 4.2. Let E' be a projection in W'. Then

for two maximal orthogonal families (Ea)a€] and (FS)S~K of
abelian projections in W such that CEa = CFS = E' for all

a £ ] and S ~ K, Card.] = Card.K.
Proof. By Proposition 2.S(iii), Ea ~ FS for all a E]

and S £ K. Besides, by Proposition 2.S(v), they are all fin-
ite projections. The assertion follows from Theorem 2.7.

By virtue of the above proposition, we are justified
in giving the following definition.

DEFINITION 4.3. A non-zero projection E' in W' is said
to have multiplicity n if there exists a maximal orthogonal
family of n abelian projections {E.} in W, with CE' = f' for

.{. .{.

each i. The multiplicity of the zero projection is defined
to be zero.

Let B denote the collection of all projections in W'.
Since W' is abelian and strongly closed, B isa complete Boo-
lean algebra of projections on H.

THEOREM 4.4. Let u be the function associating each

proi ec t ion in W' with its mu lt ip lioi t u and N = {n : n a cardi-

nal number ~ dimH}. Then:

(i) u is well defined, the domain of u is B and the range

of u is a subset of N.
(ii) If E', F' are members of Band 0 < E' ~ F', then

u(E') ~ U(F').

(ui) If {F.} is an orthogonal family
j ,

B and if F' = VF., then u(F') =
j

Proof. (i) Immediate from Lema
and Definition 4.3.

(ii) If {F.} is a maximal
j

projections in W such that CF'
j

of non-zero members in
min{u(F'.)}.

j
4.1, Proposition 4.2,

orthogonal family of abelian
= F', then by Proposition 2.1,
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CF'E' = E', and F ,E' is abelian for all j. Hence the conclu-
j j

sion (ii) .
(iii) Since B is a complete Boolean algebra of projec-

tions, F' belongs to B. Let m i.niu IFt )} = n . By (ii) it is
j

obvious that U(F') ~ n. To prove the reverse inequality, let
10 be a set with Card.Io = n. As u(F~) ~ n, for each j there

j
exists an ortogonal family {F 'k.}k.€I of abelian projections
" , j 0, I IIn W, WIth CF'~ = F, for all k. E I . SInce F 'F

j
', = 0 for

, j re j 0 j
j t j , it follows from Proposition 2.6 that Gk. = 1Fjk. is
abelian in W with CGk. = F', for all k. E 10, In other words,
u(F') >,. n , and hence the conclusion (iii).

§5. Uniform multiplicity of projections. In this section the
concept of uniform multiplicity for projections m W'is intro-
duced. We give a theorem characterizing those projections in

W' which have uniform multiplicity, and deduce the well known
type In decomposition of a type I von Neumann algebra as a
corollary to another theorem on uniform multiplicity (vide
Theorems 5.4, 5.6 and Corollary 5.7).

DEFINITION 5.1. A non-zero projection E' in W' is said
to have uniform multiplicity n if every non-zero projection
F' ~ E' in W' has multiplicity n.

DEFINITION 5.2. Let R be a von Neumann algebra on H.
An orthogonal family {Ea} of projections in R is said to be
a complete orthogonal system, for a central projection Q of
R if LEa = Q.

LEMMA 5.3. Let E' be a non-zero projection in W' and

fEa} a maximal orthogonal family of abelian projections in

W such that CEa = E' for all a. Then there exists a non-ze-

ro vector x in H such that {C{W'x]Ea} is a complete orthogo-

nal system of abelian projections in W, for C[W'x]' and the

central support of C[W'xJEa is C[W' xl for each a.
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Proof. If Eo = LEa' and F = E'-Eo' then by the maxi-
mality of {Ea} and by Lemma 3.2, G' = E'-CF I O. Then
G'CF = 0, and hence by Proposition 2.1, G'F = O. Consequent-
ly G' = G'E' = G'E = 'G'E {G'E} is an orthogonal family, 0 L a' a
of abelian projections in W, and CG'Ea = G'CEa = G'E' = G'
by Proposition 2.1. Now let x be a non-zero vector in the
range of G'. Then as W' is abelian, and G' E W', it follows
that [W'x] ~ G'. Evidently {C[W'x]Ea} is a complete system
of abelian projections in W for C[W'x]' Besides, CEaC[W'x!=
C[W'x]CEa = C[W'x]E' = C[w'x]' since C[W'x] ~ G' ~ E'.

The following theorem gives a necessary and sufficient
condition for a non-zero projection E' in W' to have uniform
multiplicity.

THEOREM 5.4. A non-zero projection E' in W' has uniform

multiplicity n if and only if there exists a complete ortho-

gonal system {Ei} of n abelian projections in W for E' with

CEi = E' for all i. Thus E' has uniform multiplicity n ifand

only ifPW' is a von Neumann algebra of type In'
Proof. Suppose there exists an orthogonal family {Ea}

of abelian projections in W such that CEa= E', for all a,
and such that LEa = E'. Let F' be a non-zero subprojection
of E' in W'~ As CF'E = F, then F'E I 0 for each a. Evi-a adently {F'Ea} is a complete orthogonal system of abelian
proyections in W for F'. Since a complete orthogonal system
of projections for F' is also a maximal orthogonal system of
projections for F', and since CF'E F'CE = F'E' F' for

a aall a, by Proposition 2.1, it follows that u(F') = n . Thus
the condition is sufficient.

Conversely, suppose E' has uniform multiplicity n. By
Lemma 5.3 and Zorn's lemma there exists a maximal orthogonal
family {Fj}j~J of non-zero subprojections of E' in W such
that each Fj has a complete orthogonal system {Fik}k~Io of
abelian projections in W, with CF Ok = F~ for all kE 10,j l;' j ,where Card.Io = n. In consequence, k~~ Fik = Fi, j ~ J. Then
by the maximimality of {F~} ° J and by Lemma 5.3 we conclude

j j€
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I F'. =
jd 1
abelian in W, and

E'. Let GL. = .L F 'L.. Then by Proposition 2.6 Gk. is
r, j~J j r,'

CGL. = .LJ
F'.

" j £ j
E' for all k. E 1

0
, Besides,

Hence, the necessity of the condition in the frrstpart of
the theorem follows.

The second part of the theorem is an immediate conse-
quence of the first if one appeals to Proposition 2.5(iv)
and the definition of type In von Neumann algebras in [1].
This completes the proof of the theorem.

PROPOSITION 5.5. Suppose {E'.} is an orthogonal, famiZy
, j

such that each Ej has uniform mul,tipl,icity n. If E' =

then E' E Band E' has uniform mul,tipl,icity n.

Proof. As B is a complete Boolean algebra of projec-
tions and E' = VEj, it follows that E' E B. Let E~ be a non-
zero subproJ"ection of E' in B. Then E' = VE'E~, where we
. 0 0 j

consider only those indices j for wich E'E~ i O. By hypo-o j

thesis, for each of such j, u(E'E~) = n. The proposition iso j
an immediate consequence of Theorem 4.4.(iii).

in B
IE ~,

j

THEOREM 5.6. Suppose, for each cardinal, number n not
exceeding the dimension of H, pI is the supremum of al,l,thosen
projections in W' which have uniform mul,tipl,icity n. Then

{P~} is an orthogonal, famil,y of projections in W', IP: = I,
and for each n, either p' = 0 or p' has uniform mul,tipl,i-n n
city n.

Proof. For a fixed cardinal number n ~ dim H, let {E~}

be a maximal orthogonal family of projections in W' such
that each Ed has uniform multiplicity n. If no such family
exists we take the supremum P~ to be the zero projection.
If P' - VE' > 0, then there exists some non-zero projectionn a I

F' in W' such that 0 < F' .:;;P~ - VEa, and such that F' has
uniform multiplicity n. Since this contradicts the maximal-
ity of {E'}, we conclude P' = VE&. Thus, if P' r 0, then byann
Proposition 5.5, pI has uniform multiplicity n. In conse-n
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quence for n # m with P'P' ~ 0, we have n = the multiplicityn m ,
of P' = the multiplici ty of pI P' = the multiplicity of P ..m.n n m m
This contradiction establishes that {P~} is an orthogonal
family. Finally, LP' = I, by Lemmas 4.1 and 5.3. This com-n
pletes the proof of the theorem.

COROLLARY 5.7. Let R be a type I von Neumann.algebra
on H. Then R = 1: $ R., where the R.'8 are von Neumann a l:«

'<'£10 .(. .(.
gebra of type In.<. with n.<.~ ni"' for .<. , .<.' in 10,

Proof. By the definition of a type I von Neumann alge-
bra, there exists a von Neumann algebra W, with W' abelian,
on a Hilbert space H', such that Rand Ware *-isomorphic.
Let 4> be a *-isomorphism from R onto W. Let 10 = {n.<.:n.<.~ dimH'.
with Ph.. # O} in Theorem 5.6 with respect to W. Then

~.(. I

W =.L $WPn. and by Theorem 5.4, WPY!' is of type In' for
.(.£1

0
.(. .(..(.

each .<. L I . As a consequence,o

~ -1 I ~
L $4> (WPn·) L $RQn·

'<'E10 .(. '<'£10 .(.

= 4>-1(ph..) is a central projection
.(.

von Neumann algebra of type In"
.(.

of R and eachwhere Qn'
.(.

RQn' is a
.(.

§6. Concluding remarks. Suppose (X,S) is a measure space
with S a a-algebra, and f(e) a spectral measure on S with
values in projections on H. In [2] Halmos uses the following
terminology and notation:
E {f(M):M ES}

P {F:FE(M) = f(M)F for all M ~ S, F a projection}
F {G:GP = PG for all P~ P, G a projection}
For P ~P, the column generated by P, in symbols C(P), is de-
fined as C(P) = A{F:P '" Fe: F}, A row projection R in P is
one such that if R ~ P t!: P, then P = C (P) R. For a vector x
in H the cycle generated by x, in symbols Z(x), is the pro-
jection [f(M)x:M -= S], and it is seen that Z(x) e: P.



The above definitions of rows, cycles and generated
columns can be related to abelian projections, cyclic pro-
jections, and central supports, respectively, if we define
the von Neumann algebra W suitably. In fact, let W be the
von Neumann algebra of all operators T in B(H) which com-
mute with the members of P. Then the commutant W' of W is
the von Neumann algebra generated by F, and F is the Boo-
lean algebra of all projections in W'. Thus for a projec-
tions PEP the column C(P) generated by P coincides with
the central support Cp' since the centre of W is W'. By
Proposition 2.5(ii), a row P ~ P is nothing else but an abe-
lian projection in W. Finally, the cycle lex) is the cyclic
projection [W'x], since W' is closed in the strong topology
of operators. Consequently, lex) ~ W" = W and hence lex)
belongs to P.

As a consequence of the above remarks, it is evident,
as commented in Section 1, that our results subsume those
of Halmos in §54-64 of [2].

*
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